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Abstract: This study uses Sentinel-3 SLSTR data to analyze short-term drought events between
2019 and 2021. It investigates the crucial role of vegetation cover, land surface temperature, and
water vapor amount associated with drought over Kenya’s lower eastern counties. Therefore, three
essential climate variables (ECVs) of interest were derived, namely Land Surface Temperature (LST),
Fractional Vegetation Cover (FVC), and Total Column Water Vapor (TCWV). These features were
analyzed for four counties between the wettest and driest episodes in 2019 and 2021. The study
showed that Makueni and Taita Taveta counties had the highest density of FVC values (60–80%)
in April 2019 and 2021. Machakos and Kitui counties had the lowest FVC estimates of 0% to 20%
in September for both periods and between 40% and 60% during wet seasons. As FVC is a crucial
land parameter for sequestering carbon and detecting soil moisture and vegetation density losses,
its variation is strongly related to drought magnitude. The land surface temperature has drastically
changed over time, with Kitui and Taita Taveta counties having the highest estimates above 20 ◦C in
2019. A significant spatial variation of TCWV was observed across different counties, with values
less than 26 mm in Machakos county during the dry season of 2019, while Kitui and Taita Taveta
counties had the highest estimates, greater than 36 mm during the wet season in 2021. Land surface
temperature variation is negatively proportional to vegetation density and soil moisture content, as
non-vegetated areas are expected to have lower moisture content. Overall, Sentinel-3 SLSTR products
provide an efficient and promising data source for short-term drought monitoring, especially in
cases where in situ measurement data are scarce. ECVs-produced maps will assist decision-makers
with a better understanding of short-term drought events as well as soil moisture loss episodes that
influence agriculture under arid and semi-arid climates. Furthermore, Sentinel-3 data can be used to
interpret hydrological, ecological, and environmental changes and their implications under different
environmental conditions.

Keywords: drought; fractional vegetation cover; Kenya; land surface temperature; Sentinel-3 SLSTR;
soil moisture; total column water vapor

1. Introduction

As a naturally recurring hazard, drought depletes water resources on the Earth’s sur-
face [1]. Hence, vulnerable regions are under risk of extreme water shortages, which leads
to scarcity and inaccessibility of drinking water as well as rivers and streams shrinkage
due to rainfall deficits compared to evapotranspiration due to extremely high tempera-
tures [2,3]. In this regard, global climate change has shown a likelihood of extreme and
severe drought events due to anthropogenic activities and increased carbon dioxide (CO2),
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which influences temperature, a critical climatic parameter in drought analysis [4,5]. Short-
and long-term drought monitoring is essential for addressing water scarcity issues and
maintaining food security for local populations. Drought classification falls under four
categories: meteorological where the number of days experiencing precipitation is less than
the specified threshold given by standardized Precipitation Index (SPI) for various months,
e.g., SPI-3 which accounts for precipitation deficit with respect to the reference time of
3 months, agricultural drought which occurs when meteorological drought leads to a soil
moisture deficit that limits water availability for crops, hydrological drought associated
with the deficit and reduced surface water supply due to prolonged precipitation shortfall,
and socioeconomic drought caused by reduced supply and increased demand of essential
economic goods [6,7]. The periods of these droughts are region-specific—for example, defi-
ciency by more than double the actual seasonal rainfall from mean deviation in India [6].
These drought categories are interrelated and impact various sectors of the global economy.

The accurate measurement of meteorological parameters is fundamental [8] for mon-
itoring droughts and other climate-related disasters. In this regard, remote sensing has
been proven to be a valuable tool for drought monitoring, land use, and land change
mapping in regions with scarce, inaccurate, or unavailable meteorological data [9]. Optical
and radar satellite missions such as Sentinel, ERS-1/2, and Landsat missions have gained
momentum in recent studies by providing geospatial data to monitor soil moisture content,
drought, urban sprawl, and agricultural dynamics [10]. Remote sensing data have been
used in various applications—for instance, soil salinity modeling under arid and semi-
arid climates [11] to archaeological site mapping [12]. In Afghanistan, Rousta et al. [13]
applied Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall
Measuring Mission (TRMM) sensors to study drought impacts on vegetation. The study
revealed that vegetation coverage in Afghanistan was too low during drought seasons. In
Hungary, Landsat-8 OLI data have been used to create a regression model for soil salinity
prediction [14].

In terms of geographical scope of Eastern African remote sensing studies,
Borges et al. [15] found that a combination of Sentinel-1 and Sentinel-2 data for Savannah
landcover mapping provides a more accurate classification in Tanzania. In Kenya, Baringo
county, Ng et al. [16] used Sentinel data to detect changes in Prosopis and Vachellia spp.
Sentinel-2-based classifications are reliable and can be improved by combining temporal
information retrieved from spectral indices. Similarly, Cheng et al. [17] used PlanetScope
and Sentinel-2 data to detect changes in vegetation phenology dynamics in Kapiti plains to
understand climatic variability effects on Kenya’s rangeland.

Fewer studies have used Sentinel-3 data in various applications. For instance, a
comparative study by Hunt et al. [18] showed promising results for meteorological variables
using Sentinel-3A and Sentinel-3B. Smith et al. [19] investigated radiometry processing
uncertainty using Sentinel-3A and Sentinel-3B data. Furthermore, Fierke et al. [20] found
that Sentinel-2 MSI data have a high potential to monitor forest cover in Mount Kenya due
to high temporal and spatial resolution. Nonetheless, limited research has been conducted
using Sentinel-3 SLSTR to monitor drought in Kenya. Therefore, Sentinel-3 SLSTR data
were processed and explored for drought monitoring in lower eastern counties of Kenya
by extracting LST, FVC, and TCWV products. Essential climate variables (ECVs) have been
applied in climate change monitoring-related phenomena, especially drought. As a key
variable, FVC has been widely used for agricultural yield prediction, ecological monitoring,
and drought assessment [21–23]. In this context, Yang et al. [24] indicated that FVC depicts
increasing trends in the growing season and insignificant increasing trends in summer,
while in some cases, a significant decrease is observed in the growing season. Mu et al. [25]
used the Global Land Surface Satellite (GLASS) to investigate the FVC trend in major
Chinese cities and quantify CO2 concentrations caused by urbanization [26]. In addition,
land surface temperature (LST) is also a key component for monitoring agricultural drought
worldwide at various scales. Cheng et al. [27] (2008) assessed the effect of land cover
changes on air temperature and found a relationship between LST and spatial land-use
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patterns, which could be related to drought. The results showed LST influences on land
since indices related to land are valuable in describing spatiotemporal patterns [28]. LST
depicts a significant parameter for examining patterns in biodiversity, surface energy
balance, climate variability, and influence on vegetation growth, agricultural production,
and the water cycle [29–31]. As it influences vegetation growth and soil moisture, it has
attracted scientists recently [32–34]. TCWV is the total gaseous water in a vertical column of
the atmosphere (mm or kg/m2). It is derived from the visible red and near-infrared spectral
range [35], and it is crucial for understanding hydrological processes. The primary water
vapor sources are evaporation and transpiration, depending on the geographical weather
conditions and spatiotemporal variability [36]. Lindstrot et al. [37] have reviewed various
methodologies for retrieving TCWV from satellite data developed during the past decades,
such as radar sensors, as they provide reliable information regarding moisture content.

Kenya relies majorly on agriculture for its economy, accounting for 30% of the Gross
Domestic Product (GDP) [38]. A study by Wanyama et al. [39] indicated that under-
developing countries face considerable challenges in ensuring food security due to the
dependency of their economies on rainfed agriculture. Thus, climate change threatens agri-
culture and livelihoods and influences local environments due to varying land–atmosphere
interactions. As lower eastern counties heavily rely on rainfed agriculture, they became
vulnerable to these adverse effects of climate change, hence experiencing extreme drought
episodes in the recent past [40]. Moreover, eastern Kenya is characterized by physical and
economic water scarcity, recurring crop failures with a low adaptive capacity, and resilience
to extreme weather conditions. Therefore, this study explores short-term drought episodes
using Sentinel-3 SLSTR data in lower eastern counties of Kenya. The aims are to (i) analyze
and interpret Sentinel-3 SLSTR derived ECVs (LST, FVC, and TCWV) between wet and dry
seasons; (ii) investigate Sentinel-3A SLSTR data usefulness in short-term moisture variation
between 2019 and 2021; (iii) and investigate the association between soil moisture and
short-term drought in eastern Kenya.

2. Materials and Methods
2.1. Study Area

Kenya lies between latitudes 5◦N and 5◦S and longitudes 34◦E and 42◦E in eastern
Africa, occupying a total area of 582,646 km2. It has a population of 47,564,296 million
per the 2019 census [41]. Around 89% of Kenya’s total landmass (29 out of 47 counties)
is considered arid and semi-arid [42]. The rainfall distribution in Kenya is bimodal, with
a mean annual precipitation of 669 mm and a mean temperature of 24.3 ◦C [43]. The
short rainy season falls between October and December (OND) and is mainly influenced
by the Inter-tropical Convergence Zone (ITCZ) [44]. The long rainy season falls between
March and May (MAM) and is characterized by southeast trade and the Indian Monsoon
winds [44]. Kenya has experienced various climate extremes, including droughts, floods,
landslides, and forest fires, leading to the death and displacement of people, epidemics,
property destruction, and forest loss [45]. These extreme climatic events are likely to
increase and threaten local communities due to the projected temperature increase of 1 ◦C
to 3.5 ◦C by 2050 [46,47].

The investigated areas are located in Eastern Kenya, namely Machakos, Makueni, Kitui,
and Taita Taveta, as shown in Figure 1. Machakos county lies between latitudes 0◦45′S and
1◦31′S and longitudes 36◦45′E and 37◦45′E, with an area of 6208.2 km2 and a population of
1,421,932 [41]. It falls under arid and semi-arid climates, with an elevation ranging from
400 m to 2100 m above sea level [48]. The annual mean surface temperature varies between
18 ◦C and 29 ◦C. It receives an annual average rainfall of 500 mm to 1300 mm [49] and
is characterized by a bimodal rainfall where short rains fall in OND, and long rains fall
in MAM. Machakos is also distinct by variable and unpredictable rainfall rates [50]. The
Kamba tribe predominantly occupies it. The county practices subsistence farming of maize
and drought-resistant crops such as sorghum, millet fruits, and vegetables.
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Figure 1. Map of Kenya with four lower eastern counties understudy. Source of the map: Environ-
mental Systems Research Institute (ESRI) Basemap, ArcMap 10.3, and administrative borders source
(https://data.humdata.org/dataset/cod-ab-ken? accessed on 10 October 2022). Projection: Universal
Transverse Mercator (UTM) coordinate system using World Geodetic System (WGS) 1984 datum
assigned to North UTM Zone 37.

Makueni county lies between latitudes 1◦35′ and 3◦00′S and longitudes 37◦10′ and
38◦30′E. It has a landmass of 8034.7 km2 and a population of 987,653 [41]. It falls under an
arid to semi-arid climate, characterized by severe water scarcity [2], food insecurity, and
a lack of adaptability and resilience to climate change [44]. Makueni receives inadequate
rainfall rates in relatively high areas ranging between 800 mm and 1200 mm, while low-
lying areas receive low rainfall between 150 mm and 650 mm. As drought events with
varying magnitudes frequently occur [2], the inhabitants suffer from crop yield decreases,
especially maize [49]. Inhabitants look for alternative livelihood adaptation and mitigation
strategies such as sand harvesting, which risks water access and availability [51].

Kitui county is located between latitudes 0◦10′S and 3◦0′S and longitudes 37◦50′E
and 39◦0′E. It is characterized by a semi-arid climate, poorly distributed rainfall rates, and
an altitude between 400 m and 1830 m above sea level [52]. It has a dense population
of 1,136,187, with an annual growth rate of 2.2% [39]. The area is dominated by hilly
landscapes such as Mutitu and Yatta plateaus [53], with a precipitation rate between
500 mm and 1050 mm [54]. Dominant crops include maize, sorghum, millet, pigeon,
and peas.

Taita-Taveta county lies between latitudes 2◦46′S and 4◦10′S and longitudes 7◦36′E
and 30◦14′E, with a total area of 17,084 km2. It has a semi-humid to semi-arid climate
with a mean annual rainfall of 650 mm, an average annual temperature of 23 ◦C, and an
average altitude of 596 m. It has a population of 340,671 [41], with agriculture as its primary
livelihood source. The county receives an average rainfall of between 800 mm and 1200 mm

https://data.humdata.org/dataset/cod-ab-ken
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per year, while low-lying areas receive an average of 150 mm to 650 mm. Taita-Taveta
experiences a bimodal rainfall characterization [55,56].

2.2. Sentinel-3 SLSTR Data

SLSTR, referring to the Sea and Land Surface Temperature Radiometer, is a dual scan
temperature radiometer operating for the ESA Sentinel-3 mission in low Earth orbit as a
part of the Copernicus Programme [57]. As the successor of the (A)ATSR mission series,
SLSTR offers a wide range of applications related to Earth observation, the most prominent
of which is Sea Surface Temperature (SST) assessment and land monitoring [58,59]. In
addition, the instrument’s unique technological capabilities enable it to be used for fire
detection [60]. It should also be highlighted that SLSTR contributes to climate change
studies by providing the scientific community with Essential Climate Variables (ECVs),
which are the focus of this study.

SLSTR products offer highly accurate global and regional Sea and Land Surface
Temperatures (SST and LST) for climatological and meteorological applications. In this
context, four Sentinel-3 SLSTR Level-2 LST products were downloaded from the Copernicus
Open Access Hub. Sentinel-3 SLSTR product generates land surface parameters with a
one km spatial resolution. It includes a measurement file with computed (i) Land Surface
Temperature (LST) values for each pixel, associated with ancillary parameters, namely
(ii) Normalized Difference Vegetation Index (NDVI), (iii) Glob Cover surface classification
code (biome), (iv) Fractional Vegetation Cover (FVC), and (v) Total Column Water Vapor
(TCWV). For more details, the Sentinel-3 SLSTR user guide contains an extended description
of the mission’s products and properties of the SLSTR instrument [57].

This study sought to analyze and detect ECVs seasonal changes within three years
since data for long-time detection requires high storage capacity and processing perfor-
mance. Since April is the wettest month, and September is the driest month in Kenya [61],
Sentinel-3 SLSTR data were acquired for four dates: April 2019, September 2019, April 2021,
and September 2021. Specifically, the choice to focus on the months of April and September
in Kenya was due to the fact that they are the rainiest and driest months, respectively. As
a result, our selection process involved acquiring only one image per month. To ensure
the highest quality data, we established a cloud cover criterion of less than 10% for the
entire product scene. Data processing involved geometric correction and reprojection to
WGS 84/UTM 37 S. Then, LST, TCWV, and FVC features were extracted from each product.
It is worth noting that LST values were converted from Kelvin to Degrees Celsius (◦C)
using the band math tool in Sentinel Application Platform (SNAP). The products were
resampled, stacked, and subset using vector data of Kenya’s administrative borders on
the county level. In SLSTR Level-2 processing, FVC climatology specified as a fractional
vegetation (F.V) index has a maximum value of one, which corresponds to 100% vegetation,
and a minimum value of zero, which corresponds to 0% vegetation. Remotely sensed data
properties are summarized in Table 1. Figure 2 summarizes the processing workflow of
Sentinel-3 SLSTR data.

Table 1. Properties of Sentinel-3 SLSTR Level-2 products.

Product ID Sensing Date Product Type Satellite

S3B_SL_2_LST____20190404T195009_20190404T195208_20200819T213324
_0119_024_013_5940_LR1_R_NT_004 4 April 2019 SL_2_LST S3B

S3B_SL_2_LST____20190925T193849_20190925T194049_20200821T053318
_0119_030_184_5940_LR1_R_NT_004 25 September 2019 SL_2_LST S3B

S3B_SL_2_LST____20210402T195015_20210402T195214_20210404T053006
_0119_051_013_5940_LN2_O_NT_004 2 April 2021 SL_2_LST S3B

S3A_SL_2_LST____20210928T194837_20210928T195036_20210930T091149
_0118_077_013_5940_LN2_O_NT_004 28 September 2021 SL_2_LST S3A
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Figure 2. Methodological diagram used to process Sentinel-3 SLSTR data and extract ECVs.

The description of the properties of the Sentinel-3 SLSTR level-2 products are as
follows: the product ID is the datatake_ID which identifies univocally a given datatake.
Shows the product details, the image details, and the Datatake time (a continuous ac-
quisition of an image from Sentinel satellite in a given imaging mode). This further
describes the compact naming convention which is arranged in the format, MMM_MSIXXX
_YYYYMMDDHHMMSS_Nxxyy_ROOO_Txxxxx; where the first date (YYYYMMDDHH-
MMSS) is the datatake sensing time, and the second date is the “<Product Discriminator>”
field, which is 15 characters in length and used to distinguish between different end-user
products from the same datatake. S3B_SL_2_LST refers to Sentinel 3B satellite platform,
Sentinel 3B level 2 product, and LST (Land surface temperature) is the product. Nxxyy is
the Processing Baseline number (e.g., NT_004), ROOO is the Relative Orbit number, and
Txxxxx is the Tile Number field. The sensing date refers to the date the satellite image was
acquired [57]. S3B and S3A are twin satellites of the same mission, and they have the same
instruments and properties.

Furthermore, we used ‘Create Random Points’ tool in ArcMap 10.3 to randomly
generate a sample of 50,000 points from the entire region of interest to establish a correlation
between ECVs. Once samples with null values were omitted, only 44,747 sampling points
were left. LST, FVC, and TCWV were then compared, and a correlation analysis was
performed using python code. Density plots were created to observe and visualize the
distribution and correlation of ECVs. The process was performed for each period from dry
to wet season by extracting corresponding ECVs values for samples.

2.2.1. Land Surface Temperature

The radiative temperature of the land in bare soil conditions and the effective emitting
temperature of vegetation as determined from a top-view of a canopy determined by
infrared radiation are referred to as Land Surface Temperature (LST) [62,63]. While local
modeling relies significantly on field data, remote sensing has become the primary source
for LST estimation at different scales [64–67]. The Radiative Transfer Equation (RTE) can
be applied to a given thermal IR band to convert radiance observed at a sensor into Land
Surface Temperature using Equation (1) [68].

Lsensor = τ ∗ ε ∗ LTs + Lu + τ ∗ (1− ε) ∗ Ld (1)

where Lsensor is the top-of-atmosphere radiance; LTs is the radiance related to the sur-
face temperature of a black object as per Planck’s law; Ts is the LST; and Lu and Ld
are the upwelling and downwelling atmospheric radiances, respectively. τ is the atmo-
spheric transmissivity, while ε is the land surface emissivity. Radiance is expressed in
W·sr −1·m −2·µm −1.

2.2.2. Fractional Vegetation Cover

The fraction of ground covered by green vegetation is known as the Fraction of Vege-
tation Cover (FVC). The FVC measures the spatial extent of vegetation without considering
the canopy’s multi-layer properties [69]. It is an excellent option for replacing traditional
vegetation indices in ecological monitoring due to its independence from illumination di-
rection and sensitivity to canopy density [70]. Few studies have been conducted to estimate
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fractional vegetation based on optical remote sensing systems [71,72], yet the Normalized
Difference Vegetation Index (NDVI) and the Scaled Difference Vegetation Index (SDVI)
are the main methods being used. Both approaches take advantage of the differences
in soil and vegetation properties at red and near-infrared (NIR) wavelengths [64]. The
statistical relationships between the NDVI and the FVC are more suited to outlining a
unique connection to estimate FVC as presented in Equation (2) [22].

FVC =
NDVI−NDVIS

NDVIV − NDVIS
(2)

where NDVI is a weighted average of the Normalized Difference Vegetation Index [73]
between vegetated and non-vegetated areas. NDVIs is the Normalized vegetation difference
index of bare soil, and NDVIv is the vegetation index of the total vegetation cover [74].
The selection of NDVIv and NDVIs significantly affects the inversion precision of FVC.
NDVI values are selected based on cumulative histograms of the NDVIs values, while the
maximum value of NDVI as NDVIv [75]. The range between NDVIs and NDVIv used to
estimate FVC from NDVI ranged between zero (0) for bare soil/non-vegetated areas to one
(1) for vegetated areas [76,77].

2.2.3. Total Column Water Vapor

Total column water vapor estimates the total gaseous water contained in a vertical col-
umn of the atmosphere. Due to its complex interaction with the atmosphere [78], assessing
water vapor is essential in Earth’s energy and hydrological cycle, as well as climate change
studies, since water is one of the most important greenhouse gases, trapping heat more than
carbon dioxide [79]. It is also known as atmospheric water vapor, precipitable water vapor
(PWAT), and total precipitable water vapor (TPW) [80,81]. Water vapor compensates for
over 99.9% of atmospheric moisture, and it is the primary source of atmospheric energy that
drives weather systems’ development in short periods and influences the climate on longer
time scales [82]. Water vapor movement and its related latent heat of vaporization account
for over half of all heat transport processes from the tropics to the poles [83]. In theory, the
water vapor content of a vertical air column reaching the top of the atmosphere with a base
of 1 m2 equals the amount of water if all water vapor is condensed. The most commonly
used units are kg/m2, referring to the mass of condensed water, and mm, referring to
the amount of water accumulated at the bottom [84]. Equation (3) illustrates the TCWV
mathematical expression.

TCWV =
1
ρwg
∗
∫ 0

Ps
q(p) ∗ dp (3)

where ρw is the water density, which is 1000 kg/m3; g refers to the gravitational acceleration
(9.8 m/s2); q(p) is the mixing ratio (g/kg) of water vapor at pressure level p; and Ps is the
surface air pressure in hPa.

3. Results and Discussion

The interpretation of these parameters extracted from Sentinel-3 SLSTR data was
crucial because they are associated with short-term drought, as weather patterns are
summarized in precipitation anomalies and soil moisture loss episodes across arid and
semi-arid regions in this context. We compared the lower eastern counties’ maps of Kitui,
Machakos, Makueni, and Taita-Taveta to comprehend changes in ECVs between 2019 and
2021 for April and September.

3.1. Analysis and Interpretation of ECVs Derived from Sentinel-3 SLSTR Data

The ECVs derived from Sentinel-3 SLSTR data were analyzed and interpreted based
on the seasons, the wettest, and the driest seasons. These interpretations are critical since
they are associated with precipitation variations which influence soil moisture content



Remote Sens. 2023, 15, 3041 8 of 26

and directly influence agriculture in lower eastern counties under study. In addition, the
interpretation and visualization of ECVs are fundamental for proper agricultural timing
and decision-making on agricultural dynamics in the agriculturally dominant lower eastern
region. The detailed analysis and interpretation of ECVs for each county, Kitui, Machakos,
Makueni and Taita-Taveta respectively are as shown below(Figures 3–6).
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3.1.1. Land Surface Temperature (LST)

LST distribution in Eastern Kenya depicted varying spatiotemporal patterns. For Kitui
county, Figure 3a–d shows that LST estimates for April 2019 were higher than 20 ◦C, except
for a few locations with estimates ranging between 15 ◦C and 20 ◦C, while in Northern
Kitui, estimates were relatively low, ranging between 0 ◦C and 5 ◦C. In April 2021, increased
LST values were observed (above 20 ◦C), yet in the north, few areas had estimates between
0 ◦C and 5 ◦C. During the dry month of 2019, LST estimates were higher than 20 ◦C in
the northern part of Kitui [85]. Mutunga et al. [53] found that the lowest annual average
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surface temperature varies from 14 ◦C to 22 ◦C, while the maximum annual average surface
temperature ranges from 26 ◦C to 34 ◦C. In the center of Kitui, estimates vary between 15 ◦C
and 20 ◦C, with a few areas with values between 10 ◦C and 15 ◦C. In the latter part, LST
was underestimated (≤0 ◦C). On the other hand, LST estimates were greater than 20 ◦C,
with a few areas having estimates between 15 ◦C and 20 ◦C. Overall, LST in Kitui county
shows a slight increase during the wet and dry seasons of 2019 and 2021. Guha et al. [86]
revealed similar patterns in India, with an average LST of 13.5 ◦C in the pre-monsoon,
12.3 ◦C in the monsoon, 8.8 ◦C in the post-monsoon, and 10.1 ◦C in the winter. Similarly,
Mustafa et al. [33] showed that LST values over West Africa varied between 20.6 ◦C and
34.6 ◦C in 2010, 20.6 ◦C to 37.6 ◦C in 2018, and 21.2 ◦C to 38.7 ◦C in 2020, which is relatively
consistent with the current study. Furthermore, LST increases are associated with changes
in land cover from vegetated to non-vegetated surfaces [87], which can be used as an
indirect drought indicator [33,88–90]. However, Sentinel-3 SLSTR has underestimated LST
compared to in situ meteorological measurements in Kitui county.

Figure 4a–d show that LST estimates in April 2019 were generally low, with a few areas
in the county having estimates of more than 20 ◦C in Machakos county. For April 2021,
LST values slightly increased (>20 ◦C), but some locations had values ranging between
15 ◦C and 20 ◦C, which is consistent with the findings of Ahmed et al. [91]. For September
2019, LST estimates were greater than 20 ◦C, with the southern part having values ranging
from 15 ◦C to 20 ◦C. In September 2021, most of the county had LST estimates between
15 ◦C and 20 ◦C, while the rest had values below 20 ◦C. In Makueni county, as shown in
Figure 5a–d, LST estimates were greater than 20 ◦C in April 2019, except in a few locations
with estimates ranging from below 0 ◦C to 15 ◦C. In April 2021, the LST estimates in the
whole country were greater than 20 ◦C, while only a few areas recorded values between
15 ◦C and 20 ◦C. During the dry month of 2019, the southern part of Makueni had LST
estimates below 0 ◦C. The rest of the county had LST estimates between 15 ◦C and 20 ◦C
and greater than 20 ◦C. For September 2021, LST values were greater than 20 ◦C, with a
few areas ranging between 15 ◦C and 20 ◦C. Like Kitui county, LST estimates in Makueni
county are relatively low compared to in situ meteorological surface temperature, revealing
an underestimation of LST by the sensor.

In Taita Taveta county, as illustrated in Figure 6a–d, LST values in April 2019 were
greater than 20 ◦C, with a few areas in the county having estimates ranging from 15 ◦C to
20 ◦C. In the west, a few areas had estimates below 0 ◦C. Similar observations were found
in April 2021, with almost the entire county experiencing high LST (>20 ◦C). In September
2019, LST estimates were the lowest in the northern part (below zero), with a few other
areas varying from 0 ◦C to 5 ◦C, while other locations had LST estimates above 20 ◦C. For
September 2021, it was observed that temperatures were higher (>20 ◦C), with a few areas
having values from 15 ◦C to 2 ◦C. Based on LST maps, the temperature increased from
2019 to 2021 in dry and wet months, agreeing with Mwangi et al. [86]. This was caused by
changes in vegetation density which were eventually influenced by increases in LST and
reduction in soil moisture content [92].

The results implied variability in land cover among the four counties due to dense veg-
etation cover and land surface imperviousness in some areas. LST heterogeneity between
the two seasons is caused by a slightly remarkable change in vegetation cover among the
counties. This implies that LST influences agricultural yield and water availability, which
depicts a significant challenge in the region. These interpretations are supported by Cui
and de Foy [93], who revealed that LST seasonal variability depends on vegetation cover,
weather parameters, and land surface characteristics. Previous studies found that LST is
more significant in arid regions due to precipitation deficits [94], influencing soil moisture
content and vegetation density across dry regions [95,96]. Furthermore, the findings of this
study corroborate with [89,97,98] who used MODIS data and established that LST is a very
essential component associated with the exchange of matter and energy between land and
atmosphere as well as the change of ecological environment. LST also contributes to the
study of drought monitoring [99,100]. Further, ref. [101] used MODIS data and indicated
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that the application of remote sensing helps to better understand the adverse effects of
drought on crops and natural resources as implied by the study in context.

3.1.2. Fractional Vegetation Cover (FVC)

FVC is a reliable parameter to assess vegetation changes in response to drought on
multiple scales. It corresponds with the partition between soil and vegetation contribution
for emissivity and temperature. This property describes land surface processes used for
climate and weather forecasting, natural hazards monitoring and prediction, as well as
vegetation-soil dynamics monitoring and monitoring drought events in a given region [102].
Results from Kitui county, as shown in Figure 3e–h, indicate that FVC estimates ranged
between 0 and 20% in September 2019 and 2021. A few areas had FVC between 20%
and 40%. This implies reduced FVC estimates during the dry seasons, where short-term
monthly droughts are experienced, affecting soil moisture content in the county. These
findings imply food insecurity in the county due to immature crops because insufficient
precipitation has worsened the existing food and water shortages across the region. The
county as well as the whole of lower eastern Kenya has faced four consecutive poor rainy
seasons for the last four years, exacerbating the adverse effects of the drought—for example,
death of livestock, malnutrition, and mass agricultural crop failure that support subsistence
farming in the region. For April 2019, FVC in a few areas varied between 60% and 80%.
Forests are continually under threat of deforestation, such as the cases of the Museve
forest and Mutuluni forest located in Kitui Central and Eastern Kitui [103]. The United
Nations Environment Programme indicated that most forests in arid and semi-arid regions
are scattered around hilltops and nature reserves [104]—for instance, in the highlands of
Migwani, Mumoni, Kitui Central, Mui, Mutitu Hills, and Yatta plateau [81] where they
play a primary role in ecological sustainability.

A significant part of the county had moderate estimates of 20% to 60% of FVC, yet
some areas had a minimum of 0% to 20%. The same pattern was observed in April 2021,
but it was noticeable that the FVC estimates were lower compared to 2019. These results
implied that the precipitation received in April 2021 was lower compared to April 2019, as
low precipitation is attributable to low soil moisture content, hence the low FVC values.
This finding implies the importance of precipitation for water availability, food security,
and stability in the region in the current context of climate change. This observation
corroborates with [39,105,106], who stated that vegetation growth follows precipitation
patterns and varies depending on vegetation types. In Machakos county, as presented
in Figure 4e–h, results indicated that FVC estimates ranged from 40% to 60% in April
2019 and 2021, except in a few areas whose values fall between 0% and 20% and between
60% and 80%. Presumably, vegetation density gradually decreased from 2019 to 2021.
In September 2019 and 2021, the FVC pattern was similar, with values ranging from 0%
to 20%, while a few areas had values ranging from 20% to 40%. The results of Makueni
county, as presented in Figure 5e–h, indicate that FVC estimates mostly ranged between
40% and 60% in April 2021. Yet only a few areas had FVC estimates greater than 60%.
Nevertheless, some estimates were more significant than 20% in a few areas. For April
2021, FVC estimates ranged from 40% to 60% and between 60% and 80% in a few cases.
Similar findings of vegetation densities range from 0% to 20% (Low density), 40–60%
(Medium density), and 60–80% (High density) [107,108]. In our study, it is noticeable that
there was a gradual reduction in FVC estimates from 2019 to 2021. A study by Xie et al.
(2022) [109] observed a change in vegetation cover for the Ulan Buh desert in western inner
Mongolia using RGB data and pixel-based machine learning methods area. There was a
significant change from 2006 to 2019, with an increase in grass coverage from 15.47 ± 1.49%
to 27.90 ± 2.79%, an indication of RGB images’ suitability in mapping FVC. Similarly, our
methodology is equally suitable in detecting changes in vegetation cover since between
September 2019 and 2021, vegetation density ranged between 0% and 20%, with only a
few areas having values between 20% and 40%. This implies the feasibility of remote
sensing data such as vegetation monitoring as well as short-term droughts analysis in
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lower eastern Kenya which will ensure timely planning between seasons, sustainable
agriculture, and food security. Arrefian et al. (2021) [101] established that MODIS data
is a very fundamental tool in the determination and detection of intensive droughts on
natural vegetation as demonstrated by the findings in this study by use of Sentinel-3 data.
Sahbeni et al. (2023) [110] successfully used ERA5 data to examine drought episodes by
spatiotemporal analysis of precipitation anomalies and demonstrated the efficiency of the
rainfall Gini Index as a drought indicator.

Figure 6e–h show that FVC estimates in Taita Taveta county in April 2019 mostly
ranged from 40% to 80%, with a few areas in the county’s central part having estimates
above 80%. FVC values were the lowest in the county northeast, between 0% and 20%. Sim-
ilar patterns were observed in April 2021, with an overall decreased density. In September
2021, FVC estimates were very low, from 0% to 20%. A few scattered areas have estimates
ranging from 20% to 40%. The vegetation cover density varied slightly over space and time,
across the counties, and during wet and dry seasons. A study by Mu et al. [25] revealed an
increasing pattern in FVC in Chinese cities and a decreasing pattern in other cities, driven
by increased urbanization and climate change. Precipitation, temperature, and radiation
explained 13.2%, 15.7%, and 11.7% of vegetation growth in China, respectively. Short-term
fluctuations in FVC density across the counties depicted similar patterns over time. This
may be attributed to differences in vegetation types found in the four counties as well
as intra- and inter-seasonal variation in precipitation. Different seasons depict different
canopy characteristics [59]. For example, as stated by Yang et al. [59], FVC for grassland in
the growing season, spring, and summer had values of 40.8%, 53.9%, and 31.1% of the total
grassland area, respectively, while woodland had the highest increase in autumn of 60.3%
for all vegetation types. Similarly, Taylor et al. [111] demonstrated FVC’s fundamental
role in determining changes in diverse ecosystems. Thus, vegetation responds rapidly to
rainfall and moisture anomalies, influencing crop yield and food security [17]. The mag-
nitude of vegetation densities change demonstrates a contribution to the environmental
improvement in arid and semiarid lower eastern regions of Kenya as well as other parts
of Kenya.

3.1.3. Total Column Water Vapor (TCWV)

Water vapor influences weather conditions due to its importance in the hydrological
cycle. In this study, it is crucial to investigate its pattern spatially and over time. In this
regard, results from Kitui county, as shown in Figure 3i–l, indicate that TCWV estimates in
April 2019 had the highest values, where in most cases, it ranged from 34 mm to 36 mm.
A few areas had TCWV estimates greater than 36 mm. Similar patterns were observed in
April 2021, with values greater than 36 mm. For September 2019, the TCWV estimates
ranged from 26 mm to 34 mm, with a few areas whose estimates were greater than 36 mm.
In September 2021, TCWV estimates ranged from 26 mm to 36 mm. A straightforward
comparison showed lower TCWV values in 2021 compared to 2019. Similar findings were
observed by Duguay-Tetzlaff et al. [112] in Senegal and Namibia, under tropical wet-dry
and steppe climates, revealing similarities in TCWV from 17 mm to 56 mm and from 2 mm
to 28 mm, respectively. The relationship between FVC and TCWV is well observed as values
distribution has similar patterns. Furthermore, an association between LST, TCWV, and
precipitation is well established due to the similar patterns in the presented maps. Wypych
et al. [82] noted that TCWV increases with temperature, and its estimates were higher
during the wet season. This finding further agrees with Trenberth [113], who observed a
strong relationship between TCWV and precipitation in the tropics. Total column water
vapor decreased from wet to dry seasons over Kitui county. This is due to sufficient soil
moisture during wet months reversely to dry ones.

Similarly, for Machakos county, as shown in Figure 4i–l, TCWV varied in April 2019,
from 26 mm to 30 mm–32 mm, with a few areas having estimates ranging from 34 mm
to 36 mm. In April 2021, TCWV estimates were lower than 26 mm, a range of 26 mm to
30 mm, and a few cases where values exceeded 30 mm. During the dry season in 2019 and
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2021, TCWV estimates depicted similarities, with values less than 26 mm, while others
ranged from 26 mm to 28 mm. For Makueni county, as illustrated in Figure 5i–l, TCWV
ranged from 30 mm to 36 mm in April 2019 and 2021, with a few cases having estimated
values greater than 36 mm. During the dry season, TCWV estimates ranged from 26 mm to
28 mm and between 28 mm and 30 mm in some cases. As presented in Figure 6i–l, TCWV
estimated in April 2019 and 2021 depicted similarities in which values were higher than
36 mm, while the lower values ranged from 28 mm to 30 mm across Taita Taveta county. In
September 2019, the county experienced TCWV estimates of less than 26 mm, with other
areas recording values between 26 mm and 34 mm. For September 2021, TCWV estimates
ranged from 26 mm to 36 mm. Similar patterns were observed across the counties. TCWV
values varied, with some as high as 36 mm, which is expected in the tropics compared to
other areas. This observation is supported by Wypych et al. [82], who revealed that water
vapor content depends on geographic location and topography, while the highest values
are registered in tropical areas. TCWV is higher in the tropics [114] and is associated with
ENSO events, precipitation anomalies, and other meteorological parameters [80].

3.1.4. Correlation Analysis among Essential Climatic Variables (ECVs) under Investigation

ECVs results demonstrate a strong dual correlation of TCWV between wet and dry
seasons, as presented in Figure 7a,c. This can be attributed to moisture content variation,
additional synergistic modifications of the atmosphere, and variations in cloud cover since
TCWV is a primary component of clouds and water vapor content. According to Halloway
and Neelin [115], precipitation increases with TCWV in the tropics at different time frames,
yielding a strong correlation in April. There was a significant positive correlation of TCWV
between the same months in the two years, revealing that no change has occurred in this
variation over time (Figure 7b,d). This implies that TCWV between the same months in
the two years were influenced by the same forces and factors—for instance, an increase or
decrease in precipitation and relative humidity. This corroborates with previous studies
which indicated that TCWV demonstrates positive trends that are consistent with relative
humidity [113,116]. Wang et al. (2016) [117] found that positive and weaker trends of TCWV
are associated with the slowdown of global warming. This finding also implies that positive
and stronger TCWV correlation and trends may also be attributed to accelerating global
warming whose effects are adverse in arid and semiarid regions where the lower eastern
region under study lies. Further, as noted by Borger et al. (2022) [116], TCWV changes
correlate well with near-surface relative humidity and surface air temperature as well. This
is also supported by Neelin et al. (2022) [118] who indicated that atmospheric water vapor is
found within the atmospheric boundary layer and, therefore, column water vapor corelates
and relates with near relative humidity as well as near surface dew point temperature.

LST demonstrates a negligible to marginally weak positive correlation in April and
September 2019 (Figure 8a,b), which has a consistent pattern between September 2019 and
2021 (Figure 8d). In April 2019 and 2021, a strong positive correlation occurred, similar
to April and September 2021 (Figure 8c,d). LST correlation may arise due to changes in
vegetation cover between the dry and rainy seasons, vegetation and land use characteristic
coverage, anthropization, and atmospheric conditions as evidenced by changes in cloud
cover, which might result in uncertainties. Studies have demonstrated that land cover
and land use exhibit considerably the distribution and intensity of LST [119] as well as
vegetation. There exists a strong correlation between LST and vegetation where low
vegetation during the dry season demonstrates high LST, and dense vegetation in the rainy
season exhibits low LST [120]. Additionally, increased water vapor, which controls and
determines energy amount and fluxes from the earth to the atmosphere, also affects LST
variations. Further, this might be influenced by cloud cover while extracting the data.
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Between April and September in both years (Figure 9a,b), a curvilinear relationship
existed in FVC variation. This can be explained by the gradual and inconsistent changes in
moisture content, the intensity of human agricultural activities, coupled effects between
agricultural activities, and climate variability between the wet (April) and dry season
(September). In addition, it is worth noting that a shift in the amount of precipitation may
lead as well to the readjustment of agricultural crops in the region between wet and dry
seasons, hence influencing food availability. Studies have shown that climate and human
activities are key driving forces of FVC in addition to moisture index [59,121,122]. There
was a strong correlation between April and September in both years (Figure 9c,d), which
can be attributed to differences in moisture content between the two periods, hydrothermal
characteristics, and consistency of precipitation in April and a contrary situation in Septem-
ber. Studies indicate that FVC can increase and decrease abruptly for a short period, and it
is positively correlated with precipitation and moisture index [59,121,123].
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3.1.5. Density Plots for Correlation between Different Essential Climate Variables

Correlation analysis of ECVs for April and September 2019 and 2021 indicated that
TCWV and LST variables displayed a moderate positive correlation between the two
months and the two years, as seen in Figure 10a,b. However, Figure 10c,d demonstrate
a negligible to weak negative correlation between LST and FVC. Because of the cooling
effect of dense vegetation, which affects LST spatial-temporal distribution in the study area,
the marginal correlation between LST and FVC was inverse, suggesting that the lower the
estimated LST value is, the higher the estimated FVC value is. This may be attributed to
inflection by either sparse or dense vegetation during dry and wet seasons, respectively.
According to Yang et al. [124], seasonality significantly impacts FVC. For instance, in
summer, the correlation with LST is expected to increase [125]. In addition, Amiri et al. [28]
examined the association between land surface temperature and fractional vegetation cover
and established that higher FVC corresponds to relatively lower LST values. In contrast,
areas with high land surface temperatures showed a decrease in fractional vegetation cover,
which is consistent with our findings of a correlation between fractional vegetation cover
and land surface temperature. Similar results were found between FVC and LST during the
growing season in North China [98]. Furthermore, a similar negative correlation between
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land surface temperature and FVC was established by [98,126] in the Island Coastal City
and Fujian province in China.
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Figure 9. Density plots for correlation of FVC for April and September in 2019 and 2021. (a) FVC for April
2019 versus FVC for September 2019, (b) FVC for April 2021 versus FVC for September 2021, (c) FVC for
April 2019 versus FVC for April 2021, (d) FVC for September 2019 versus FVC for September 2021.

Figure 10e,f revealed a double (positive and negative) correlation between TCWV
and FVC in April 2019. However, some areas behaved as outliers. Moreover, Figure 10g,h
showed a weak correlation between the variables in September 2021. This interpretation is
confirmed by Shivers et al. [127], who found that water vapor and fractional vegetation
cover do not display a robust association. This is due to low evapotranspiration rates,
which typically have few or no leaves and may heighten the water vapor gradient, as well
as insufficient soil moisture brought on by dry climatic conditions in September.
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Figure 10. Density plots for correlation of ECVs for April and September in 2019 and 2021. (a) TCWV
for April 2019 versus LST for April 2019, (b) TCWV for April 2021 versus LST for April 2021, (c) FVC
for September 2019 versus LST for September 2019, (d) FVC for September 2021 versus LST for
September 2021. Density plots for correlation between TCWV and FVC for April and September
2019 and 2021. (e) TCWV for April 2019 versus FVC for April 2019, (f) TCWV for April 2019 versus
FVC for April 2021 (g) TCWV for September 2019 versus FVC for September 2019, (h) TCWV for
September 2021 versus FVC for September 2021.

4. Conclusions

The results show varying patterns of the ECVs across the studied counties. For
instance, land surface temperature has drastically changed over time, with Kitui and Taita
Taveta counties having the highest estimates of above 20 ◦C in 2019. Furthermore, a
significant spatial variation of TCWV was observed across the counties, with values less
than 26 mm in Machakos county during the dry season of 2019, while Kitui and Taita
Taveta counties had the highest estimates of greater than 36 mm during the wet season in
2021. The study also demonstrates a close relationship between ECVs and precipitation
patterns as higher values were observed across the counties. During April, a wet season,
FVC values were high (40–60%) across the counties, with a few exceptions where the values
were high (80–100%). A varying correlation between individual (LST to LST) and different
(LST to TCWV) variables between the years and seasons was clearly demonstrated by the
density plots. The study demonstrates Sentinel-3 SLSTR imagery efficiency in assessing
vegetation changes, land surface temperature, and total column water vapor between
wet and dry seasons. Remote sensing tools provide new opportunities for investigating
seasonal and annual changes in vegetation, land surface temperature, and water content,
among other environmental components where subtle changes are associated with drought
events occurrence. The main goals are to analyze remotely sensed data for the last three
years for short-term drought detection and soil moisture loss scenarios and interpret the
associated variables, which vary geographically from one geographic location to another.
This paper demonstrates the potential of ECVs extracted from sentinel-3 SLSTR data for
short-term drought events investigation and soil moisture fluctuation episodes in the lower
eastern counties of Kenya. These findings contribute to a better understanding of short-
term drought episodes and their impact on land cover dynamics. This is fundamental
in enhancing our understanding of ecological changes, malfunctioning of ecosystems,
ecosystems stress, and degradation of various ecosystems caused by climate change at local,
regional, and global scales across arid and semi-arid environments. The study recommends
climate education, awareness, and information for farmers as they prepare for the planting
seasons to make informed decisions on the crops to grow in various seasons which can
boost productivity for the agricultural sector and cushion people against food insecurity in
the region and Kenya at large. The study is also fundamental for future climate variability
preparedness in drought-prone or -risk counties, resilience planning, and policy-making
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more so in these regimes of climate change. Future studies will focus on comparing
Sentinel-3 SLSTR products, Moderate Resolution Imaging Spectroradiometer (MODIS),
Visible Infrared Imaging Radiometer Suite (VIIR), and ECOSTRESS with in situ data in
drought analysis and examine other factors influencing hydrological and environmental
processes and their implications under different climatic conditions.
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