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Abstract: Mapping arable field areas is crucial for assessing agricultural productivity but poses
challenges in sub-Saharan agroecosystems because of diverse crop calendars, small and irregularly
shaped fields, persistent cloud cover, and lack of high-quality model training data. This study
proposes several methodological improvements to overcome these challenges. Specifically, it utilizes
long-term MODIS data to stratify finer Sentinel-2 reflectance and Sentinel-1 backscatter image features
on a per-pixel basis. It also incorporates texture features and employs a machine learning approach
with over 300,000 samples. The eastern region of Ghana was stratified into seven seasonal strata
exhibiting distinct vegetation seasonality, capturing diversity in crop calendars, using long-term
MODIS (2001–2009) normalized difference vegetation index phenology. Three years (2017–2019) of
Sentinel-1 and Sentinel-2 original bands at 20 m were composited into dry and wet seasonal features
according to the strata, from which spectral, polarimetric, and texture features were extracted. The
field boundaries were digitized using PlanetScope images (2018–2019). Random Forest classifier with
10-fold cross-validation and recursive feature elimination was used for feature selection and model
building. Including topographic variables, out of 137 image features, only 11 features were found
important. Sentinel-2 SWIR-based spectral features were most important, followed by Sentinel-1
polarimetric (VV) and elevation features. Half of the 11 features were variance texture features,
followed by spectral features. The Random Forest classifier produced a 0.78 AUC score with overall
precision, recall, and F1-score of 0.96, 0.78, and 0.85, respectively. While the precision for both classes
was >0.90, the recall rate for arable areas was half that of non-arable areas. Future studies could
improve the technical workflow with reliable balanced sampling, narrowband hyperspectral images,
and fully polarized SAR images.

Keywords: arable area; machine learning; Sentinel; MODIS; elevation; SAR; sub-Saharan

1. Introduction

The arable areas, containing regularly harvested crops and pastures per unit area, are
a key indicator of Sustainable Development Goal 2 [1]. Closing the yield gap and increasing
agricultural resource use efficiency help to achieve global food security. Arable field areas
are a key input to crop yield models that inform these activities. However, remote sensing-
based estimates of arable areas in smallholder farming systems do not achieve the level of
accuracy needed for effective decision-making for four reasons [2]. First, it is challenging
to spectrally resolve the small (<2 ha) and irregularly shaped fields [3] because of spectral
similarities with natural vegetation and lack of incorporation of contextual information.

Remote Sens. 2023, 15, 3014. https://doi.org/10.3390/rs15123014 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15123014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9088-1427
https://orcid.org/0000-0002-9738-5036
https://orcid.org/0000-0002-9358-816X
https://orcid.org/0000-0002-3944-8924
https://orcid.org/0000-0001-8212-7221
https://orcid.org/0000-0002-7249-3778
https://doi.org/10.3390/rs15123014
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15123014?type=check_update&version=1


Remote Sens. 2023, 15, 3014 2 of 20

Second, persistent cloud cover frequently obscures the target under study [4]. Third, the
diversity of farming practices causes large differences in crop calendars and phenology at
the pixel level [5]. Lastly, there is a lack of high-quality (spatially and temporally) labeled
sample sets for model training and testing [6].

Several methodological steps can be taken to overcome these difficulties. The first
is related to image selection. High-resolution (≤5 m) commercial satellites can capture
small fields, but the imagery is costly [7], which has limited their use for regional or
global studies [8]. On the other hand, analysis-ready moderate-resolution (~30 m) remote
satellite images are freely available in cloud-computing environments such as Google Earth
Engine (GEE) [9]. The Landsat missions, which began in 1972, have long been used for
arable field mapping because they provide a moderate resolution, multi-decadal record
of observations. In comparison, the Sentinel-2 constellation (a + b) was launched in 2015.
It has several advantages over the Landsat missions, including higher spatial resolution
(10–20 m versus 30 m), higher return frequency (5 days versus 16 days), and four additional
narrow bands (≤20 nm) in the red-edge and near-infrared (NIR). The narrow bands are
more sensitive to changes in crop status than the broader red and NIR bands available from
traditional multispectral broadband sensors [10]. The high frequency and spatial-spectral
resolution of Sentinel-2 have been exploited in some studies for arable field mapping using
image segmentation [11] and crop phenological metrics [12]. Similarly, Sentinel-1 SAR
(synthetic-aperture radar) data, which has been available since 2014, is increasingly used
to study vegetation dynamics because it is almost unaffected by cloud cover or haze [13].
Sentinel-1 delivers co- and cross-polarizations of SAR backscatter (i.e., VV and VH, or HH
and HV), which are sensitive to canopy structural properties and moisture status. Thus,
integrating moderate-resolution optical Sentinel-2 and Sentinel-1 data can improve the
spectral separability of croplands from other land cover types while minimizing the impact
of cloud cover in the sub-Saharan region [14].

Including image features incorporating spatial context into machine learning models
for fragmented landscapes can improve arable area mapping [15]. Image texture features
represent one such approach, as they capture the contextuality of landcover types by
measuring pixel intensity variation relative to neighboring pixels. This approach has
the added benefit of reducing the signal-to-noise ratio at the individual pixel level and
improving the ability to capture vegetation exhibiting similar spectral reflectance. For
instance, crop areas may appear smoother than shrubland at a higher spatial resolution
(~1 m) [16]. Previous research by Debats [7] demonstrated the importance of texture
features over spectral features for arable field mapping at a higher spatial scale. However,
most existing studies for sub-Saharan Africa are focused on high spatial resolution texture
features [7,17]. Conversely, this study comprehensively explores the use of moderate-
resolution texture features in the sub-Saharan region.

Another approach that can be used to improve the performance of mapping models
is image stratification, which involves clustering geospatial data into common landscape
patterns [18]. Previous studies [6,7,14,19] have used fixed season features to map arable
fields, which do not account for the diversity in crop calendars in sub-Saharan Africa.
To accurately map vegetation seasonality, it is imperative to obtain long-term records
spanning multiple decades to minimize the influence of year-to-year variations in weather
and environmental conditions. Daily records of the Normalized Difference Vegetation
Index (NDVI) at lower spatial resolution images (MODIS or PROBA-V) can be utilized to
delineate landscape strata by image stratification [20]. These strata account for differences
in farming practices and provide a robust means of characterizing vegetation seasonality
per-pixel basis. For example, Mohammed [21] generated 1 km field fractions in Ethiopia
using a similar procedure. They included slope, elevation, and Landsat-8 (OLI) NDVI
composites at 30 m resolution on top of PROBA-V in the model to improve the separability
of croplands from natural vegetation showing similar phenology. Both studies found that
disaggregated statistics using landscape strata is an important image predictor to map
arable field fractions at coarser resolution. Considering this prior knowledge, this study
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also explores landscape strata to map distinct pixel-level vegetation seasonality and to
disaggregate district-level statistics (as one of the model predictors).

Dense, high-quality training and reference samples are other key methodological
requirements for developing accurate mapping models [22]. Machine learning models
require a large sample size for training and testing and can be particularly sensitive to
label errors [6,22]. Geo-tagging of arable fields annually is impractical and resource-
intensive, especially in sub-Saharan Africa, while the small field sizes and their high
temporal variability make collecting labels by annotating fields in available high-resolution
imagery, typically those contained in virtual globe base maps, problematic because of
the temporal mismatches between the labeled imagery and that being classified [6]. To
overcome this challenge, labels collected on the new high spatial resolution (<5 m), daily
imagery provided by the PlanetScope (PS) sensor [23], together with rigorous quality checks
can help to provide large numbers of temporally consistent samples, which in turn enable
more accurate mapping models to be developed [6]. In this research, the process of ensuring
quality is referred to as cross-checking consensus PS labels, which is performed by experts
in the field, and is further discussed in Section 3.5. Given the scope of the improvements
mentioned, this study aims to map arable fields at 20 m spatial resolution (at red-edge
band resolution level) within complex smallholder-dominated agricultural systems in the
Eastern region of Ghana by an innovative combination of Sentinel-1, Sentinel-2, MODIS
NDVI strata, and PS based dense network of labeled training data (labeler (Repo: https:
//github.com/agroimpacts/labeller (accessed on 26 August 2019)) module developed by
Agricultural Mapping Platform) to develop a machine learning-based mapping algorithm.
The proposed approach uniquely uses high-temporal MODIS NDVI strata to map crop
calendars and uses it to stratify cloud-free finer spatial resolution Sentinel image features.
The study analyzed S2 spectral features to exploit narrowband red-edge and SWIR channels
for better separation of cropland from natural vegetation and S1 polarimetric image features
for capturing surface roughness to separate cropland from other landcover classes using
frequent cloud-free observations. It also utilizes combined S1 + S2 textural features to
capture small fragmented crop areas, and topographical features to capture landscape-
level crop distribution providing comprehensive insights into multi-sensor image features
predicting arable area. The study provides insight into the multi-sensor approach for arable
area mapping.

2. Study Area

The study area, the Eastern Region of Ghana, spans an area of 19,000 km2 in the
southeast of the country (Figure 1). The average annual temperature ranges from 22 ◦C
to 31 ◦C with an annual rainfall of 111 mm. By area, 42%, 55%, and 3% of the region are
under maize, cassava, and rice cultivation, respectively [24].

The region is topographically complex and contains rainfed and irrigated agricultural
fields (Figure 1). The Kwahu Plateau separates the Afram plains in the north from the
rest of the region. The north’s Afram plains are low-lying areas with an elevation <17 m
whereas the south region has hilly areas with an elevation of 200–300 m. The fields are
drier in the Afram plains compared to the south because they are on the leeward side of the
Kwahu Plateau [25]. The main rainy season (April to July) is triggered by the West African
Monsoon and the northward ascent of the Intertropical Convergence Zone (ITCZ). Both
regions have one major dry season from November to March and a minor dry season from
July to August. Arable fields in the Afram plains are sparser and irrigated by Lake Volta
during the minor dry season, which prolongs the growing season. The main crops grown
in the plains are yam, maize, and vegetables. Areas south of the plains receive considerably
more rainfall, so the fields are exclusively rainfed and more intensely cultivated. In the
south, agroforestry is widely practiced as well. The fields typically consist of cocoa and oil
palm mix intercropped with cassava, rice, and maize.

https://github.com/agroimpacts/labeller
https://github.com/agroimpacts/labeller
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m arable field fractions from district-level crop statistics to landscape strata; (iii) derivation 
of seasonally stratified 20 m resolution spectral, polarimetric, textural, and topographic 
features (137 in total); and (iv) feature selection and RF classification [27] of the arable field 
at 20 m resolution. This study trained the RF model with polygons digitized based on 
2018–2019 PlanetScope wet and dry season near-infrared (NIR)-red-green composites 
within a labeling platform [6]. The study utilized the original bands of Sentinel for deriv-
ing texture features, while vegetation indices were used for spectral features as they were 
found to be more important than original bands for crop mapping in sub-Saharan African 
countries [14]. 

Figure 1. The eastern region of Ghana: (a) topography (SRTM DEM at 30 m), (b) major climate zones
based on temperature and rainfall, adopted from Bessah [26] and remapped using landscape strata of
the study.

3. Data and Methods

The main steps of the workflow (Figure 2) included (i) acquiring and processing
MODIS, Sentinel-1, Sentinel-2, and the SRTM-DEM images; (ii) MODIS image stratification,
strata merging to derive distinct regional vegetation seasonality, and mapping 250 m
arable field fractions from district-level crop statistics to landscape strata; (iii) derivation
of seasonally stratified 20 m resolution spectral, polarimetric, textural, and topographic
features (137 in total); and (iv) feature selection and RF classification [27] of the arable
field at 20 m resolution. This study trained the RF model with polygons digitized based
on 2018–2019 PlanetScope wet and dry season near-infrared (NIR)-red-green composites
within a labeling platform [6]. The study utilized the original bands of Sentinel for deriving
texture features, while vegetation indices were used for spectral features as they were
found to be more important than original bands for crop mapping in sub-Saharan African
countries [14].

3.1. Acquisition and Processing of Satellite Data

Satellite images were accessed via the Google Earth Engine cloud computing environ-
ment or acquired from third-party sources. All images were resampled to 20 m resolution
using the nearest neighbor technique and projected to UTM zone 30N. The strata were
derived from MODIS Terra+Aqua NDVI 16-day maximum value composites from 2003
to 2009. The composites were used in a previous study by Ali [18]. The authors used
the vegetation index quality band to mask pixels containing haze, clouds, and other at-
mospheric noise. The remaining artifacts were filtered with an adaptive Savitzky–Golay
method in TIMESAT®.

The polarimetric, spectral, and corresponding textural metrics were derived from
Sentinel-1 and Sentinel-2 from 2017 to 2019 dry and wet season median composites. Here if
the area had more than one dry/wet season, all of the dry/wet seasons were combined,
resulting in one composite per season (dry/wet). The location and extent of arable fields
did not change substantially over the three-year (2017–2019) period of study was assumed.
The three-year period was needed to ensure that cloud-free pixels were available, especially
in the wet season, as approximately >50% of available Sentinel-2 scene images in GEE had
more than 50% of cloud cover annually.

Sentinel-2A and B L2A images were used, with a five-day return frequency and spatial
resolution of 10–20 m. Prior to April 2017, only Sentinel-2A data were used because
Sentinel-2B was not yet launched. A total of four scenes and 200+ images per scene were
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processed. The Sentinel-2 level-1C 2017-18 images were downloaded from the USGS Earth
Explorer and converted to surface reflectance using the Sen2Cor level 2A processor [28].
2019 L2A images were used using GEE. The accompanying scene classification band was
used to mask clouds, cloud shadows, and haze.
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Figure 2. General technical workflow.

Sentinel-1A and B C-band level-1 ground range detected (GRD) SAR was used with
dual polarization (VV and VH) in the interferometric wide (IW) swath mode, and the
intensity values were in dB at 10 m pixel size, with a return interval of six days for the
ascending orbit. The images were pre-processed with GRD border noise removal, thermal
noise removal, radiometric calibration, and terrain correction [29].

A total of five scenes of void-filled 30 m resolution SRTM-DEM tiles overlapping the
study were used from the USGS Earth Explorer to derive the topographic metrics—slope,
and elevation.

Daily ortho-rectified 2018 PlanetScope Analytic surface reflectance imageries were down-
loaded from the Planet API [23] and converted into two seasonal composites—growing season
(May–September 2019) and dry season (December–February 2019).

3.2. Municipality-Level Crop Statistics

The Statistics Research and Information Directorate (SRID) of the Ministry of Food and
Agriculture (MoFA), Ghana, provided the crop area statistics for rice, maize, and cassava
from 2005 to 2009. The dataset consisted of the annual crop area for rice, maize, and cassava
for 17 districts. The crop area was averaged for each crop over five years.

3.3. Image Stratification and Mapping 250 m Arable Field Fractions

The general workflow of stratification included three steps. The first step entailed
stratifying the whole region into 63 regions using ISODATA clustering. The second step
was to map distinct vegetation seasonality by grouping the strata’s temporal profiles with
similar seasonalities but with different amplitude (Figure 3b) using hierarchical clustering,
resulting in seven strata. The last step was to use the initial 63 landscape strata to disaggre-
gate district-level crop statistics using stepwise regression, giving 19 strata of a potential
arable area at 250 m.
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Figure 3. The flow of image stratification and disaggregating crop area statistics; (a) stratifying
2007–2009 MODIS NDVI data into 63 strata using ISODATA clustering; (b) merging the strata’s
temporal profiles exhibiting similar phenology but different amplitude using hierarchical clustering,
resulting in seven strata; (c1) deriving dry and wet season per pixel bases for seven strata; (c2) calcu-
lating % of arable field fraction at 250 m using initial 63 landscape strata and crop area statistics.

The ISODATA clustering algorithm classified the MODIS NDVI 16-day composites
into landscape strata. ISODATA is an unsupervised classification technique. It iteratively
combines, splits, and removes classes to minimize within-class and maximize between-
class pixel variability [30]. The default set parameters in ENVI version 5.3 (Exelis Visual
Information Solutions, Boulder, CO, USA) were used for clustering: a 2% threshold and ten
iterations. It generated 63 strata. However, many of the strata exhibited similar temporal
profiles with a difference in magnitude of NDVI values, so these strata were combined into
seven unique strata using hierarchical clustering [31]. Hierarchical clustering computes
the Euclidean distance between each observation and puts it in its cluster; in this way,
it combines similar clusters and separates the different groups of clusters by giving the
hierarchical order for all the cluster input.

The wet and dry periods were defined with the delayed moving average method [32].
The method uses a moving average of the NDVI temporal profile to signal the start and end
of wet periods. A wet period begins when the ascending arm of the NDVI profile crosses
the moving average NDVI profile and ends when the descending arm crosses (Figure 4).
Periods outside the wet periods are considered dry. The method accounts for multiple
modalities of rainfall, but these were not separated into major and minor seasons since it
changes from stratum to stratum. A 3 month moving average was selected to approximate
the length of the primary growing season.
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The crop area statistics were disaggregated per stratum using multiple stepwise linear
regression at 250 m resolution, according to de Bie [20]. The model can be expressed as:

Y = β1C1 + β2C2 + . . . + βnCn (1)

where Y is the district-wise crop area, β1, β2, . . . , βn are beta coefficients, and C1, C2, C3,
. . . , Cn is the area of a specific stratum for a particular district.

Only area statistics for the main staple crops in the region (maize, cassava, rice) were
considered. Stepwise regression is a multivariate linear technique that iteratively selects
features with statistically significant partial correlations with model residuals. Here, it
was done by adding features to the model one by one (forward mode). Then, the fitted
coefficients for each stratum were summed per crop category and assigned to the respective
pixels at 250 m resolution.

Strata with negative coefficients (i.e., negative area) or insignificant coefficients at 95%
confidence were assigned zero field fractions. These resulted in 19 strata with significant
coefficients. These 19 strata were expressed as % of total arable field fractions at 250 × 250 m
pixel size as a categorical variable in the model as it merely captures the higher spatial
variations of arable fields in the landscape.

3.4. Derivation of Spectral, Polarimetric, Textural, and Topographic Features

A total of 14 dry and wet season spectral vegetation indices derived from Sentinel-2
were evaluated (Table 1). These included NDVI and Normalized Difference Water Index
(NDWI), the ratio of NIR and SWIR, which measures the vegetation water content. Others
included the brightness index, Chlorophyll red-edge (Chlre) index, and narrow band red-
edge Normalized difference vegetation indices (NDVIRE1, NDVIRE2, NDVIRE3). The
brightness index indicates soil brightness [33], which is sensitive to soil color, humidity,
and salinity. The Chlre distinguishes chlorophyll pigments (a + b) and reduces the impact
of intra-species reflectance variation better than other spectral regions [34]. Similarly,
the narrowband red-edge NDVIs are more sensitive to plant chlorophyll content than
broadband indices [35].

Ten dry and wet season polarimetric metrics were derived from the Sentinel-1 radar
backscatter coefficient (Table 1). These included VV, VH, cross-ratio (VV/VH), and arith-
metic intensity parameters (VV − VH and VV + VH). The values of SAR backscatter
in VV and VH can be affected by canopy structure (vertical and horizontal), vegetation
water content (due to distinct dielectric constant of ground targets), or underlying sur-
face roughness [36–38]. The cross-ratio (VV/VH) at specific incidence angles was found
to be more sensitive to crop growth stages, specifically near tillage, than the individual
backscatter [39,40]. Both VV and VH images had very bright pixels (i.e., high backscatter
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coefficient values) on the edges of mountains likely because of geometric distortions such
as layover and foreshortening. In GEE, these geometrically distorted pixels were masked
by generating a mask from Kakooei [41]. This mask was calculated using slope, aspect,
Sentinel-1 orbit, and incidence angle. No additional speckle filtering was applied because
the images were down-sampled to 20 m by spatial averaging.

Five grey-level co-occurrence matrices (GLCMs) textural metrics proposed by Har-
alick [42] were included to account for the spatial dependencies in croplands and other
land cover types. GLCM is a second-order statistical method that calculates the number
of occurrences of specific paired pixels at a given distance and angle. The statistics were
homogeneity (measures frequency of uniform occurrences), dissimilarity (counts different
combinations present in the window), contrast (measures the levels of grey-scale local
variation), GLCMvariance (measures the local dispersion around the mean), and entropy
(measures disorder or spatial arrangement). The statistics were derived for Sentinel-1
polarizations and Sentinel-2 spectral bands. The parameter of window size was set to
11 × 11 for the four cardinal directions, with default parameters as one angular distance
and a probabilistic quantizer based on previous studies in heterogeneous and fragmented
landscapes [43]. The textural analysis yielded a total of 110 features.

Table 1. Image features included in the model.

Category Image Features/Equation Reference

Spectral features
(total 14;

7 for dry and 7 for wet season)

NDVI = (B8 − B4)/(B8 + B4) [44]
NDVIRE1 = (B8A − B5)/(B8A + B5) [35]
NDVIRE1 = (B8A − B6)/(B8A + B6) [35]
NDVIRE1 = (B8A − B7)/(B8A + B7) [35]

Chlre = (B7/B5) − 1 [34]
NDWI = (B8 − B12)/(B8 + B12) [45]

Brightness = sqrt((B4 × B4)/(B3 × B3)/2) [33]

Polarimetric features
(total 10;

5 for dry and 5 for wet season)

VV

-
VH

VV − VH
VV + VH
VV/VH

GLCM texture features
(total 110;

5 × 2 (S1 bands—VV and VH) and 5 × 9 (S2 bands)
for dry season;

similarly, for the wet season)

Homogeneity

[42]
Dissimilarity

Contrast
GLCMvariance

Entropy

Topographic features
(total 2)

Slope -
Elevation

MODIS long-term disaggregated statistics
(Only 1) - [20]

Note that here for texture features, only one NIR channel of Sentinel-2 (band8A) was chosen; thus, a total of
9 bands were used.

We also used two topographic metrics as model predictors, including the elevation
and the percent slope, which were calculated using the ee.Terrain GEE package [29].

3.5. Model Training and Testing Data

A total of 600 elementary sampling units (ESU) of size ~550 × 550 m were digitized
over the study area using labeler (Figure 5a), which provides a convenient interface for
digitizing croplands and other land cover types using PlanetScope imagery over large areas.
Labeller was used during a previous study [6] to develop training/testing samples over
16 areas of interest (AOIs) across Ghana. Out of which, four of the AOIs fall within the East-
ern region. The ESUs were randomly selected in each of the AOIs. In this study, additional
ESUs were added for two of the seven seasonal strata because they were under-sampled.
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Arable fields were visually identified using available pairs of dry (December–February
2019) and wet season (May–September 2019) PlanetScope images (Figure 5b). The resulting
polygons were then extracted from the labeler’s database and superimposed over a Sentinel-
2 20 m pixel grid to calculate arable field fractions (Figure 5c). This intersection between
the 20 m grid and labels resulted in a total of 625 samples with values ranging from 0 to
1 per ESU. The procedure yielded 336,555 samples to train the RF model. The samples
in the labeler platform were crowd-sourced; thus, as quality control to avoid low-quality
samples in modeling, the dummy RFclassifier was trained on the whole dataset, and areas
with higher uncertainty were flagged. The uncertainty of samples was measured as the
difference in actual occurrence versus the probability produced by a vote-counting method.
The uncertain flagged areas were re-digitized only if needed using visual observation.
Pixels falling across field boundaries (0 < pixel value < 1) were omitted to prevent mixed
pixel effects. Finally, a total of 282,114 samples remained after these filtering steps for the
final model building.

3.6. Variable Selection and RF Classification

The remote sensing community widely uses RF for land cover classification because it
is less prone to over-fitting and yields models with more predictive power and lower error
than other methods [46]. Like other machine learning methods, however, RF is suscepti-
ble to over-fitting when irrelevant or redundant features are included in the model [47].
Therefore, Recursive Feature Elimination (RFE) was implemented in this study to remove
irrelevant or redundant features [48]. RFE is a wrapper function that iteratively removes
features from the model that do not contribute to the predictive power of the model. In this
study, 10-fold cross-validation (CV) was used for RFE. The model’s predictive power was
assessed with the receiver operating characteristics area under the curve (ROC-AUC, Area
Under the Receiver Operating Characteristic) at each fold for a specific set of features. The
increase in the model’s ROC-AUC score by adding features one by one was reported. The
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features contributing ≥0.05 to AUC were selected for final predictions. The final feature
importance was reported as an importance score calculated by averaging Gini importance
scores across each fold produced by RFE.

The sample set was split 70–30% for model training and testing. The RF model
consisted of 500 trees developed over 100 iterations and a 10-fold CV. The class weights
were chosen ‘balanced’ while bootstrapping RF as higher observations were present for
the non-arable area than the arable area. The ‘balanced’ class weight option available in
sci-kit-learn (package in Python) assigns automatic weight to the classes, which is inversely
proportional to the number of samples. The model performance was assessed using AUC,
accuracy, balanced accuracy, precision, recall, and F1-score. Balanced accuracy is the
weighted average version of accuracy, which considers the number of observations of each
class in the dataset. Precision shows the total relevance or confidence in the prediction and
recall explains the correct class prediction out of all specific class samples or completeness
of the predictions. The F1-score is a composite measure of precision and recall.

Unlike the regression models, in the classification model, the continuous functional
relation between image features and predictions is often not established because the pre-
dictions in classification models are categorical. However, RF makes predictions of a
specific class using multiple predictions made by individual estimators (trees) using the
vote-counting method. The number of votes or probability of an observation being within
a particular class, is continuous. In addition to the advantages of easy interpretability,
feature importance, and computational efficiency compared to other machine and deep
learning models, RF also offers the ability to analyze the relationship between features
and predictions through Partial Dependence Plots (PDPs). PDPs in machine learning
use specific class probabilities and one or specific set of features while marginalizing the
other features, to explain the linear or non-linear relationship between features and model
predictions [49,50]. As opposed to sole dependence on feature importance, here, the image
features and their detailed relation to arable field distribution were explained via PDPs.
In this study, PDPs explained the changes in the probability of occurrence of arable fields
with changes in image value.

4. Results
4.1. Crop Statistics and Arable Field Fractions at 250 m Resolution

Seven different strata characterized the main crop calendars in the study area (Figure 6).
All the strata had a major dry season from November to February, whereas the time and
duration of the main growing season varied from north to south. Most of the Afram plains
(north part of the region) consisted of strata 6 and 7. Stratum 7 is adjacent to Lake Volta
and had a prolonged growing season from late February to September. On the other hand,
stratum 6 was further away from the lake and had an intermediate short dry season in
August. Stratum 5 dominated south of the plains. It had two distinct growing seasons:
one was from late February to mid-July, and the second one was from mid-September to
mid-November. Stratum 5 (in the south) had a relatively longer intermediate dry season
from June to August than Stratum 6 (in the north).

A total of 19 strata were found to be agriculturally productive as they were statistically
significant at 95% confidence (Table A1). Based on the disaggregated municipal crop
statistics at 250 m, the field fractions were generally higher and more concentrated in the
south than in the Afram plains (Figure 7). Strata 59 and 52, which were part of seasonal
stratum 5 (in the south), had higher proportions of arable fields (43% and 72%, respectively)
and included statistically significant proportions of all three crops (rice, cassava, and maize).
In crop statistics, the highest fractions were concentrated in the southeast districts (New
Juabeng, Akwapim South, Suhum/Kraboa/Coaltar). Fractions were also high in Kwahu
South and Asuogyaman but spread out over larger areas. Conversely, strata 8, 10, and
14 contained 5–11% marginal and less concentrated field fractions, which were a part of
seasonal strata 6 and 7 (in Afram plains).
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4.2. Variable Selection

The total AUC was 0.60 for the most important feature (wet season NDWI) and
increased by 0.37 after adding the remaining ten features to the model (Figure 8). These
11 features were found to be the most relevant and least redundant. The improvement
in AUC was small when more than the first 11 features were added (delta AUC = 0.05).
Finally, 11 important features (out of 137) were used for prediction (Figure 9).
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The total importance score was highest for Sentinel-2 image features (0.15), followed
by Sentinel-1 features (0.05) and elevation (0.03). The final predictive model consisted
of five textural features (GLCMvariance–dry and wet B11, wet B12 and B02, dry VV;
total importance 0.28), three spectral features (dry and wet NDWI, wet NDRE1; total
importance 0.07), two polarimetric features (dry and wet VV; total importance 0.03), and one
topographic feature (elevation; importance 0.03). Only the GLCMvariance texture statistic
was important among the other texture features (homogeneity, dissimilarity, entropy,
contrast). The GLCMvariance of Sentinel-2 SWIR had higher importance than Sentinel-1
VV. Among the Sentinel-2 texture features, wet-season SWIR features yielded comparable
performance to dry-season SWIR features. Similar observations were made for Sentinel-1,
where wet as well as dry season VV features were important.

4.3. RF Classification of Arable Field Occurrence at 20 m Resolution

The final RF classification with the 11 features had an overall AUC score of 0.78, an
accuracy of 97%, and balanced accuracy of 78% (Table A2). The overall (average score of
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both classes) precision score was 0.96, the recall score was 0.78, and the F1 score was 0.85
(Table 2). The precision score was high for both occurrence (0.97) and non-occurrence (0.95).
However, the recall rate of arable fields was almost half compared to the non-occurrence of
arable fields. A similar pattern was observed in F1-score, with a lower score for the arable
field area.

Table 2. Accuracy matrix for validation dataset.

Class Precision Recall F1-Score

Arable area 0.97 0.56 0.71
Non-arable area 0.95 1.0 0.98

Overall 0.96 0.78 0.85

Arable fields at 20 m resolution were prominent in the south of the Kwahu plateau
(Figure 10). The densely concentrated predicted arable field occurrences on the southeast
side of the region aligned well with higher district-level crop statistics for southeast districts
such as Asuogyaman and Suhum/Kraboa/Coaltar (Figure 7). The Afram plains exhibited
low sparse arable areas, as observed in both the municipal survey and 20 m model predic-
tions. On the southwest side of the region, the 20 m arable fields were higher, as were the
statistics for Kwahu South. However, in the mid-south of the region, denser distributions
of arable fields were observed at 20 m, which contrasts with the lower field fractions at
250 m and lower surveyed crop area for districts such as Fanteakwa and East Akim.
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PDPs explaining changes in probabilities of occurrences of the arable area with changes
in image features were shown for the top five features using partial dependence plots (PDPs)
(Figure 11). The occurrences of arable fields tend to be higher at low NDWI during the
wet season. The transition from occurrence to non-occurrence happens at an NDWI of
approximately 0.35. The low-lying areas (<100 m) had a lower probability of arable fields,
which increased with increasing elevation for the 100–300 m area. Above 325 m elevation,
the arable field occurrence rapidly declined. These areas were mostly on the Kwahu Plateau
(Figure 1). The low-lying areas (<100 m) were mostly anticipated to be in the Afram plains,
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and areas with 100–300 m elevation were south of the region. Arable fields were less
likely as wet season SWIR GLCMvariance decreased and more likely as dry season SWIR
GLCMvariance increased. Arable field occurrence was higher with lower dry season VV. A
transition occurred between −9 and −10.
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5. Discussion

This study concluded three major findings; (i) Sentinel-2 image features, especially
SWIR features, explain the most variation in arable field area followed by Sentinel-1
polarimetric (VV) and topographic features (elevation); (ii) Sentinel-1 and Sentinel-2 texture
features at moderate spatial resolution (20 m) are important for arable area mapping; and
(iii) diversity in crop calendars in fragmented agricultural landscapes can be accounted
using the simple technique of image stratification to derive seasonally stratified higher
spatial resolution image features. The dry season predictors were as important as the wet
season in the regular (annual) mapping of the arable area.

A previous study [14] found that Sentinel-2 SWIR-based indices, sensitive to soil
and vegetation moisture status, are better at discerning croplands with relatively high
moisture variability from natural vegetation and built-up land cover in dry climates region.
Approximately a third of our study area was also dry, which is why NDWI and SWIR
texture bands were the most important. Orbiting (PRISMA, ENMAP) and upcoming (ESA
CHIME, NASA SBG) hyperspectral missions include dozens of narrow bands in the SWIR.
These missions should be exploited to improve cropland mapping in dry areas. Sentinel-2
features were found to be more important than S1 features. This could be because of the
sensitivity of radar backscatter intensities to surface roughness, canopy structure, and
moisture content proposing inverse ill problem and making the predictor less sensitive to
the arable field area. In order to address this limitation in future studies, it is recommended
to incorporate a dual-pol radar vegetation index (DpRVI). The DpRVI utilizes both the
degree of polarization and backscatter intensities, which could offer increased sensitivity
to crop growth [51]. Husak [5] and Mohammed [21] showed the highest probabilities of
arable fields increased at intermediate elevations and plateauing around 2500 m. This
study also showed an increase in arable fields with elevation but below 325 m. In the study,
elevation broadly captures the climatic regions of the study area, making it an important
predictor for the arable area; however, relatively flat terrains can be found in countries such
as Zambia with overall elevation <1000 m; in such cases, slope could be more useful. In the
study, most cultivated areas were on hills, making a slope a less important predictor than
elevation. Please note that in this study, the significance of individual sensor datasets was
determined by combining the feature importance scores of selected features for each sensor,
rather than through an ablation study. Because the primary objective of the study was
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to analyze the complementary effects of different sensor datasets for cropland mapping.
Although the study did not include an ablation study, it is anticipated that similar results
would be obtained if one were conducted. The study concluded that texture features
were the most crucial (half of the total 11 features), followed by spectral and polarimetric
features. This suggests that the spatial arrangement of pixels is more significant than the
value of the pixel intensity. These arrangements can be expressed through measures of
contrast (differences) or homogeneity (similarities) with neighboring pixels, or through
degrees of randomness or variability such as entropy or variance. Out of these options,
only GLCM variance texture features were deemed important, indicating that the total
variation in pixel intensity (i.e., the arrangement of pixels) is more important than the
relative pixel intensity. For instance, urban areas showed a higher degree of variation
due to their random and complex arrangement of pixel intensity compared to forested
areas with lower degrees of variation (see Figure 11). Nevertheless, the significance of
texture features may require verification in temperate climates, where larger agricultural
holdings, organized field patterns, and climate-specific cultivation practices are prevalent.
Landscape stratification and re-merging strata with similar seasonality (seasonal strata)
using long-term average MODIS NDVI phenology, a method employed in this study, is the
simple, easy, and accessible method to capture the crop calendar diversity. The study area
in the region exhibited differences in growing season partially because of rainfall patterns,
whereas the rain-fed region in the south had two distinct dry and growing seasons. In
contrast, the north region had one prolonged growing season and only one dry season due
to the availability of irrigation facilities. This suggests that long-term NDVI strata-based
vegetation seasonality could be better than following rainfall patterns to derive dry and wet
seasons. The landscape stratification proved valuable in discriminating crop seasonalities
but not in disaggregating crop statistics for model-building. This is somewhat contradictory
to Mohammed [21], who found disaggregated statistics to be the most important predictor
of arable field fractions at 30 m spatial resolution. Mohammed [21] used 1 km PROBA-V
NDVI whereas this study used 250 m MODIS NDVI. Stratification, which is a generalization
of climate and other factors impacting farming practices, may be more effective at coarser
spatial resolution data. Here the model also included several finer spectral and textural
features, which proved to be more important than lower spatial resolution features. Lastly,
Mohammed [21] considered the field fractions as different features according to strata
that, when taken together, explained the most variance in arable field fractions. Our study
considered the 250 m field fractions as a single feature. This study establishes that MODIS
NDVI climatology effectively captures farming patterns and facilitates the stratification of
finer spatial resolution features. However, it should be noted that this generalization may
not apply as easily to temperate regions, which typically exhibit more pronounced seasonal
variations with distinct growing and dormant periods. Whereas in sub-Saharan regions,
pixel-wise seasonal stratification becomes necessary to accurately capture the agricultural
dynamics. Further exploration is required to compare the importance of pixel-wise seasonal
stratification in different climates and agricultural landscapes.

The utilization of PDPs can facilitate the comprehension of the intricate relationships
between image features and model predictions in machine learning models. This approach
can broaden our comprehension of model predictions and provide insights into how
changes in image values affect them, thereby adding more meaning to remotely sensed
images. For example, NDWI increases as water thickness in canopies increases. It ranges
from 0 to 1 but seldom exceeds 0.40. Here, the threshold reported in PDPs was 0.35 during
the wet season, separating dry and well-watered arable fields from extremely moist natural
vegetation. Natural vegetation tends to maintain high moisture levels throughout the year
because it has more extensive root systems and greater access to water stores. PDPs also
showed that SWIR GLCMvariance increased during the dry season and decreased during
the wet season for arable fields, while wet areas such as forests and water maintained
low GLCMvariance (<100) and complex urban areas maintained higher variance (>380)
throughout the year. Arable field occurrences were higher in a narrow range (200–300)
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of variance for the wet season compared to the dry season. This could be because of the
sensitivity of SWIR towards vegetation water content in the wet season. Sentinel-1 VV
intensities, on the other hand, distinguish the vegetation biomass. The transition in dry
season VV at −9 to −10 could be associated with a higher biomass of shrubs and tall
canopies compared to bare soil of arable fields, while higher values (≥−7) are related to
complex urban structures.

Machine learning requires many samples for model building, which were incorporated
by including >300,000 samples collected. An inaccurate or imbalanced sample set affects
machine learning performance adversely [23], especially crowd-sourced samples are prone
to such errors or imbalances of samples. This study maps uncertainty in samples using
dummyRF predictions to avoid extreme errors; however, the quality of the labels can
further be improved using the advanced techniques provided by the labeler platform, such
as creating consensus labels across multiple labelers [6]. Usually, for cropland mapping,
non-occurrence is much more frequent than occurrence, causing an imbalanced sample set.
This study assigned automatic class weights where less frequent arable areas had higher
weights to incorporate imbalance in the dataset. Although, there could still be a large
impact of an imbalanced sample set in model predictions because the model’s accuracy
was 97% whereas the balanced accuracy, AUC was 0.78, and F1-score was 0.85, showing
that accuracy tends to inflate when the sample set is imbalanced. Future work should
incorporate un-supervised clustering of non-occurrence samples only and select samples
proportionally to the number of observations in each cluster to preserve information for
other classes (natural vegetation, forest, urban, water bodies) while creating the balance
sample set. Either generating synthetic occurrences or optimally removing non-occurrence
samples in the future can improve the assessment of model performance and model
transferability [52].

The study highlights the importance of methodological improvements by creating
better temporal, spectral, and contextual information for arable area mapping. Low spatial
high temporal MODIS NDVI data can effectively map distinct vegetation seasonality and
can be utilized to stratify finer Sentinel features. Sentinel-2 SWIR features, followed by
Sentinel-1 co-polarized (VV) features and elevation data can improve arable area mapping
accuracy. Incorporating texture features that exhibit spatial arrangements of pixels is
essential for arable mapping in the sub-Saharan region.

6. Conclusions

Effective and reliable cropland mapping in the tropics remains challenging because
farming practices vary considerably, fields tend to be small and irregularly shaped, per-
sistent cloud cover throughout much of the growing season, and poor quantity/quality
of training data. The study evaluated image stratification and Sentinel-1 and -2 data
integration to overcome these obstacles to cropland mapping in Ghana.

This study makes three important observations. First, Sentinel-2 SWIR (moisture-
related) and Sentinel-1 VV (biomass-related) metrics were the most effective at separating
croplands from natural vegetation or built-up land cover. Sentinel-2 greenness-related
indices (red-edge, NIR) were less important, probably because of the large differences in
moisture availability in the study area. The elevation is essential to model building, as it
largely defines what crops are grown where. However, the elevation relationship must be
considered on a landscape basis, given differences in climate, soil, and other constraints on
farming. Second, nearly half of the most important features were texture-based. Texture
accounts for spatial differences in land cover types, considering the small size, irregular
shape, and transient nature of fields in the study area. Third, image stratification is an easy
and accurate way to capture considerable differences in farming practices.

To enhance the model’s performance and transferability, future research should focus
on optimizing sampling strategies that balance the arable and non-arable areas. Specifically,
non-arable samples should be filtered out to represent other land cover classes accurately.
Additionally, to better differentiate arable areas, the use of a new hyperspectral mission
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with more SWIR bands is recommended, as this will enable the capture of narrowband
pixel intensity on a larger scale using space-borne images. Furthermore, the exploration of
full polarization radar images or advanced radar vegetation indices to capture precise crop
biophysical growth should be further investigated.
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Appendix A

Table A1. Summary of 250 m arable field fractions’ estimates. The strata number is followed based
on the original 63 strata.

NDVI
Strata

% Rice Field
Fractions

% Maize Field
Fractions

% Cassava
Fractions

Total % Field
Fractions at 250 m

Significance
(p-Value ≤ 0.05)

3 3 - - 3 0.03

25 3 - - 3 0.00

37 3.4 - - 3 0.04

9 - 5.3 - 5 0.04

10 4.5 - - 5 0.00

14 - - 8.1 8 0.01

4 9.3 - - 9 0.00

27 - 10.2 - 10 0.00

8 - 11.2 - 11 0.01

51 - 13.8 - 14 0.05

35 - - 15.1 15 0.00

45 - 16.6 - 17 0.00

50 - - 16.6 17 0.00

33 - - 20.4 20 0.00

46 - 22.7 - 23 0.01

54 - 23.5 - 24 0.00

59 5.1 14.4 23.5 43 0.00 (Rice, Maize),
0.00 (Cassava)

44 - - 51.1 51 0.00

52 - 34.1 37.3 71 0.00 (Maize),
0.00 (Cassava)
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Appendix B

Table A2. Confusion matrix.

NDVI Strata Non-Arable Area Arable Area Total

Non-arable area 79,790 139 79,929

Arable area 2068 2638 4706
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