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Abstract: Floods occur throughout the world and are becoming increasingly frequent and dangerous.
This is due to different factors, among which climate change and land use stand out. In Mexico, they
occur every year in different areas. Tabasco is a periodically flooded region, causing losses and nega-
tive consequences for the rural, urban, livestock, agricultural, and service industries. Consequently,
it is necessary to create strategies to intervene effectively in the affected areas. Different strategies
and techniques have been developed to mitigate the damage caused by this phenomenon. Satellite
programs provide a large amount of data on the Earth’s surface and geospatial information processing
tools useful for environmental and forest monitoring, climate change impacts, risk analysis, and
natural disasters. This paper presents a strategy for the classification of flooded areas using satellite
images obtained from synthetic aperture radar, as well as the U-Net neural network and ArcGIS
platform. The study area is located in Los Rios, a region of Tabasco, Mexico. The results show that
U-Net performs well despite the limited number of training samples. As the training data and epochs
increase, its precision increases.

Keywords: remote sensing; CNN; SAR; flood mapping with SAR; water bodies; SAR images

1. Introduction

Natural disasters are becoming more frequent and of greater intensity and severity.
They occur throughout the world, causing severe harm to the population. According to the
Centre for Research on the Epidemiology of Disasters (CRED), floods are the most common
and destructive phenomenon [1]. In 2021, 432 catastrophes were registered, of which 223
were floods causing more than 4000 deaths (see Figure 1) [2].

In recent years, floods have caused human losses and severe damage to the world’s
economies. They cause damage to infrastructure in different sectors, such as agriculture
and livestock, and cause poverty among vulnerable populations. Likewise, they can
damage vital infrastructure and the transportation system, which can complicate the rescue
operation, in terms of sending aid to those affected, identifying affected areas and their
severity, and conducting damage assessment, among others. In this sense, it is essential to
analyze, segment, and map floods to calculate the extent of water in the flooded area and
identify its spatial distribution.

According to the United Nations Office for Disaster Risk Reduction (UNDRR) [3],
more than 45% of the world’s population has been affected by floods, including India,
China, Afghanistan, Germany, and Western Europe [1].

In Mexico, floods are constant in different areas. The southern region of Mexico
has been affected by frequent floods [4]. These events originate in the rainy season,
which begins in May and ends in November, having repercussions such as a rise in
river levels and the spillage of their flows onto tracts of land dedicated to productive
activities or in areas with urban settlements. The two most severe floods were those
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of 2007 (https://www.gob.mx/cenapred/articulos/domingo-28-de-octubre-2007-mega-
inundacion-en-tabasco?idiom=es, accessed on 26 Decembrer 2022) and 2020 (https://elpais.
com/mexico/2020-11-23/tabasco-una-tragedia-bajo-el-agua.html, accessed on 12 April
2021). According to official data from CEPAL [5], the damages caused by the 2007
floods amounted to USD 3,000,000.00: 31.77% for the productive sector, 26.9% for agricul-
ture, and 0.5% for the environment. The 2020 floods caused damages to 800,000 people,
200,400 houses, and 2000 km of land, and losses of almost USD 1,000,000.00.

Figure 1. Floods around the world from 2000 to 2022. Dataset obtained from EM-DAT.

The leading cause of flooding is due to the abundance of water in the area and the
impact of dams on the hydrology of the region, altering the natural flow of rivers, which
can cause flash floods and flooding, affecting the drinking water, health, and livelihoods of
hundreds of thousands of people each year. Some causes of severe floods are [6] (1) the
difficulty of the soil to infiltrate water quickly, inducing surface runoff of most of the
water volume in the plain; (2) changes in land use and the morphological conditions
of the land and deforestation of the rainforest for livestock, industrial use, and urban
expansion; (3) geological instability; and (4) poor land planning and mismanagement of
natural resources.

It is important to note that dams play an important role in diverting and regulating
the water flow. However, if they are not correctly managed during the accumulation of
water due to extreme rainfall, dams can overflow and cause catastrophic flooding in the
surrounding area. The poor design and delays of the hydraulic works initiated in 2003
in Southern Mexico impeded the passage of river channels and contributed to further
flood damage.

On the other hand, the development of new satellite platforms, tools, and sensors,
which are increasingly advanced, provides much terrestrial information (images). These
have made it possible to gradually improve flood predictions and evacuation services
through flood mapping. Despite this, they are still unreliable or are not fast enough to
handle real situations during floods. However, new strategies continue to be proposed to
improve prediction.

Remote sensing can collect a large amount of data from the ground and capture
beneficial information [7]. Earth observation satellite programs have allowed numerous
investigations focused on detecting and mapping floods, soil analysis, and monitoring
natural damage. The data acquired by satellites have different properties, such as (1) spatial
resolution, which determines the area of the Earth’s surface covered by each pixel of the
image; (2) spectral resolution, which represents the electromagnetic spectrum captured
by the remote sensor, and the number and width of regions; and (3) temporal resolution,
which determines for how long satellite information can be obtained from the exact location
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with the same satellite and radiometric resolution [8]. Remote sensing provides optical or
synthetic aperture radar (SAR) images.

The optical images are of high resolution and are multispectral, and they are correlated
with the open water surface. However, they can be affected by the presence of clouds
during precipitation. This makes it impossible to acquire spotless images.

SAR sensors can penetrate clouds and obtain images in any weather condition. This
is because the sensors operate at longer lengths and are independent of solar radiation.
This makes them ideal for the monitoring and mapping of floods and estimating the
damage caused.

Among the Earth observation satellite programs is Copernicus. It has an excellent
capacity to acquire remote data with a high temporal and spatial resolution, which are
valuable for the mapping of floods. Copernicus comprises six satellites developed for
different purposes: Sentinel-1, which provides SAR images helpful in observing land and
oceans; Sentinel-2, which provides multispectral terrestrial optical images; Sentinel-3 and
-6, for marine observation; and Sentinel-4 and -5 for air quality monitoring [9–11].

On the other hand, deep learning (DL) techniques have emerged in recent years.
Semantic segmentation algorithms based on convolutional neural networks (CNN) have
gained wide acceptance due to their excellent results and ease of training [12]. Consequently,
they are the most widely used for the analysis of satellite images. This has allowed the
development of strategies using satellite images for various purposes, such as land cover
classification, the extraction of water bodies, flood mapping, etc [10,13,14].

CNNs comprise multiple processing layers that result from performing spatial convo-
lutions, usually followed by trigger units. On the other hand, recurrent neural networks
(RNN) [15] are also being used in remote sensing since they can handle data sequences (for
example, time series) in such a way that the output of the previous time step is fed as input
to the current step.

This research presents a strategy for the mapping of flooded areas using the U-Net
semantic segmentation architecture, Sentinel-1 SAR satellite images, and the ArcGIS ge-
ographic information system. The study area belongs to the state of Tabasco, Mexico.
The document is structured as follows: Section 2 describes the related works; Section 3
describes the materials and methods used in the research; Section 4 presents the results of
the experiments; and, finally, Section 5 contains the conclusions derived from the study.

2. Related Works

The literature has different approaches to analyzing and mapping floods and water
bodies. Many approaches use optical (multispectral) imaging and other SAR. Others com-
bine SAR and optical data. Optical sensors measure the radiation of the visible spectrum
through the short infrared spectrum, which makes them suitable in distinguishing water
bodies from dry surfaces. However, each data type has different characteristics, capabilities,
and precision.

On the other hand, SAR sensors are based on energy reflectance, which makes them
capable of acquiring images in all weather conditions, and at day or night. However, they
are unable to differentiate between water and water-like surfaces. It should be noted that
deep neural networks such as CNN and RNN are the most used for flood monitoring and
mapping [13,16–18]. Likewise, supervised, unsupervised, and contrastive algorithms have
been used.

Threshold approaches using SAR imaging perform well in mapping flooding and
water bodies [19–22]. This is due to the low level of electromagnetic reflectance of SAR.
However, the results may be less effective when disturbances occur in the images. Another
drawback is that a characteristic bimodal distribution is not shown if the water occupies a
small fraction of the image. For this, the selection of an appropriate representative backscat-
tering coefficient threshold from the radiometric histogram [23,24] to discriminate between
water and land pixels is necessary. In [25], the authors used the pixel-based thresholding
method and combined SAR and optical images to generate time series. They used images
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from 2016 and 2018: 777 from Sentinel-1, 515 from Sentinel-2, and 57 from Landsat-8.
The results showed the flooding patterns and the damage caused in the study area.

Liang et al. [26] analyzed the delineation of water bodies using SAR images. Their
thresholding method applied a global threshold to delineate the water pixels and group
non-water pixels. Then, they applied local thresholds to subsets of land pixels and adjusted
the Gamma distribution. Twele et al. [9] developed a processing chain to map flooded areas
combining the threshold, HAND index, and classification based on fuzzy logic.

Traditional machine learning approaches to water body analysis generally use optical
imaging [27–30]. Spectral indices are applied to the images and developed to monitor
vegetation. The indices are generally based on the interactions between vegetation and
electromagnetic energy in the short-wave infrared (SWIR) and near-infrared (NIR) spec-
trum bands [31,32]. These indices apply to images with different resolutions, such as
LANDSAT, SPOT, and SENTINEL [33]. However, to map water bodies and soil vegetation,
the Normalized Difference Vegetation Index (NDVI) [34] and the Normalized Difference
Water Index (NDWI) [35] are mainly used. Optical sensors are highly correlated with open
water surfaces. Despite this, they cannot penetrate clouds, which limits their use in rainy or
cloudy weather. Consequently, acquiring high-resolution, cloudless multispectral images
is impossible. Deroliya et al. [36] present an approach for flood risk mapping considering
geomorphic descriptors. They use three algorithms: decision tree (DT), random forest (RF),
and gradient-boosted decision trees (GBDT). Zhou et al. [37] use the support vector ma-
chine (SVM). Merela [38] and Schmitt [23] use random forest (RF) for the analysis of water
bodies. Pech-May et al. [29] analyze the behavior and land cover of water bodies during
floods in the rainy season using multispectral images and RF, SVM, and classification and
regression tree (CART) algorithms.

Deep learning (DL) for terrestrial observation has emerged in recent years. Due to its
good results, it is being used to analyze the land surface, climate change, changes in water
bodies, and crop flooding, among others. DL algorithms can learn from appropriate feature
representations for classification tasks through spatial learning (CNN) and sequential learn-
ing (RNN). These approaches have presented better results compared to other techniques.
However, they suffer from some problems. The CNNs suffer inductive biases, while RNNs
are affected by the disappearance of the gradient [39]. For supervised DL algorithms to
obtain satisfactory results, they require extensive datasets for their training [40,41]. Due to
this need, different datasets of labeled satellite images have been created.

Some datasets of images related to floods are Sen1Floods [42], which contains Sentinel-
1 Sentinel-2 images of 11 manually and weakly labeled flood events; UNOSAT [43],
with Sentinel-1 SAR labeled images of 15 flood events; OMBRIA [44], with labeled im-
ages from Sentinel-1 and Sentinel-2 of 23 floods; and SEN12-FLOOD [45], with labeled
images from Sentinel-1 and Sentinel-2. These datasets are used in different flood analysis
proposals [19,40,44,46,47]. Despite this, we do not have a large dataset of labeled images,
and acquiring one would take a long time. Some approaches propose to use loosely labeled
datasets [42,48]. Other approaches use contrastive learning to avoid reliance on labeled
data [41,49–51].

Zhao et al. [52] used convolutional networks and SAR images to classify buildings,
vegetation, roads, and water bodies using TerraSAR images [53]. Other approaches, such as
those of Katyar et al. [54] and Ziyao et al. [55], use U-Net [56]. U-Net uses hop connections
between different blocks of each stage to preserve the acquired feature maps. At the same
time, SegNet [57] reuses the encoder clustering indices for nonlinear upsampling, thus
improving the results in flood detection.

On the other hand, Scepanovic et al. [58] created a land cover mapping system
with five classes. They applied several semantic segmentation models, such as U-Net,
DeepLabV3+ [59], PSPNet [60], BiSeNet [61], SegNet, FCDenseNet [62], and FRRN-B [63].

Konapala et al. [64] presented a strategy for flood identification from SAR images.
In [65], they used Sentinel-1 and Sentinel-2 to identify flooded areas. Likewise, Yu Li et al. [66]
conducted a study in which they analyzed hurricanes. In [67–69], they proposed approaches
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incorporating recursive and convolutional operations to treat spatiotemporal data. Finally,
some RNN approaches have been proposed for the analysis of water bodies and land cover
using Sentinel images [70,71]. Table 1 lists work using different approaches (models) and
images in different study areas.

Table 1. Proposals that have used different approaches and image datasets.

Proposal Dataset Model * Study Area

Tanim et al. [28], 2022 Sentinel-1 SAR SVM, RF, MLC CA, USA
Pech-May et al. [29], 2022 Sentinel-2 SVM, RF, CART Tabasco, Mexico
Kunverji et al. [30], 2021 Optical DT, RF, and GB Bihar and Orissa in India
Billah et al. [72], 2023 SAR Sentinel-1 and Optical Sentinel-2 RF Gowainghat, Bangladesh
Cazals et al. [73], 2016 Sentinel-1 Hysteresis Threshold Frenc, Europe
Bai et al. [48], 2021 Sen1Floods11: Sentinel-1 and Sentinel-2 CNN, BasNet Bolivia
Katiyar et al. [54], 2021 Sen1Floods11: Sentinel-1 and Sentinel-2 SegNet-lik [74] and U-Net [56] Kerela, India
Nemni et al. [75], 2020 UNOSAT: Sentinel-1 U-Net [56] and XNet [76] Sagaing Region, Myanmar
Drakonakis et al. [44], 2022 Sentinel-1 and Sentinel-2 OmbriaNet [44] Global
Ngo et al. [77], 2018 Sentinel-1 FA-LM-ANN [77] Lao Cai, Vietnam
Mateo-Garcia et al. [47], 2021 WorldFloods 1 FCNN [59] Global
Xing et al. [55], 2023 Optical FSA-UNet Anhui Province, China
Sarker et al. [78], 2019 Optical Landsat-5 F-CNNs Australia
Xu et al. [79], 2022 SAR Sentinel-1 U-Net South China
Rambour et al. [46], 2020 SEN12-FLOOD: Sentinel-1 and Sentinel-2 Resnet-50 [80] Global
Katiyar et al. [81], 2020 ALOS-2 2: SAR U-Net Saga, Kurashiki, Japan
Zhao et al. [82], 2022 Gaonfen-3 3: SAR U-Net Xinxiang, China

1 https://tinyurl.com/worldfloods, accessed on 12 May 2022. 2 https://www.eorc.jaxa.jp/ALOS-2/en/about/
palsar2.htm, accessed on 12 July 2021. 3 https://www.geospatial.com.co/imagenes-de-satelite/gaofen-3.html,
accessed on 19 June 2022. * SVM: Support Vector Machine. RF: Random Forest. DT: Decision Tree. MLC:
Maximum Likelihood Classifier. CART: Classification and Regression Tree. GB: Gradient Boost.

3. Materials and Methods

The proposed strategy for flood detection and mapping consists of four main phases.
Figure 2 shows the methodology with each of the activities of each phase. Each stage is
explained below.

Study area

Sentinel-1 Image
collection

Preprocessing

Radiometric correction

Speckle filter application

Geometric calibration

RGB layer generation

Binary layer

Training

Sample collection
from flooded areas

U-NET model 
training

RESNET-34
(Backbone)

Corrected images

Images Chips
Metadatas

Model 
obtaining

Flooded area
detection

Validation

Results analysis

Figure 2. The methodology used for flood mapping with SAR and U-Net images.
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3.1. Study Area

Tabasco is in the southeast of Mexico, on the coast of the Gulf of Mexico. Its territorial
extension is 24,661 km2, representing 1.3% of the country. Two regions are recognized in
the area, Grijalva and Usumacinta, which contain two subregions (swamps and rivers).
Together, they form one of the largest river systems in the world in terms of volume.
In addition, the state’s average rainfall is three times higher than Mexico’s and represents
almost 40% of the country’s freshwater. The abundance of water and the impact of the
dams on the hydrology of the region alter the natural flow of the rivers, causing flash
floods and floods, which affect the drinking water, health, and livelihoods of thousands
of Tabasqueños [83]. Therefore, flooding is expected in the region. However, in the
fall of 2020, several river fronts and hurricanes caused the worst flooding in decades,
causing widespread human and economic losses. The study area is located in the Ríos
subregion (see Figure 3). It is in the easternmost part of the state, on the border with
Campeche and the Republic of Guatemala. It is named for the many rivers that cross
it, including the Usumacinta River, the largest in the country, and the San Pedro Mártir
River. The municipalities that make up this subregion are Tenosique, Emiliano Zapata,
and Balancán. Its surface covers approximately 6000 km2, representing 24.67% of the state.

Figure 3. Geographical location of the study area. Tabasco, Ríos subregion.

3.1.1. Study Period

A period was established to carry out the training sample collection. According to the
National Water Commission (CONAGUA, Mexico) [84], the two maximum rainfall periods
of the year are separated by a heatwave. The first maximum occurs in June and the second
in September and November; 72% of the total rainfall in the state is concentrated in this
period. On the other hand, the rains throughout the year can be classified into different
seasons. Table 2 shows the annual distribution of rainfall in the state of Tabasco. Table 3
shows the available Sentinel-1 SAR images. Those with a gray background were selected
for model training. The images correspond to the months of September–November 2020.
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Table 2. Annual distribution of rainfall in the state of Tabasco.

Season Months

North (rainy season) January, February
Dry March, April, May
Temporal (rainy season) June, July, August, and September
North October, November

Table 3. SAR imagery availability: temporal season and north, 2020. IW: Interferometric Wide Swath.
Gray background: selected images.

Date Identifier Sensor Mode
1 September 2020 S1A_IW_GRDH_1SDV_20200901T001523_20200901T001548_034158_03F7BC_B5A0 IW
1 September 2020 S1A_IW_GRDH_1SDV_20200901T001458_20200901T001523_034158_03F7BC_87AA IW
5 September 2020 S1A_IW_GRDH_1SDV_20200905T115354_20200905T115419_034223_03FA02_ABF4 IW
5 September 2020 S1A_IW_GRDH_1SDV_20200905T115325_20200905T115354_034223_03FA02_9B37 IW
10 September 2020 S1A_IW_GRDH_1SDV_20200910T120208_20200910T120233_034296_03FC89_0B73 IW
10 September 2020 S1A_IW_GRDH_1SDV_20200910T120139_20200910T120208_034296_03FC89_B49B IW
13 September 2020 S1A_IW_GRDH_1SDV_20200913T001524_20200913T001549_034333_03FDDC_678C IW
13 September 2020 S1A_IW_GRDH_1SDV_20200913T001459_20200913T001524_034333_03FDDC_D146 IW
17 September 2020 S1A_IW_GRDH_1SDV_20200917T115325_20200917T115354_034398_040021_40C7 IW
17 September 2020 S1A_IW_GRDH_1SDV_20200917T115354_20200917T115419_034398_040021_7488 IW
22 September 2020 S1A_IW_GRDH_1SDV_20200922T120140_20200922T120209_034471_0402CF_5DE6 IW
22 September 2020 S1A_IW_GRDH_1SDV_20200922T120209_20200922T120234_034471_0402CF_92F4 IW
25 September 2020 S1A_IW_GRDH_1SDV_20200925T001459_20200925T001524_034508_040406_3B3E IW
25 September 2020 S1A_IW_GRDH_1SDV_20200925T001524_20200925T001549_034508_040406_D222 IW
29 September 2020 S1A_IW_GRDH_1SDV_20200929T115354_20200929T115419_034573_040658_E574 IW
29 September 2020 S1A_IW_GRDH_1SDV_20200929T115325_20200929T115354_034573_040658_955A IW
4 October 2020 S1A_IW_GRDH_1SDV_20201004T120209_20201004T120234_034646_0408F2_0529 IW
4 October 2020 S1A_IW_GRDH_1SDV_20201004T120140_20201004T120209_034646_0408F2_3612 IW
7 October 2020 S1A_IW_GRDH_1SDV_20201007T001525_20201007T001550_034683_040A31_8F93 IW
7 October 2020 S1A_IW_GRDH_1SDV_20201007T001500_20201007T001525_034683_040A31_288F IW
10 October 2020 S1A_IW_GRDH_1SDV_20201011T115326_20201011T115355_034748_040C78_6262 IW
10 October 2020 S1A_IW_GRDH_1SDV_20201011T115355_20201011T115420_034748_040C78_1100 IW
16 October 2020 S1A_IW_GRDH_1SDV_20201016T120140_20201016T120209_034821_040F05_580F IW
16 October 2020 S1A_IW_GRDH_1SDV_20201016T120209_20201016T120234_034821_040F05_1A61 IW
19 October 2020 S1A_IW_GRDH_1SDV_20201019T001500_20201019T001525_034858_041057_468E IW
19 October 2020 S1A_IW_GRDH_1SDV_20201019T001525_20201019T001550_034858_041057_88CE IW
23 October 2020 S1A_IW_GRDH_1SDV_20201023T115355_20201023T115420_034923_04128B_5C7B IW
23 October 2020 S1A_IW_GRDH_1SDV_20201023T115326_20201023T115355_034923_04128B_9366 IW
31 October 2020 S1A_IW_GRDH_1SDV_20201031T001500_20201031T001525_035033_041641_26BD IW
31 October 2020 S1A_IW_GRDH_1SDV_20201031T001525_20201031T001550_035033_041641_7536 IW
4 November 2020 S1A_IW_GRDH_1SDV_20201104T115352_20201104T115417_035098_041890_34DB IW
4 November 2020 S1A_IW_GRDH_1SDV_20201104T115327_20201104T115352_035098_041890_BF00 IW
9 November 2020 S1A_IW_GRDH_1SDV_20201109T120140_20201109T120209_035171_041B17_8D95 IW
9 November 2020 S1A_IW_GRDH_1SDV_20201109T120209_20201109T120234_035171_041B17_9212 IW
11 November 2020 S1A_IW_GRDH_1SDV_20201112T001524_20201112T001549_035208_041C65_0D7B IW
11 November 2020 S1A_IW_GRDH_1SDV_20201112T001459_20201112T001524_035208_041C65_72F8 IW
16 November 2020 S1A_IW_GRDH_1SDV_20201116T115354_20201116T115419_035273_041EA6_B142 IW
16 November 2020 S1A_IW_GRDH_1SDV_20201116T115325_20201116T115354_035273_041EA6_9581 IW
21 November 2020 S1A_IW_GRDH_1SDV_20201121T120140_20201121T120209_035346_042131_3140 IW
21 November 2020 S1A_IW_GRDH_1SDV_20201121T120209_20201121T120234_035346_042131_E41C IW
24 November 2020 S1A_IW_GRDH_1SDV_20201124T001459_20201124T001524_035383_04226B_D4FD IW
24 November 2020 S1A_IW_GRDH_1SDV_20201124T001524_20201124T001549_035383_04226B_E7EF IW
28 November 2020 S1A_IW_GRDH_1SDV_20201128T115354_20201128T115419_035448_0424BB_315E IW
28 November 2020 S1A_IW_GRDH_1SDV_20201128T115325_20201128T115354_035448_0424BB_CC44 IW

3.1.2. Image Acquisition

The study used SAR images with identical polarization in the return wave (HH)
obtained from the Sentinel-1 satellite using the Copernicus Open Access Hub platform
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(https://scihub.copernicus.eu/, accessed on 10 January 2023). These images were found
within a tile that included the states of Campeche, Chiapas, and Tabasco (see Figure 4).
Sentinel-1 SAR sensors can acquire images regardless of time, day or night, and weather
conditions. This feature makes SAR imaging the best remote sensing system for tropical
regions with high cloud cover. Moreover, the high sensitivity of the bands (1–30 m wave-
length) to humidity makes it possible to differentiate SAR data between water and another
type of land cover. Another critical factor is the angle of incidence: when it increases,
the backscatter decreases, which means that when the same surface is observed at different
angles, the backscatter will be different. Finally, one polarization may be more important
depending on the flooding site, conditions, and soil morphology. Since the study area had
a large amount of vegetation, it was decided to use HH polarization since it had greater
penetration through the canopy.

Figure 4. Location of tile containing the SAR images of the study.

The images used corresponded to the periods of November 2020 and September 2022;
this was because, during these periods, there were medium-scale floods in the study area.
Therefore, the availability of the scenes in Table 4 was considered. In addition, the estimated
flood map generated by the National Civil Protection System (SINAPROC) was used for
the training samples.

Table 4. Meteorological phenomena that caused flooding in the study area (Tabasco).

Start Date End Date Meteorological Phenomenon

29 September 2020 5 October 2020 Cold front No. 4, No. 5 and Hurricane Gamma
29 October 2020 7 November 2020 Cold front No. 9, No. 11 and Hurricane Eta
15 November 2020 19 November 2020 Cold front No. 13 and Hurricane Iota

3.1.3. Preprocessing of SAR Images

Among the challenges of SAR imaging is processing. This is due to the geometry of its
acquisition, which generates geometric and radiometric deformation effects such as slant
range distortion layover and foreshortening [85]. Warping effects can affect the backscatter
values of images. To correct this, we used the Sentinel Application Platform (SNAP) [86],
a modular application of ESA for the treatment of satellite images. The preprocessing steps
applied were as follows:

https://scihub.copernicus.eu/
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• Radiometric correction. To correct the distortions of the radar signals caused by
alterations in the movement of the sensor or instrument onboard the satellite. It
should be noted that the intensity of the image pixels can be directly related to the
backscatter signal captured by the sensor. Uncalibrated SAR images are helpful for
qualitative use but must be calibrated for quantitative use. Figure 5a,b show an
example of an image before and after correction.

• Speckle filter application. SAR images have inherent textures and dots that degrade
image quality and make it challenging to interpret features. These points are caused
by constructive and destructive random interference from coherent but out-of-phase
return waves scattered by elements within each resolution cell. To provide a solu-
tion, speckle filtering was applied, with non-Gaussian multiplicative noise, which
indicated that the pixel values did not follow a normal distribution. Consequently,
the 7 × 7 Lee [87] filter was used to standardize the image and reduce this problem
(see Figure 5c).

• Geometric calibration. SAR images may be distorted due to topographic changes
in the scene and the inclination of the satellite sensor, which makes it necessary to
reposition it. Data that do not point directly to the nadir position of the sensor will have
some distortion. The digital elevation model (DEM) of the Shuttle Radar Topography
Mission (SRTM) (http://www2.jpl.nasa.gov/srtm/, accessed on 5 April 2022) was
used for the geometric correction. Figure 5d shows the rearrangement of the SAR
image of the study area.

• RGB layer generation. An RGB mask of the SAR image was created to detect pixels
where water bodies, vegetation, and flooded areas occurred. This method is based
on the differences between the images before and after the event. It results in a
multitemporal image in which a band is assigned to each primary color to form an
RGB composite image. The RGB layer allows the highlighting of relevant features and
facilitates visual interpretation, while binary layers allow precise segmentation and
accurate evaluation of the results. For example, for the RGB layer, the HV/VV/VH
combination can be used to highlight the texture and intensity of the backscatter signal
at different polarizations. The maps obtained reflect flooded areas in blue, permanent
water in black, and other soil types in yellow. Figure 5e shows the result of the image
with the RGB layer.

• Binary layer. A threshold was used to separate water pixels from other soil types.
The histogram of the filtered backscattering coefficient of the previously treated images
was analyzed for this. The minimum backscattering values were extracted since these
corresponded to the pixels with the presence of water. In this way, a more accurate
threshold value can be obtained between flooded and non-flooded areas. This layer
is helpful in evaluating and validating results, as it allows a direct comparison with
reference data. RGB and binary layers can be used in different approaches, such as
land cover change analysis and monitoring changes in water bodies. Figure 5f shows
the binary layer obtained from thresholding. Areas with shades of red indicate the
presence of water, while other deck objects are ignored. The purpose of this layer is to
obtain the training samples that will be used in the deep learning model. Some benefits
were obtained by comparing and analyzing the binary layer with the SINAPROC 2020
flood map, such as validation and verification. This is because the SINAPROC map
is a reliable data source to validate and verify the accuracy of the generated binary
layer. It also allowed us to understand the temporal and spatial context, as it provided
information on the specific period in which the floods occurred in 2020. This allowed
us to contextualize the generated binary layer regarding time and geographic location.

http://www2.jpl.nasa.gov/srtm/
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Figure 5. SAR image processing: (a) no processing; (b) with radiometric processing; (c) with speckle
filter; (d) with geometric correction; (e) with RGB layer; and (f) with binary layer.

3.2. Training

The training of deep learning models requires the conversion of geographic informa-
tion systems (GIS) into a format that can be used to classify images. Creating good training
examples is essential when training a deep learning model or any image classification
model. SAR images from September to November 2020, when floods occurred in Tabasco,
were used for the training. These images were used as samples to provide the visual
information needed to train the deep learning model. The ArcGIS Pro platform [88] was
used to train the model.

3.2.1. Training Sample Collection

Images preprocessed with the binary layer were used to create training samples.
Figure 6 shows some of the training samples captured in the SAR images.

It is important to mention a significant characteristic of water bodies and floods in
SAR satellite images: radar signals are sensitive to the structure of objects on the Earth’s
surface. Several main dispersion mechanisms exist, such as mirror, double bounce, and vol-
ume. On the smooth ground, such as a calm water body, mirror scattering or specular
reflection from the surface dominates. On the contrary, volume backscatter dominates in
heterogeneous terrain or rough surfaces, such as areas of dense vegetation. In urban areas
and flooded vegetation, double bounce backscatter dominates; they form right angles in
the direction of the radar and the signal bounces twice, reflecting most of the energy back
to the radar. The homogeneity and heterogeneity of the surface structures of objects are
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manifested in images as smooth or rough surfaces, such that image areas appear bright
or dark. When a water body is calm, the behavior concerning the radar signal is called a
specular reflector—that is, the radar signal that hits the lake is reflected in the opposite
direction to the satellite, away from the sensor. For this reason, when the antenna does not
perceive a strong return signal, water bodies appear dark on the radar image. The dark
tone contrast makes possible a separation between land and water cover [89].

Samples image Mask Overlay mask

(a)

(b)

Figure 6. Creation of training samples: (a) image used to create the training samples, (b) sample of
one of the regions used as a sample next to the generated mask.

Considering the above, the collection of samples was obtained, obtaining a set of
1036 samples distributed in the different scenarios seen in the satellite images. Once the
samples were established, the training data were exported in ArcGIS (Export Training
Data). The output of this process comprised sets of small images of the sample sites
(image chips), labels (labels) in XML format, metadata files, parameters, and statistics of
the captured samples.

3.2.2. Classification Model Training

The U-Net algorithm can learn specific features in images by combining low- and
high-level features, making it highly suitable in segmenting and classifying objects in
satellite images. Convolutional neural networks of the U-Net type were used, which,
despite being one of the simplest models, offer more accurate or adjusted results than other
models. The accuracy is due to its ability to handle small datasets, and it has been used in
various image processing approaches in remote sensing. Furthermore, the segmentation
and classification of objects in satellite imagery are essential for various applications, such
as urban planning, natural resource management, and the detection of changes in the
environment. The model performs a downsampling process to reduce the input image to a
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small feature matrix. Then, the decoder constructs the output using the input features and
recombines spatial information from the input image.

Figure 7 shows the U-Net structure for SAR image segmentation. It consists of two
paths: encoder and decoder. The encoder is a pre-trained classification network (ResNet)
where convolution blocks followed by max-pool downsampling are applied to encode
the input image into feature representations at several levels. Each block is a convolution
operation and follows a ReLU activation function. The red arrows indicate a 2 × 2 max-
pooling layer.

The decoder reconstructs the feature maps learned by the encoder over the pixel space
(higher resolution) to obtain a dense classification. The green arrows indicate upsampling,
which uses the upsampling layer at each step to obtain a high-resolution feature map.
Finally, the gray arrows indicate the concatenation connections, which merge the attention
feature map and the corresponding top feature map.

2× 2×

4× 4×

Input
512 × 512

Classifier

Conv 3×3  ReLU

Up-conv 3×3
Max-pool 2×2
Copy & concatenate

256 × 256

8×   8×

128 × 128

16×   16×

64 × 64

32×     32×

32 × 32

Encoder Decoder

Figure 7. U-Net architecture for flood mapping.

The Train Deep Learning Model geoprocessing tool is used for model training. This
tool allows the generation of a model based on deep learning using the collection of samples
(image chips and labels) captured in the training process as input data. For the capture of
image chips and their labeling, a relevant region of interest in the study area was chosen
for flood detection. Using spatial analysis tools, Sentinel-1 image chips were cropped and
extracted from the region of interest. These chips could be overlapped to ensure complete
coverage of the study area. A suitable resolution for the image chips was also selected to
ensure the representation of relevant features for flood detection. Finally, inclusion and
exclusion criteria were applied during labeling to ensure the quality and accuracy of the
labels. These criteria were based on agreement with reference data and consistency with
historical information (RGB and binary layer images).

To carry out the training of the model, a series of parameters were adjusted in the
ArcGIS platform.

• Epochs. The maximum number of cycles or iterations back and forth of all training
samples through the neural network. Different values were taken: 25, 50, 75, and
100 epochs (see Table 5).

• Batch size. The number of samples to be processed at the same time. It depends on the
hardware and the number of processors or GPUs available. A value of 8 was taken.

• Chip size. A value equal to the size of the sample site images or image chips. The larger
the chip size, the more information can be displayed and processed. In our case,
the value corresponded to 256 pixels.

The parameters were selected and adjusted according to the needs of the approach
and the available hardware. Some potential effects on the selection and adjustment are as
follows. (1) Epochs: an insufficient number may result in a model with little learning of the
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patterns and features relevant in the data, and an excessive number of epochs may lead to
overfitting of the model. (2) Batch size: a small batch may lead to more frequent weight
updates but with higher variability, which would affect the stability of the training; a large
batch may lead to less frequent but more stable updates. In this sense, the optimal batch
size depends on the amount of training data and computational resources available and the
complexity of the model. (3) Chip size: a suitable size should consider the spatial resolution
of the Sentinel-1 imagery and the scale of the features relevant to flood detection. A small
size can lead to the loss of essential details and a lack of spatial context. An enormous
chip size can reduce the model’s ability to capture fine details and affect the accuracy of
pixel-level flood detection.

Table 5. Number of samples and times used in training the flood classification model.

Epochs Samples

25 256
50 566
75 716
100 1036

ResNet-34 [90] was used as a backbone or residual network, consisting of 34 pre-
trained layers with more than 1 million images from the ImageNet dataset [91]. Of the
dataset, 10% was used to validate the model. The number of training samples used to
validate the model during learning was specified. ArcGIS provides a checkbox (which was
disabled) to stop the training process when the learning curve starts to flatten. This is to
avoid the premature or incomplete termination of the training process. Finally, a definition
output was generated with the trained model and aspects such as (1) the learning rate,
which is automatically adjusted with an optimal value and the weights of the model in the
backpropagation of the data by the neural network during the training process [92]; (2) the
training and validation loss function, which indicates how well the model fits the training
and validation data [93], and (3) the average accuracy score for the percentage of correct
model detection from the results obtained with the internal validation samples.

3.2.3. Model Validation and Optimization

Image classification is a GPU-intensive process that can take time, depending on the
computer’s hardware. Once the deep learning model is created, it can be used repeatedly
to determine the presence of flooding in an area of interest. For this, the created model
was used to classify the flooded areas in the same geographical area as in the training data.
Figure 8 shows an output example; each pixel comprising the satellite image corresponds
to one of the previous classes created. We show the parameters used and loaded to classify
the SAR image for 2022.
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Figure 8. Example of output during the validation and optimization process of the model with SAR
images of the study area.

4. Results Obtained

The results of the training of the final model are described below in terms of the
learning rate, training and validation loss, and the estimated precision of the model in the
task for which it was trained.

• Learning rate. A number that controls the rate at which model weights are updated
during training. It determines the speed at which the model learns. Table 6 shows
each training period’s initial and final values (default value 0.01).

• Training and validation loss. Training loss measures the model error in the training
data, i.e., how well the model fits the data. The lower the value, the better the
performance. Validation loss measures the model error in the validation data, i.e.,
how well the model generalizes to new data that it has not seen before. The smaller
the value, the better the model will perform on the validation data. According to the
established training parameters, the validation loss was calculated for 10% of the total
samples used. Figure 9 shows the graphs of the training loss function and validation
of the deep learning models trained with different times and training samples.

• Precision. It refers to the percentage of times that the model makes a correct prediction
concerning the total number of predictions made. Thus, it measures the proportion of
times that the model correctly labels an instance of a data sample. Figure 10 shows the
image chips taken as samples concerning the classifications made by the models. This
is to compare the results and precision of the models. In Table 7, the average precision
of each model is presented, as well as other quality validation parameters.
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(a) (b)

(c) (d)

Figure 9. Training and validation losses in the trained model. (a) 25 epochs, (b) 50 epochs, (c) 75 epochs,
and (d) 100 epochs.

(a) (b)

(c) (d)

Figure 10. Automatic comparison of the training samples and the classifications generated by the
trained model. (a) 25 epochs, (b) 50 epochs, (c) 75 epochs, and (d) 100 epochs.
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Table 6. Initial and final values of the learning rate parameter at different times in which the model
was trained.

Epochs
Learning Rate

Initial End

25 0.000005248 0.000052480
50 0.000015848 0.000158489
75 0.000022909 0.000229099
100 0.000006309 0.000063096

Model Evaluation

The result of the analysis of the images to detect flooded regions can be classified by the
pixels determined as water or non-water regions. In this sense, it is necessary to calculate
the accuracy in classifying the pixels. For this, we use (1) precision (see Equation (1), to
determine how many of the predicted water pixels match the labeled water pixels; (2) recall
(see Equation (2), which takes into account false negatives to penalize the model; and (3) F1,
which is a harmonic measure of precision and recall. Table 7 shows the validation parameters
mentioned above.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

where TP (true positive) is the set of pixels that are correctly classified as water; FP (false
positive) is the set of pixels from non-flooded areas classified as flooded; FN (false negative)
is the set of pixels from flooded areas classified as non-flooded.

Since precision and recall must be high, F1 is a compensation metric for over- and
under-segmentation. The formula for F1 is shown in Equation (3).

F1 =
2 × Precision × Recall

Precision + Recall
(3)

Table 7. Quality evaluations of the trained neural model.

Chips: 256 Epochs: 25

Evaluation Class: flood

Precision 82%
Recall 40%
F1 53%

Chips: 566 Epochs: 50

Precision 81%
Recall 78%
F1 79%

Chips: 716 Epochs: 75

Precision 74%
Recall 72%
F1 73%

Chips: 1036 Epochs: 100

Precision 94%
Recall 92%
F1 93%

It should be noted that the model was trained using a dataset of SAR images and flood
labels. The model parameters were optimized to achieve the best possible performance.
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The latest version of the model was executed in a large part of the Tabasco territory (mainly
in the Ríos de Tabasco area), applying the previously optimized parameters to evaluate its
ability to identify the pixels of the SAR image with the presence of floods. Although the
model results were slightly affected due to regional and climatic characteristics, the great
potential of the model for the detection, classification, and mapping of areas with flood
presence was observed (see Figure 11).

Figure 11. Result of the implementation of the deep learning model. The blue pixels correspond to
the presence of water bodies and floods.

5. Conclusions

Deep learning methods to obtain high precision for pixel classification require a
rigorous training process. This process is achieved by integrating many samples and
interactions in the neural network to ensure an adequate representation of the patterns
present in the image. As shown in Table 7, training the model with 256 samples (chips)
and 25 epochs resulted in precision of 82%, recall of 40%, and F1 of 53%. However, when
training the model with 1036 samples and 100 epochs, the precision was 94%, recall 92%,
and F1 93%.

It is important to note that the training process is not limited to integrating samples and
iterations. It also requires many tests and evaluations to determine the effects of the different
training and classification parameters on model performance. This allows for adjustment
and optimizes the generated models, obtaining better results in pixel classification. It
is essential to have powerful hardware resources to implement and train deep learning
models that automate different cartographic tasks. This is because DL models require
a large volume of data to train, and processing these data involves many computations
and complex mathematical operations. By having powerful hardware resources, such as
a high-capacity GPU or many processing cores, the training time can be reduced and a
more significant amount of data can be processed, which improves the accuracy of the
modeled tasks. In other words, the processing power can be improved and training times
accelerated, enabling the better performance of DL models and higher accuracy in water
body mapping tasks.

On the other hand, repeatedly using the same DL model in the same study area may
be associated with limitations and errors. This is because floods can alter the topography
and terrain characteristics. Therefore, if the model is trained with pre-flood images and
used to classify post-flood images, it may not capture terrain changes and new features
that may emerge. Another issue is that floods can vary in magnitude and extent over time.
If the model is trained on historical data and applied to more recent imagery, there may be
significant differences in flood conditions. This can lead to a lack of model adaptability and
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decreased classification accuracy. On the other hand, if the training data used for the model
have biases or limitations, such as limited coverage of flood events or a lack of diversity in
lighting conditions and scale, the model may not be able to generalize, producing incorrect
or biased results.

The results presented in this manuscript show that the information obtained from SAR
images (Sentinel-1) is of great importance in monitoring emergencies and natural disasters.
These images can be obtained under adverse weather or atmospheric conditions, such as
rain, drizzle, and cloud cover. However, SAR images may contain some errors that can
influence flood detection, such as (1) image artifacts such as false edges or discontinuities
caused by the acquisition process and image processing; (2) terrain topography that can
affect the backscattering of SAR waves and generate false positives or false negatives,
which can influence flood detection using SAR imagery. Likewise, optical images (Sentinel-
2) help to obtain information about terrestrial dynamics, but they are only somewhat
effective under adverse conditions because the presence of clouds or noise affects the
results. The combination of these technologies and tools made it possible to determine
flooded areas and obtain an estimate of the territorial extension affected by floods. They
can also be used by institutions dedicated to disaster prevention, risk mapping, and relief
and resilience in vulnerable communities.
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