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Abstract: Tidal‑level prediction is crucial for ensuring the safety and efficiency of offshore marine ac‑
tivities, port and channel management, water transportation resource development, and life‑saving
operations. Although tidal harmonic analysis is among the most prevalent methods for predicting
tidal water level fluctuations, it relies on extensive data, and its long‑term prediction accuracy can
be limited. To enhance prediction performance, this paper proposes a model that combines the vari‑
ational mode decomposition (VMD) algorithmwith the long short‑termmemory (LSTM) neural net‑
work. The initial step involves decomposing the original data using the VMD algorithm, followed
by applying the LSTM to each decomposition component. Finally, all prediction results are superim‑
posed and summed. The model is tested using the 2018 tidal time series data from the Lvsi station in
Zhoushan City and the 2020 tidal time series data from the Ganpu station. The results are compared
with those from the classical harmonic analysis model, the traditional machine learning model, and
the decomposition‑based machine learning method. The experimental outcomes demonstrate the
superior predictive capabilities of the proposed model.

Keywords: tide level prediction; harmonic analysis; VMD algorithm; LSTM neural network;
combined prediction model

1. Introduction
Tides [1,2] are among the most crucial physical elements of the ocean. This periodic

rising and falling of seawater is due to the gravitational forces exerted on the ocean’s sur‑
face by themovement of celestial bodies. Analyzing and understanding ocean tides allows
us to comprehend the laws of change and internal dynamic mechanisms, which in turn en‑
able us to project future tidal variations through tidal predictions. Tidal prediction is an
essential technical means for identifying, researching, and effectively utilizing marine re‑
sources.

Given China’s vast oceanic area and complex tidal variations, it is imperative to estab‑
lish a detailed, accurate, convenient, and flexible marine tidal protection system. Analyz‑
ing and mastering tidal movements and improving the accuracy of tidal predictions [3,4]
are crucial for ensuring the safety of marine activities, preventing andmitigating disasters,
and harnessing tidal power generation. Therefore, making accurate ocean tide predictions
is of utmost importance [5]. By thoroughly researching tides, we can utilize them effec‑
tively and mitigate potential hazards. Tidal harmonic analysis [6,7] involves calculating
future tidal changes for a specific period by using actual tidal data from the predicted sea
area and then superimposing this data to obtain future tidal variations, ultimately enabling
tidal predictions. The classicalmethod of tidal harmonic analysiswas initiated byKelvin in
England, who proposed the technique in 1868 and invented the tidal prediction machine
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based on this principle. Subsequently, Darwin further investigated tidal frequency divi‑
sion [8,9], followed by Dodson in the 1820s, who incorporated Brown’s theory to increase
the number of divisions and improve the accuracy of tidal summation analysis.

As generations of scholars have built upon their predecessors’ work, the tidal har‑
monic analysis method has been continually refined [10,11], making significant contri‑
butions to tidal research in China. While the method can generally predict tidal height
changes, it cannot guarantee the accuracy of tidal predictions. Unavoidable errors arise
from factors such as the representation of astronomical image angles and the selection of
tidal constituents, which often hinder our ability to achieve the desired level of accuracy
in tidal forecast errors. In recent years, with the flourishing of deep learning technolo‑
gies [12–17], novel methods have emerged for tide level prediction research. The primary
distinction from traditional approaches is that machine learning time series forecasting
methods do not necessitate large amounts of prior data or theoretical conjectures to deter‑
mine model parameters. By learning from the input set’s sample data, these methods can
directly identify patterns among model arguments and data, enabling predictions. Their
powerful data learning and information extraction capabilities facilitate high‑precision pre‑
diction results. Consequently, machine learning techniques have effectively surpassed tra‑
ditional forecastingmethods inmany areas involvingmodeling nonlinearity. For instance,
Jung S used the LSTM [18] neural network to predict water level in a tidal river, Okwuashi
Oused SVM [19] to develop a tide level predictionmodel, and J. ‑C. Yin combined a discrete
wavelet transform (DWT) with variable neural networks [20] to achieve real‑time predic‑
tions for some tidal stations in the United States. The focus of this research is on time series
machine learning models combined with decomposition algorithms [21–25]. It is acknowl‑
edged that improving the computational power of machine learning is challenging, but if
the volatility and complexity in the original data can be reduced through decomposition al‑
gorithms, prediction difficulty in machine learning models can be diminished, ultimately
enhancing the final prediction results. Currently, the more reliable decomposition algo‑
rithms include the complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) algorithm [26,27] and the variational mode decomposition (VMD) [28,29] al‑
gorithm, which are seldom applied to the field of tidal prediction. The CEEMDANdecom‑
position algorithm is a step‑by‑step improvement based on the ensemble empirical mode
decomposition (EEMD) [30–32] algorithm, which more effectively addresses the modal
mixing phenomenon generated by the EEMD, reduces computational speed limitations,
and can completely decompose the time series data from high to low frequencies into sev‑
eral intrinsic mode function (IMF) components [33], thereby decreasing data complexity.
The VMD decomposition algorithm employs a non‑recursive method for signal process‑
ing, decomposing the original signal by solving the constrained variable problem. This
approach effectively avoids issues such as boundary effects and modal confusion, result‑
ing in high‑precision decomposition outcomes for complex data.

We recognize that the predictive capacity of a single model is ultimately limited [34–37],
sowe shift our focus to developing a combinedmodel. In this paper, we choose to combine
the VMD algorithm with the LSTM neural network to form a VMD‑LSTM model. Based
on two different sets of tide level data, we establish the classical tidal harmonic analysis,
LSTM, SVM, CEEMDANN‑LSTM, and VMD‑LSTM models for comparative analysis in
five groups, with the expectation [38–41] of providing new ideas and methods for high‑
accuracy tide level data prediction.
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2. Materials and Methods
The data employed in this study were sourced from the National Marine Information

Center (https://www.cnss.com.cn/tide/ accessed on 12 December 2022) and include annual
tidal information from the Lvsi station in 2018 and the Ganpu station in 2020. The sample
sizes for these stations are 8760 and 8783, respectively, featuring an hourly sampling inter‑
val and tidal heightmeasurements inmeters. The observed tidal patterns are characterized
as conventional semi‑diurnal shallow tides with reciprocating flow properties.

To effectively compare the predictive performance of various methods, the first two
months of the original data were designated as the training set, while the remaining ten
months constituted the prediction set. The two‑month data were employed to project the
tidal trends throughout the subsequent ten months. Given the significant amount of data,
it is impractical to visualize all of it, as this would result in a cluttered and unclear graph.
Therefore, we have chosen to visualize tidal height data from periods with lesser tidal fluc‑
tuations (8100–8600 h) and greater tidal fluctuations (5500–6000 h), each spanning 500 h,
for a more meaningful comparison. For the complete prediction set data, the error results
will be directly analyzed in a tabular format. The unusual tidal height variations at both
stations transpired in mid‑August when the sun, moon, and earth were almost aligned,
leading to the peak gravitational force on the seawater. This occurrence, in conjunction
with the dominant southeast winds and tidal direction along the coast during summer, re‑
sulted in the abnormal tidal height shifts and an overall elevation in tidal height. The tidal
time series data for the Lvsi and Ganpu stations in Zhoushan City are depicted in Figures 1
and 2.
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2.1. Classical Tidal Harmonic Analysis Model
The classical tidal harmonic analysis model employed in this research utilized the

T_TIDE program, a widely recognized and effective tool for tidal analysis and prediction.
In this study, a total of 36 subtidal tides were chosen for the analysis, with an emphasis
on 11 major subtidal tides: K1, K2, M2, M4, M6, MS4, N2, O1, P1, Q1, and S2. These
subtidal tides were deemed to be of critical importance due to their significant impact on
tidal dynamics.

The harmonic analysis was conducted using observed real‑time tidal height data,
which allowed for the extraction of harmonic constants for the main sub‑tides. These
constants were then utilized for tidal prediction purposes. In the classical tidal harmonic
analysis model, as described by Equation (1), each tidal constituent can be expressed as
a trigonometric function. A linear superposition of these trigonometric functions is then
used to represent the water level at any given time.

Z(t) = S0 +
J

∑
j=1

[Hjcos(σjt − gj)] (1)

Z(t) is the observed water level at time t. σj, Hj, and gj are the angular velocity, ampli‑
tude, and delay angle (◦), respectively, corresponding to the jth subtide. j is the number
of resolved subtides. J means the number of sub‑tides, S0 is the mean sea level, and Hj
in Equation (2) can be linearized using the variables aj and bj. In the equation, Hj =√

aj
2 + bj

2, gj = Arctan(bj/aj).
When doing linear regression, Equation (2) is required:

Z = AX (2)

where Z is the observed water level matrix, A is the known coefficient matrix, and X is the
unknown parameter matrix to be solved, as shown in Equations (3) and (4):

Z =


Z(t1)
Z(t2)

. . .
Z(tN)

, X =



S0
a1
. . .
aj
b1
. . .
bj


(3)

A =


1 cosσ1t1 . . . cosσjt1
1 cosσ1t2 . . . cosσjt2

. . . . . . . . . . . .
1 cosσ1tN . . . cosσjtN

sinσ1t1
sinσ1t2

. . .
sinσ1tN

. . .

. . .

. . .

. . .

sinσjt1
sinσjt2

. . .
sinσjtN

 (4)

According to the least squares method, the solution of X is:

X =
(
ATA

)
−1ATZ (5)

By employing the classical tidal harmonic analysis model, the research aimed to achieve
a comprehensive understanding of tidal dynamics at the study site. This approach effec‑
tively accounted for the influences of various tidal constituents on water level changes
over time. Consequently, the methodology provided a robust foundation for reliable tidal
predictions, which are crucial for efficient coastal zone management, navigation, and in‑
frastructure development.
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2.2. CEEMDANModel
The CEEMDAN decomposition algorithm can effectively decompose the highly fluc‑

tuating raw time series data from high to low frequencies into several intrinsic mode func‑
tion (IMF) components. This helps improve the prediction accuracy by reducing the data
fluctuations. The most significant advantage of the CEEMDAN decomposition algorithm
is its completeness; the decomposed data can be aggregated back into the rawdatawithout
loss, and the efficiency of the CEEMDANdecomposition algorithm is very high, providing
rapid computation. When decomposing the tidal data with CEEMDAN, the white noise of
the standard normal distribution is added to the observation data sequence
x(t) = (x1, x2 . . . , xt) in λ(λ = 1, 2, . . . , I) times vλ(t), where T is the length of the tidal
data, xt is the value of tidal at time t, I is the number of noise additions, and the recon‑
structed observation data sequence xλ(t) is expressed in Equation (6).

xλ(t) = x(t) + vλ(t) (6)

The first EMD solution of xλ(t) yields the components IMF1 and its residuals m1(t),
which are expressed in Equations (7) and (8).

IMF1 =
1
I
×

I

∑
λ=1

IMFλ
1 (7)

m1(t) = x(t)− IMF1 (8)

Add vλ(t) to m1(t) and perform EMD decomposition to obtain IMF2 and m2(t); add
vλ(t) to mn−1(t) after decomposition n − 1 time and perform EMD decomposition for
mλ

n−1(t) for the nth time to obtain IMFn and mn(t) as Equations (9) and (10), respectively.

IMFn =
1
I
×

I

∑
λ=n−1

IMFλ
n (9)

mn(t) = mn−1(t)− IMFn (10)

After J decomposition, mn(t) cannot be decomposed by EMD continuously, andthe
tidal observation data series x(t) is expressed in Equation (11).

x(t) =
J

∑
n=1

IMFn + mJ(t) (11)

Compared to EMD, CEEMDAN combines positive and negative white noise added to
the original data. The white noise property is utilized to amplify the uncorrelated degree
of the difficult‑to‑separate modes, enabling the extraction of these modes and reducing the
reconstruction error through the cancellation of positive and negative white noise.

Figures 3 and 4 display the decomposition results of the CEEMDANalgorithm, which
was implemented using the PyEMD package in Python 3.8. The original tidal height time
series data from the records of the Lvsi station and the Ganpu station in Zhoushan were
fully decomposed according to high and low frequencies. The results of each component
were predicted using the LSTM model and then summed and reconstructed. The flow
chart is shown in Figure 5.
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2.3. LSTMModel
LSTM is better equipped to handle time series data, as it processes a long span of time

to capture the internal relationships within the data, thereby achieving long‑termmemory.
Each LSTM unit consists of three gates: the forget gate, the input gate, and the output gate.
The structure of a single neuron is shown in Figure 6.
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it = σi(Wi × [ht−1, xt] + bi) (12)

ft = σ
(

W f × [ht−1, xt] + b f

)
(13)

Ct = f × Ct−1 + it × C̃t (14)

C̃t = tanh(Wc × [ht−1, xt] + bc) (15)

Ot = σ(w0 × [ht−1, xt] + b0) (16)
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ht = Ot ∗ tanh(Ct) (17)

In the above equation, it, ft, ct, and Ot represent the oblivion gate, the input gate, the
cell state and the output gate, respectively; wi, w f , wc, and wo all imply different weight
matrices; and b f , bi, bc, and bo represent the corresponding bias vectors, The activation
function is tanh, ht is the output at moment t, xt is the input at moment t, and C̃t is the new
value of the candidate vector update.

The LSTMmodels are implemented using Python 3.8. Our LSTM network consists of
three hidden layers, with each hidden layer followed by a dropout layer to prevent overfit‑
ting. The network has a total of 300 dimensions and uses “relu” as the activation function
and “Adam” as the optimizer and takes six steps to test the value of one step, for a total
of 100 epochs. These crucial parameters are determined through continuous experimen‑
tation, testing numerous combinations of these parameters with different values until a
stable network and optimal training options are obtained. To ensure better comparative
experiments, we maintain these optimal parameter values without change.

2.4. SVMModel
Support vector machines (SVM) is a widely used machine learning technique for re‑

gression analysis and statistical classification. The primary goal of SVM is to find the op‑
timal hyperplane that maximizes the margin between different classes or minimizes the
regression error. The SVM algorithm maps input vectors to a high‑dimensional space us‑
ing kernel functions, where it seeks to identify the optimal partitioning hyperplane and
two parallel hyperplanes that best separate the data.

The total error of the SVM is minimized when the margin between the parallel hyper‑
planes is maximized. In this experimental comparison, stochastic gradient optimization
is employed to optimize the model parameters, ensuring a more efficient convergence to‑
wards the optimal solution. MATLAB is used for the modeling process, with the following
settings: KernelFunction is set to “linear”,” KernelScale is set to 1, and the BoxConstraint
range is defined as [1 × 10−3, 1 × 103].

The chosen settings for the experiment (linear KernelFunction, KernelScale of 1, and
BoxConstraint range of [1 × 10−3, 1 × 103]) ensure a balance between model complexity
and generalization performance. By using stochastic gradient optimization and these spe‑
cific settings, the experimental comparison aims to showcase the effectiveness of SVM in
solving regression and classification problems, highlighting its potential applications in
various domains.

2.5. VMD Algorithm
VMD is a novel time‑frequency decomposition algorithm that aims to decompose the

multi‑component signal in the data into multiple single‑component amplitude‑modulated
frequency signals. This approach helps to avoid issues such as pseudo‑component prob‑
lems and endpoint effects that may be encountered, resulting in more effective processing
of nonlinear signals. The specific decomposition process is as follows: Initialize u1

k , w1
k , and

λ1
k and n = 0.

(1) n = n + 1; enter the loop.
(2) Update according to the update formula of uk and wk until the number of decompo‑

sitions is k.
(3) Update λ according to the update formula of λ.
(4) Given the accuracy ε, if the stopping condition is satisfied,

∑k

∥un+1
k − un

k ∥
2
2

∥un
k ∥

2
2

< ε (18)
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Terminate the cycle; otherwise, proceed to step (2) to continue the cycle.
In the above description, uk represents the decomposed single‑component AMF sig‑

nal, wk denotes the center frequency of each single‑component AM/FM signal, λ is the
Lagrangian multiplier, and n stands for the number of iterations.

When utilizing VMD to decompose the data, it is essential to set the parameters of the
VMD algorithm (penalty factor α and modal component K) in advance. We reconstruct
the corresponding time series by summing the sub‑time series for each value of K and
α. When the reconstructed time series exhibits a perfect correlation with the original time
series, the values of K andα that yield the best efficiency for the VMD‑based computational
model are chosen as the optimal values. In this experiment, the penalty factor of the VMD
decomposition algorithm is set to 2000, the specified number of decomposition modes is
set to 4, and the articulation process of the LSTM neural network is identical to that of the
CEEMDAN decomposition algorithm. The specific decomposition diagrams for the Lvsi
and Ganpu stations are shown in Figures 7 and 8.
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To emphasize the performance differences among the compared models, we opted 

to use three error metrics, namely root mean square error (RMSE), mean absolute error 
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To emphasize the performance differences among the compared models, we opted

to use three error metrics, namely root mean square error (RMSE), mean absolute error
(MAE), and goodness of fit (R2), to prevent chance errors caused by individual metrics.
The units of RMSE and MAE are meters, and smaller values indicate higher prediction
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accuracy. Moreover, the closer the value of R2 is to 1, the better the fit. The expressions are
shown in Equations (19)–(21):

RMSE =

√
1
m

m

∑
i=1

(yi − zi)
2 (19)

MAE =
1
m

m

∑
i=1

/yi − zi/ (20)

R2 = 1 − ∑m
i=1 (yi − zi)

2

∑m
i=1 (yi − zi)

2 (21)

where m is the number of test samples, and yi and zi are the original and predicted values
of the data, respectively.

3. Results
We initially chose to compare the predicted results of conventional tidal wave height.

The conventional tidal wave height prediction results of the classical tidal harmonic anal‑
ysis, SVM, LSTM, CEEMDAN‑LSTM, and VMD‑LSTM models for the Lvsi and Ganpu
stations are displayed in Figures 9 and 10, respectively, while the error analysis results are
shown in Tables 1 and 2. The raw data in the figures represent the 500 h of conventional
tidal wave height data in the sample data range 8100 h–8600 h. It is evident that all five
models perform well in conventional tidal wave height prediction, with high graphical fit
and no significant errors, which means that all models can achieve the desired results in
conventional tidal wave height prediction.

After comparing the error analysis metrics in Tables 1 and 2, it is concluded that the
VMD‑LSTMmodel exhibits smaller errors and better predictions. At both sites, the RMSE
and MAE metrics of VMD‑LSTM are improved by more than 50% compared to the com‑
parison models, and the R2 is closer to 1. We believe that the conventional tidal wave
height prediction is satisfactory for each model, and even if we use the more advanced
VMD decomposition algorithm to enhance the prediction accuracy, the significant numer‑
ical improvement in the accuracy index is also a valuable addition.

Table 1. Error analysis results of conventional tidal height prediction at Lvsi station.

Harmonic
Analysis SVM LSTM CEEMDAN‑LSTM VMD‑LSTM

RMSE (m) 0.284 0.143 0.144 0.134 0.068
MAE (m) 0.228 0.119 0.119 0.114 0.058

R2 0.956 0.989 0.979 0.980 0.992

Table 2. Error analysis results of conventional tidal height prediction at Ganpu station.

Harmonic
Analysis SVM LSTM CEEMDAN‑LSTM VMD‑LSTM

RMSE (m) 0.304 0.144 0.143 0.147 0.058
MAE (m) 0.245 0.119 0.112 0.124 0.048

R2 0.977 0.995 0.995 0.995 0.998
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To better compare the performance of each model, we chose to continue analyzing
the prediction results of the five models in abnormal tidal wave height conditions. We
selected the abnormal tidal wave height data of 500 h from 5500 h to 6000 h in the origi‑
nal data for comparison. The prediction results of the five models in the abnormal tidal
wave height are presented in Figures 11 and 12, and the error analysis results are shown in
Tables 3 and 4, while the total tidal height prediction error results are presented in
Tables 5 and 6.

In the comparison of anomalous tidal height prediction results, we can observe that
the VMD‑LSTMmodel’s performance is superior. The four compared models have signif‑
icant errors at the crests and troughs, with varying degrees of errors, but the VMD‑LSTM
model overcomes this problem. Its graphical fit is extremely high, and there are no obvi‑
ous errors. After analyzing the errors of eachmodel, the VMD‑LSTMmodel shows a 36.5%
improvement in both the lowest RMSE error metric and the lowest MAE error metric, com‑
pared to the four comparison models. The R2 is above 0.99 for both stations.

When we compare the error analysis indicators of the entire ten‑month forecast set,
we can also conclude that the comprehensive prediction performance of the VMD‑LSTM
model remains superior.

Table 3. Error analysis results of abnormal tidal height prediction at Lvsi station.

Harmonic
Analysis SVM LSTM CEEMDAN‑LSTM VMD‑LSTM

RMSE (m) 0.428 0.509 0.361 0.189 0.120
MAE (m) 0.380 0.495 0.335 0.156 0.102

R2 0.892 0.854 0.924 0.980 0.992

Table 4. Error analysis results of abnormal tidal height prediction at Ganpu station.

Harmonic
Analysis SVM LSTM CEEMDAN‑LSTM VMD‑LSTM

RMSE (m) 0.594 0.465 0.288 0.178 0.072
MAE (m) 0.5 0.428 0.224 0.141 0.060

R2 0.932 0.959 0.983 0.994 0.998

Table 5. Error analysis results of total tidal height prediction at Lvsi station.

Harmonic
Analysis SVM LSTM CEEMDAN‑LSTM VMD‑LSTM

RMSE (m) 0.372 0.339 0.260 0.171 0.091
MAE (m) 0.299 0.288 0.215 0.138 0.075

R2 0.925 0.945 0.967 0.987 0.996

Table 6. Error analysis results of total tidal height prediction at Ganpu station.

Harmonic
Analysis SVM LSTM CEEMDAN‑LSTM VMD‑LSTM

RMSE (m) 0.504 0.323 0.224 0.147 0.067
MAE (m) 0.402 0.266 0.164 0.117 0.055

R2 0.935 0.976 0.989 0.995 0.998
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Figure 11. Comparison of abnormal tidal height prediction results (Lvsi station). Figure 11. Comparison of abnormal tidal height prediction results (Lvsi station).



Remote Sens. 2023, 15, 3045 15 of 18
Remote Sens. 2023, 15, 3045 16 of 19 
 

 

 
Figure 12. Comparison of prediction results of abnormal tide level height (Ganpu station). Figure 12. Comparison of prediction results of abnormal tide level height (Ganpu station).



Remote Sens. 2023, 15, 3045 16 of 18

4. Discussion
Taking into account all the experimental results, we believe that the VMD decompo‑

sition algorithm is indeed a significant improvement and an ideal method for tidal height
prediction accuracy. Comparing various methods, the classical tidal harmonic analysis
method has high requirements for each data parameter. As Pan [1] and others have pointed
out, the prediction accuracy of this method can be affected by numerous factors, such as
the choice of subtidal zone, the number of subtidal zones, topographic effects, and more.

The CEEMDAN algorithm has been used successfully by Zhang [26] and others; how‑
ever, although theCEEMDANalgorithmhas high decomposition integrity, the cumulative
error increases relatively due to the high number of low‑frequency components generated
by this decomposition method. Despite the good decomposition effect, it is still lacking
in processing anti‑noise and outlier fluctuations, and the data value is reduced after de‑
composition, but the handling of fluctuation frequency is lacking, making it inferior to
the VMD algorithm. The experimental results show that the CEEMDAN‑LSTM model’s
prediction performance is better than the classical harmonic analysis model and simple
machine learning model but inferior to the VMD‑LSTM model.

The VMDdecomposition algorithm can simplify the data’s physical structure, decom‑
posing the raw signal of complexity and non‑smoothness into feature mode components
and capturing multi‑scale information at different resolution levels. As a result, the de‑
composed training data can be trained more efficiently, and prediction performance can
be better when applied to individual models. Using training data with a simplified struc‑
ture inmodel training can learn data patternsmore efficiently and reduce the effect of noise
contained in the original data [28].

In contrast to Yin [20], who used a combination of discrete wavelet transform (DWT)
and variable neural network to predict tidal heights, and Wang [32], who combined a hy‑
brid model of EMD/EEMD and ARIMA to predict long‑term streamflow, the EEMD‑ and
DWT‑based models for high‑frequency sub‑time sequences are less efficient and accurate
than the low‑frequency model, while the VMD‑based model yields good efficiency and
accuracy for both high‑frequency and low‑frequency sub‑time sequences.

DWT is a reliable method for non‑stationary signal analysis, but it can only choose a
fixedwavelet basis functionwhenused,which isweakly adaptive. TheVMDnon‑recursive
decomposition approach effectively overcomes its shortcomings. Comparedwith the EMD,
EEMD, and CEEMDmethods, it allows for a more effective separation of tidal signals and
noise. The highly adaptive decomposition characteristics of VMD, the rigorous theoretical
basis, and the advantages of high‑frequency noise suppression, combined with LSTM’s
long‑term dependence, achieve high‑accuracy predictions of tidal forecasts. Moreover, the
CEEMDAN decomposition algorithm in this study decomposes the original time series
into more sub‑time series than VMD, so the error accumulation of the CEEMDAN‑based
model may be greater than that of the VMD‑based model. Therefore, VMD is a more effec‑
tive model than CEEMDAN for developing tidal forecasts.

All models can obtain better prediction results in conventional tidal wave height pre‑
diction. However, when the tidal height increases, the prediction ability of the classi‑
cal tidal harmonic analysis method and a single machine learning model is limited. The
CEEMDAN‑LSTM model can maintain good prediction accuracy, while the VMD‑LSTM
model can still maintain high‑accuracy long‑term prediction results, overcoming the prob‑
lems that these models cannot solve. This indicates that the VMD algorithm is an effective
way to improve the accuracy of tidal height prediction.

5. Conclusions
(1) The combination of the VMD decomposition algorithm and the LSTM neural net‑

work effectively increases the precision for long‑term conventional tidal forecasting
and addresses the problem of inaccurate prediction results of anomalous tidal data
in long‑term tide prediction. Achieving high‑precision long‑term tide prediction is
essential for realistic marine activities. However, prediction results based on reconcil‑
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iation analysis often cannotmeet the current refinement requirements. The pairing of
the VMD decomposition algorithm and the LSTMmodel may provide a newmethod
for this purpose, thus meeting the practical application needs of the growing marine
economic activities.

(2) The introduction of the VMD decomposition algorithm enables better processing of
the original tide level data, effectively decomposing more stable modal components
and improving the model’s prediction accuracy. This approach provides new re‑
search ideas andmethods for tide level prediction. Thismethod can also be expanded,
considering the combination of the VMD decomposition algorithm with more ma‑
chine learning time prediction models to obtain a new combined model, or applying
this model to more data types, such as waves.
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