Research on Long-Term Tidal-Height-Prediction-Based Decomposition Algorithms and Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classical Tidal Harmonic Analysis Model
2.2. CEEMDAN Model
2.3. LSTM Model
2.4. SVM Model
2.5. VMD Algorithm
- (1)
- n = n + 1; enter the loop.
- (2)
- Update according to the update formula of uk and wk until the number of decompositions is k.
- (3)
- Update λ according to the update formula of λ.
- (4)
- Given the accuracy ε, if the stopping condition is satisfied,
2.6. Model Evaluation Indexes
3. Results
4. Discussion
5. Conclusions
- (1)
- The combination of the VMD decomposition algorithm and the LSTM neural network effectively increases the precision for long-term conventional tidal forecasting and addresses the problem of inaccurate prediction results of anomalous tidal data in long-term tide prediction. Achieving high-precision long-term tide prediction is essential for realistic marine activities. However, prediction results based on reconciliation analysis often cannot meet the current refinement requirements. The pairing of the VMD decomposition algorithm and the LSTM model may provide a new method for this purpose, thus meeting the practical application needs of the growing marine economic activities.
- (2)
- The introduction of the VMD decomposition algorithm enables better processing of the original tide level data, effectively decomposing more stable modal components and improving the model’s prediction accuracy. This approach provides new research ideas and methods for tide level prediction. This method can also be expanded, considering the combination of the VMD decomposition algorithm with more machine learning time prediction models to obtain a new combined model, or applying this model to more data types, such as waves.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, H.; Lv, X.; Wang, Y.; Matte, P.; Chen, H.; Jin, G. Exploration of tidal-fluvial interaction in the Columbia river estuary using S_TIDE. J. Geophys. Res. Oceans 2018, 123, 6598–6619. [Google Scholar] [CrossRef]
- Zhu, X.H.; Ma, Y.L.; Guo, X.; Fan, X.; Long, Y. Tidal currents in the Qiongzhou Strait estimated from shipboard ADCP data during spring 2013. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 27 April–2 May 2014; p. 2504. [Google Scholar]
- Lee, T.L. Back-propagation neural network for long-term tidal predictions. Ocean. Eng. 2004, 31, 225–238. [Google Scholar] [CrossRef]
- Chang, H.K.; Lin, L.C. Multi-point tidal prediction using artificial neural network with tide-generating forces. Coast. Eng. 2006, 53, 857–864. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Liu, X.; Peng, T.; Wang, S. Decomposition of long time-series fraction of absorbed photosynthetically active radiation signal for distinguishing heavy metal stress in rice. Comput. Electron. Agric. 2022, 198, 107111. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Foreman, M.; Henry, R. The harmonic analysis of tidal model time series. Adv. Water Resour. 1989, 12, 109–120. [Google Scholar] [CrossRef]
- Sassi, H.G.; Hoitink, A.J.F.; De Brye, B.; Vermeulen, B.; Deleersnijder, E. Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean. Dyn. 2011, 61, 2211–2228. [Google Scholar] [CrossRef]
- Jay, D.A.; Flinchem, E.P. Interaction of fluctuating river flow with a barotropic tide: A demonstration of wavelet tidal analysis methods. J. Geophys. Res. Ocean. 1997, 102, 5705–5720. [Google Scholar] [CrossRef] [Green Version]
- Cacabelos, E.; Olabarria, C.; Incera, M.; Troncoso, J.S. Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. Estuar. Coast. Shelf Sci. 2010, 89, 43–52. [Google Scholar] [CrossRef]
- Penna, N.T.; Stewart, M.P. Aliased tidal signatures in continuous GPS height time series. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Xiao, Z.; Lei, Z. Research on the algorithm of education data mining based on big data. In Proceedings of the IEEE 2nd International Conference on Computer Science and Educational Informatization (CSEI), Xinxiang, China, 12–14 June 2020. [Google Scholar]
- Guo, S.; Wang, Q. Application of knowledge distillation based on transfer learning of ERNIE model in intelligent dialogue intention recognition. Sensors 2022, 22, 1270. [Google Scholar] [CrossRef]
- Ma, P.; Gao, Q. EEG signal and feature interaction modeling-based eye behavior prediction research. Comput. Math. Methods Med. 2020, 2020, 2801015. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, J.; Qiang, B.; Mi, L.; Tang, C.; Li, L. Attention mechanism-based CNN-LSTM model for wind turbine fault prediction using SSN ontology annotation. Wirel. Commun. Mob. Comput. 2021, 2021, 6627588. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, T.; Shi, J.; Qian, Z. A CEEMDAN and XGBOOST-based approach to forecast crude oil prices. Complexity 2019, 2019, 4392785. [Google Scholar] [CrossRef] [Green Version]
- Sakinah, N.; Tahir, M.; Badriyah, T.; Syarif, I. LSTM with adam optimization-powered high accuracy preeclampsia classification. In Proceedings of the International Electronics Symposium (IES), Surabaya, Indonesia, 27–28 September 2019; pp. 314–319. [Google Scholar] [CrossRef]
- Jung, S.; Cho, H.; Kim, J.; Lee, G. Prediction of water level in a tidal river using a deep-learning based LSTM model. J. Korea Water Resour. Assoc. 2018, 51, 1207–1216. [Google Scholar]
- Okwuashi, O.; Ndehedehe, C. Tide modelling using support vector machine regression. J. Spat. Sci. 2017, 62, 29–46. [Google Scholar] [CrossRef]
- Yin, J.-C.; Perakis, A.N.; Wang, N. Ensemble Real-Time Tidal Level Prediction Mechanism Using Multiresolution Wavelet Decomposition Method. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 4856–4865. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Wang, Z.; Fei, C.-W.; Yuan, Z.-S.; Wei, J.-S.; Tang, W.-Z. Fuzzy multi-SVR learning model for reliability-based design optimization of turbine blades. Materials 2019, 12, 2341. [Google Scholar] [CrossRef] [Green Version]
- Qu, B.; Xing, Z.; Liu, Y.; Chen, L. Research on short-term output power forecast model of wind farm based on neural network combination algorithm. Wind. Energy 2022, 25, 1710–1734. [Google Scholar] [CrossRef]
- Cao, J.; Li, Z.; Li, J. Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A Stat. Mech. Its Appl. 2019, 519, 127–139. [Google Scholar] [CrossRef]
- Wang, W.; Chau, K.; Xu, D.; Chen, X.Y. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag. 2015, 29, 2655–2675. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Kong, C.; Chen, B. A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic. Energy Convers. Manag. 2020, 203, 112254. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Zhang, C. Short-Term Prediction of SDN Network Traffic Based on CEEMDAN and Mixed Kernel Least Squares Support Vector Machine. In Proceedings of the 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), IEEE, Chengdu, China, 19–21 August 2022; p. 1201. [Google Scholar]
- Rongbin, C.; Sanming, L. Research on wind power prediction method based on CEEMDAN-SSA-GRU. In Proceedings of the 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), Qingdao, China, 2–4 July 2021; pp. 597–601. [Google Scholar] [CrossRef]
- Wang, W.; Tong, M.; Yu, M. Blood glucose prediction with VMD and LSTM optimized by improved particle swarm optimization. IEEE Access 2020, 8, 217908–217916. [Google Scholar] [CrossRef]
- Li, H.; Liu, T.; Wu, X.; Chen, Q. An optimized VMD method and its applications in bearing fault diagnosis. Measurement 2020, 166, 108185. [Google Scholar] [CrossRef]
- Jin, X.-B.; Yang, N.-X.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Kong, J.-L. Deep hybrid model based on EMD with classification by frequency characteristics for long-term air quality prediction. Mathematics 2020, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-Y.; Qiu, J.; Li, F.-F. Hybrid models combining EMD/EEMD and ARIMA for long-term streamflow forecasting. Water 2018, 10, 853. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S. Estimation of extreme sea levels along the Bangladesh coast due to storm surge and sea level rise using EEMD and EVA. J. Geophys. Res. Ocean. 2013, 118, 4273–4285. [Google Scholar] [CrossRef]
- Yan, K.; Hua, J. Deep learning technology for chiller faults diagnosis. In Proceedings of the IEEE International Conference on Dependable, Autonomic and Secure Computing, (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, 5–8 August 2019; pp. 72–79. [Google Scholar] [CrossRef]
- Rosati, M.; Kelly, T.; Ringwood, J.V. Nonlinear data-based hydrodynamic modeling of a fixed oscillating water column wave energy device. IEEE Access 2021, 9, 149756–149765. [Google Scholar] [CrossRef]
- Kumar, N.K.; Savitha, R.; Al Mamun, A. Regional ocean wave height prediction using sequential learning neural networks. Ocean Eng. 2017, 129, 605–612. [Google Scholar] [CrossRef]
- Kavousi-Fard, A.; Su, W. A combined prognostic model based on machine learning for tidal current prediction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3108–3114. [Google Scholar] [CrossRef]
- Liu, J.; Shi, G.; Zhu, K. High-precision combined tidal forecasting model. Algorithms 2019, 12, 65. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Jiang, G.-Q.; Liu, X. Parameterization of typhoon-induced ocean cooling using temperature equation and machine learning algorithms: An example of typhoon Soulik (2013). Ocean Dyn. 2017, 67, 1179–1193. [Google Scholar] [CrossRef]
- Yen, P.H.; Jan, C.D.; Lee, Y.P.; Lee, H.F. Application of Kalman filter to short-term tide level prediction. J. Waterw. Port Coast. Ocean. Eng. 1996, 122, 226–231. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Artificial Intelligence models for prediction of the tide level in Venice. Stoch. Environ. Res. Risk Assess. 2021, 35, 2537–2548. [Google Scholar] [CrossRef]
- Wu, W.; Li, L.; Yin, J.; Zhang, W. A modular tide level prediction method based on a NARX neural network. IEEE Access 2021, 9, 147416–147429. [Google Scholar] [CrossRef]
Harmonic Analysis | SVM | LSTM | CEEMDAN-LSTM | VMD-LSTM | |
---|---|---|---|---|---|
RMSE (m) | 0.284 | 0.143 | 0.144 | 0.134 | 0.068 |
MAE (m) | 0.228 | 0.119 | 0.119 | 0.114 | 0.058 |
R2 | 0.956 | 0.989 | 0.979 | 0.980 | 0.992 |
Harmonic Analysis | SVM | LSTM | CEEMDAN-LSTM | VMD-LSTM | |
---|---|---|---|---|---|
RMSE (m) | 0.304 | 0.144 | 0.143 | 0.147 | 0.058 |
MAE (m) | 0.245 | 0.119 | 0.112 | 0.124 | 0.048 |
R2 | 0.977 | 0.995 | 0.995 | 0.995 | 0.998 |
Harmonic Analysis | SVM | LSTM | CEEMDAN-LSTM | VMD-LSTM | |
---|---|---|---|---|---|
RMSE (m) | 0.428 | 0.509 | 0.361 | 0.189 | 0.120 |
MAE (m) | 0.380 | 0.495 | 0.335 | 0.156 | 0.102 |
R2 | 0.892 | 0.854 | 0.924 | 0.980 | 0.992 |
Harmonic Analysis | SVM | LSTM | CEEMDAN-LSTM | VMD-LSTM | |
---|---|---|---|---|---|
RMSE (m) | 0.594 | 0.465 | 0.288 | 0.178 | 0.072 |
MAE (m) | 0.5 | 0.428 | 0.224 | 0.141 | 0.060 |
R2 | 0.932 | 0.959 | 0.983 | 0.994 | 0.998 |
Harmonic Analysis | SVM | LSTM | CEEMDAN-LSTM | VMD-LSTM | |
---|---|---|---|---|---|
RMSE (m) | 0.372 | 0.339 | 0.260 | 0.171 | 0.091 |
MAE (m) | 0.299 | 0.288 | 0.215 | 0.138 | 0.075 |
R2 | 0.925 | 0.945 | 0.967 | 0.987 | 0.996 |
Harmonic Analysis | SVM | LSTM | CEEMDAN-LSTM | VMD-LSTM | |
---|---|---|---|---|---|
RMSE (m) | 0.504 | 0.323 | 0.224 | 0.147 | 0.067 |
MAE (m) | 0.402 | 0.266 | 0.164 | 0.117 | 0.055 |
R2 | 0.935 | 0.976 | 0.989 | 0.995 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, W.; Shen, L.; Lu, F.; Liu, X.; Pan, Y. Research on Long-Term Tidal-Height-Prediction-Based Decomposition Algorithms and Machine Learning Models. Remote Sens. 2023, 15, 3045. https://doi.org/10.3390/rs15123045
Ban W, Shen L, Lu F, Liu X, Pan Y. Research on Long-Term Tidal-Height-Prediction-Based Decomposition Algorithms and Machine Learning Models. Remote Sensing. 2023; 15(12):3045. https://doi.org/10.3390/rs15123045
Chicago/Turabian StyleBan, Wenchao, Liangduo Shen, Fan Lu, Xuanru Liu, and Yun Pan. 2023. "Research on Long-Term Tidal-Height-Prediction-Based Decomposition Algorithms and Machine Learning Models" Remote Sensing 15, no. 12: 3045. https://doi.org/10.3390/rs15123045
APA StyleBan, W., Shen, L., Lu, F., Liu, X., & Pan, Y. (2023). Research on Long-Term Tidal-Height-Prediction-Based Decomposition Algorithms and Machine Learning Models. Remote Sensing, 15(12), 3045. https://doi.org/10.3390/rs15123045