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Abstract: The complex topography, severe surface fragmentation and landscape heterogeneity of
the karst region of southwest China make it extremely difficult to extract information on rocky
desertification in the region. In order to overcome the disadvantages of the surface parameter-based
feature space approach, which is difficult to construct and apply, this study uses the reflectance of
Landsat 8 Operational Land Imager (OLI) in the red (Red), near-infrared (NIR) and shortwave infrared
(SWIR) bands as the feature variables, and establishes a two-dimensional SWIR-NIR, Red-NIR and
SWIR-Red reflectance spectral feature space. The three models of perpendicular rocky desertification
index 1 (PRDI1), perpendicular rocky desertification index 2 (PRDI2) and perpendicular rocky
desertification index 3 (PRDI3) were also constructed based on the variation of the degree of rocky
desertification in each spectral feature space. The accuracy of the rocky desertification extracted
by these three index models was verified and compared with the karst rocky desertification index
(KRDI) and rocky desertification difference index (RSDDI), which are constructed based on the
surface parameter feature space. The results show that: (1) The waveband reflectance-based feature
space model provides a new method for large-scale rocky desertification information extraction,
characterized by easy data acquisition, simple index calculation and good stability, and is conducive
to the monitoring and quantitative analysis of rocky desertification in karst areas. (2) The overall
accuracy and Kappa coefficient of PRDI1 are 0.829 and 0.784, respectively, both higher than other
index models, showing the best applicability, accuracy and effectiveness in rocky desertification
information extraction. (3) According to the results extracted from PRDI1, the total area of rocky
desertification in Huaxi District of Guizhou province is 320.44 km2, with the more serious grades of
rocky desertification, such as severe and moderate, mainly distributed in the southwestern, western
and southeastern areas of Huaxi District. This study provides important information on the total area
and spatial distribution of different degrees of rocky desertification in the study area, and these results
can be used to support the local government’s ecological and environmental management decisions.
The method proposed in this study is a scientific and necessary complement to the characteristic
spatial methods based on different surface parameters, and can provide important methodological
support for the rapid and efficient monitoring of karstic rocky desertification over large areas.

Keywords: karst rocky desertification; remote sensing; spectral feature space; Red-NIR-SWIR

1. Introduction

The karst region of southwest China is one of the three largest karst regions in the
world, covering an area of about 540,000 km2, and is the largest continuous exposed
carbonate rocky distribution area in the world [1]. Karst rocky desertification is an extreme
manifestation of land degradation in a fragile subtropical karst environment, where both
natural factors and human activities have led to the gradual degradation of vegetation,
massive soil loss and the extensive exposure of bedrock [2,3]. Its serious impact on the local
ecological environment and hydrological conditions has led to frequent geological disasters
such as droughts, floods, landslides and ground subsidence [4]. Karst rocky desertification
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also affects local agricultural and forestry production, seriously hindering sustainable local
socio-economic development and making local residents live in poverty for a long time [5].
Due to the complex topography, severe surface fragmentation and landscape heterogeneity
of the karst region of southwest China, it is extremely difficult to extract information on the
spatial distribution, area and extent of rocky desertification in the region.

A great deal of research has been carried out to address the difficulty of extracting infor-
mation on rocky desertification. Traditional research methods usually rely on field surveys
of exposed bedrock, vegetation, soil thickness and related indicators, but field surveys are
often costly, time-consuming and labor-intensive, especially for large-scale monitoring [6,7].
Remote sensing technology has gradually become the main means of rocky desertification
monitoring because of its ability to obtain large-scale rocky desertification information
in a rapid and timely manner and to achieve large-scale rocky desertification monitoring
and assessment [8–11]. Conventional remote sensing image classification methods such as
supervised classification and unsupervised classification are highly subjective and have
difficulty distinguishing the grade of rocky desertification, cannot directly indicate the
development status of rocky desertification, and are not suitable for extracting spatial
distribution, area and grade information of rocky desertification [12,13]. The mixed image
element decomposition method (SMA) is a relatively common method in the study of
karst desertification, but due to the discontinuous distribution of topography in karst areas
and the influence of human activities, weathering and erosion, end element variation is
common and it is very difficult to obtain feature end elements, so the SMA method cannot
easily obtain information on rocky desertification [14,15]. Traditional vegetation indices are
based on the specific spectral characteristics of green vegetation, reflecting the “greenness”
of vegetation information, which can reflect the growth of vegetation, but cannot directly
indicate the development of rocky desertification and the degree of development [16]. In
recent years, the characteristic spatial model method based on surface parameters has
been gradually applied to the study of karstic desertification; this can distinguish different
grades of desertification and directly indicate the degree of development of desertification,
and some good research results have been achieved.

A spectral feature space is a spectral space consisting of multi-band spectral informa-
tion or two or more of the resulting surface ecophysical parameters [17]. In addition to the
fruitful research results in the fields of desertification and salinization [18,19], the character-
istic spatial models constructed based on different surface parameters have also achieved
some good research results in the study of rocky desertification. Zhang, Jie et al. [20] con-
structed a new karst rocky desertification index (KRDI) based on three surface parameters,
greenness, humidity and brightness, and used the temporal spectral feature space (TSFS)
model to determine the rank of rocky desertification. The results proved that the KRDI is
a sensitive indicator of rocky desertification and can be used for the direct extraction of
rocky desertification information. Luo Jie et al. [21] constructed the rocky desertification
difference index (RSDDI) based on NDVI and Albedo surface parameter feature space,
and extracted information on the spatial distribution and extent of rocky desertification in
Dougu Township, and the results showed that the RSDDI could extract and classify rocky
desertification information more accurately. Guo, Bing et al. [12] constructed two types of
feature space models (point-to-point and point-to-line) based on seven surface parameters
to monitor the rocky desertification in Dafang County, and the results proved that the
feature space models constructed based on different surface parameters could extract rocky
desertification in karst areas, providing a new research method for the effective large-scale
monitoring of rocky desertification.

The above model of the rocky desertification index, constructed on the basis of the
characteristic space of different surface parameters, has the advantages of reflecting changes
in the hydrothermal combination of the surface cover and having a clear biophysical signifi-
cance. However, this method also has some disadvantages, mainly the complicated process
of calculating surface parameters and the inclusion of certain errors, which gradually
accumulate and increase the uncertainty of the index model calculation [22]. In addition,
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the values of the surface parameters tend to change with the study area, time and season,
etc., resulting in changes in the shape of the feature space constructed using them, and it
is difficult to form a feature space with a specific shape, such as a triangle or trapezoid,
making its application more difficult. In order to solve this problem, this study considers
the construction of a rocky desertification index model by establishing a band reflectance
spectral feature space, which has the advantages of a simple construction process, easy
access to model parameters and good stability. It has been studied extensively in the fields
of soil moisture and land drought monitoring [23–25], and has achieved good research
results, but it has not been reported in the field of karstic rocky desertification research so
far, and its applicability to the extraction of spatial distribution and the degree information
of karstic rocky desertification deserves further study.

Among the many remote sensing images, the multispectral Landsat series of re-
mote sensing images has been one of the most widely used remote sensing images in
recent decades due to its high spatial and temporal resolution, wide coverage, and free
availability [26,27]. Many studies have used the red (Red: 630–690 nm) band, near infrared
(NIR: 775–900 nm) band and shortwave (SWIR: 1550–1750 nm) band of Landsat series
remote sensing images to construct different karst rocky indices and vegetation indices,
such as normalized rocky indices, specific vegetation indices and normalized vegetation
indices [28–30], and superimposed them for analysis to invert rocky desertification infor-
mation. In addition, many studies have shown that the reflectance of surface cover from,
for example, rocks, vegetation and buildings varies the most in these three bands, and
indices constructed using these three bands can better distinguish between them [14,28].
This shows that karst rocky desertification information has a strong correlation with the
Red, NIR and SWIR bands of the multispectral imagery. Therefore, this study considers the
use of these three bands to construct a feature space model to extract information on the
spatial distribution, area and extent of karstic rocky desertification.

In summary, in order to overcome the disadvantages of the feature space method
based on different surface parameters such as a complex calculation process, difficult access
to model parameters and poor stability, and to improve the applicability of the feature space
method, as well as to save extraction costs and achieve the rapid and efficient extraction of
karstic rocky desertification information, a new method based on band reflectance spectral
feature space was developed in this study. The method uses the Red, NIR and SWIR
bands of the multispectral Landsat-8 OLI as feature variables to construct a spectral feature
space, and by studying the spatial distribution of different land covers and the variation
of different degrees of desertification in the reflectance spectral feature space, an index
model can be established that can quickly, accurately and directly indicate the degree of
desertification development. The model can be easily replicated on other multispectral
images and applied to other karst areas.

2. Materials
2.1. Study Area

As shown in Figure 1a, this study area was located in Huaxi District, Guiyang City,
Guizhou Province, between 106◦27′~106◦52′E and 26◦11′~26◦34′N, with a total area of
964.32 km2, in which karst landscapes are widely distributed, accounting for 94% of the
total area [31]. The topography of the region is shown in Figure 1b, with a high north and
south and low middle, with the highest features in the southeast, ranging from 1014 m
to 1684 m above sea level, and the central part being around 1100 m above sea level. The
landform type of the whole region is dominated by mountains and hills, with denuded hills
interspersed with basins, valleys and depressions, and the landscape is fragmented [32].
The geology of the area is complex, with a rich variety of rocky types, including lime rocky,
dolomite, common sand shale and purple sand shale [33]. The climate is subtropical, humid
and monsoonal, with no cold winters or hot summers, an average annual temperature of
14.9 ◦C and abundant rainfall of 1178.3 mm. Figure 1c shows the distribution of sample
points in the study area.
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Figure 1. (a) Location map of the study area. (b) Elevation map of the Huaxi District. (c) Distribution
map of sample points in Huaxi District.

2.2. Data Collection and Processing

The remote sensing image used in this study was a Landsat-8 OLI image downloaded
from the Geospatial Data Cloud (http://www.Gscloud.cn, accessed on 21 June 2022). The
imaging time was 18 March 2020, with a spatial resolution of 30 m and a temporal reso-
lution of 16 days, possessing a high spatial and temporal resolution. The pre-processing
process consisted mainly of radiation correction and atmospheric correction, the purpose
of which was to remove various aberrations from the image data [34], and the purpose of
atmospheric correction is the process of removing radiometric errors caused by atmospheric
effects and inverting the true surface reflectance of the features [35]. The processing process
was as follows: first, radiometric calibration using the Radiation toolbox in Environment for
Visualizing Images 5.3 (ENVI5.3) was carried out to calculate top-of-atmosphere reflectance,
converting the image grey-scale values into physically meaningful irradiance values [36].
Secondly, the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) atmo-
spheric correction model in ENVI5.3 was used to invert the surface true reflectance, and
after atmospheric correction, the apparent reflectance to the earth was obtained for each
band [37]. Finally, the corrected remote sensing image was cropped, using the administra-
tive division vector map of Huaxi District to obtain a remote sensing image map covering
the whole Huaxi District.

Since karstic desertification occurs only in karst areas, and there were some non-karst
areas in the study area, this study used 1:50,000 lithological vector data (http://www.
karstdata.cn/, accessed on 22 June 2022) from Huaxi District to mask non-karst areas
before constructing the rocky desertification index model [12]. As the reflectance of rocky
areas is similar to that of built-up areas and bare land, it is difficult to distinguish them
using the spectral features of the images, which can easily lead to misclassification of
rocky desertification [38], so built-up areas and bare land need to be removed before the
construction of the rocky desertification supervisory information extraction model; as water
bodies are also unlikely to undergo rocky desertification, they also need to be removed.
Therefore, this study used the 2020 land use vector data of Huaxi District to mask built-
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up areas, bare land and water bodies. This was obtained from European Space Agency
(ESA) World Cover 10 m land cover raster data (http://scihub.copernicus.eu/, accessed
on 30 August 2022) in ArcGIS10.2 using raster-to-vector conversion. The land cover raster
data were produced from Sentinel-1 and Sentinel-2 data, with an overall accuracy of 85%.
The masking process was completed in the Mask toolbox of ENVI5.3, and the required data
sources are shown in Table 1.

Table 1. Data sources.

Data Type Sources Website

DEM Geospatial data cloud http://www.gscloud.cn/, accessed on 30 September 2022
Land use data ESA_World Cover 10 m land cover data from ESA http://scihub.copernicus.eu/, accessed on 30 August 2022
Lithology map The Center of Karst Science Data http://www.karstdata.cn/, accessed on 22 June 2022
Landsat-8 OLI Geospatial data cloud http://www.gscloud.cn/, accessed on 21 June 2022

2.3. Spectral Characteristics of Each Land Cover Type

As the most direct characterization factor of rocky desertification, the change in rocky
exposure rate in remote sensing monitoring directly determines the change pattern of the
degree of rocky desertification. Although there are many factors affecting rocky reflectance,
such as the degree of rocky exposure, mineral composition and surface smoothness, the
main factor affecting rocky reflectance for the same rocky type is the degree of rocky
exposure, and its reflectance increases with the increase in rocky exposure. Based on the
land cover characteristics of the study area, this study classified the land cover throughout
the study area into five typical categories: vegetation, rocks, soils, buildings and water
bodies. In this study, with the help of 1 m resolution Google Earth images, 50 pure image
elements of each feature were manually and randomly selected on multispectral images of
the Huaxi District to plot the mean Popper curves, as shown in Figure 2. As can be seen
in Figure 2, the reflectance of the rocks increased from the red band (band 4: 630–690 nm)
and the near-infrared band (band 5: 775–900 nm) to the short-wave infrared 1 band (band
6: 1550–1750 nm), and the reflectance of other features varied considerably in these three
bands, so the combination of these three bands could be used to differentiate the features
and further extract information on rocky desertification. In this study, the red, near-infrared
and short-wave infrared bands, which have significant reflectance variations, were chosen
as the bands for monitoring rocky desertification.
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3. Methods

The Landsat 8 OLI remote sensing images of the study area were pre-processed with
radiometric calibration, atmospheric correction and image cropping to obtain the surface
reflectance of each band, and the reflectance of the red band (Red), near infrared band
(NIR) and shortwave infrared band (SWIR) were used as feature variables. SWIR-NIR,
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Red-NIR and SWIR-Red reflectance spectral feature spaces were supplemented by lithology
data, land use data, DEM elevation data, etc. The corresponding rocky desertification
index models, PRDI1, PRDI2 and PRDI3, were constructed according to the changing
characteristics of the degree of rocky desertification in each reflectance spectral feature
space. The accuracy of these three index models extracted from rocky desertification was
verified and compared, and the index model with the highest accuracy was compared with
the previously proposed index models KRDI and RSDDI, which are constructed based on
the surface parameter feature space. The overall flowchart of the study is shown in Figure 3,
and some of the main components of the flowchart are described in the following sections.
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3.1. Model Construction Based on Reflectance Spectral Feature Space
3.1.1. Model Construction Based on the SWIR-NIR Spectral Feature Space

Using band 5 (NIR) and band 6 (SWIR) of the atmospherically corrected Landsat 8
OLI remote sensing image of the study area, SWIR-NIR was constructed, and its feature
space is shown in Figure 4a. In the constructed SWIR-NIR spectral feature space, the pixels
in the two-dimensional space were selected and the distribution of features corresponding
to the pixels can be clearly seen on the remote sensing image map. As can be seen in
Figure 4a, the pixels of different surface coverings were distributed in different locations
in the feature space, with pixels of water bodies mainly in the blue oval area and pixels
of buildings, roads, etc., mainly in the yellow oval area. Due to the different materials of
the buildings, some of the pixels are darker while others are brighter, and can be observed
that the pixels of the darker buildings are mainly distributed in the dark yellow ovals in
Figure 4a, while the pixels of the brighter buildings are mainly distributed in the bright
yellow ovals. In addition to these surface covers, some pixels of bare soil were found in
the SWIR-NIR feature spatial scatter plot, presumably because the image was taken in late
March, a season when it was under cultivation and there was a large amount of bare soil
exposed. As areas such as water bodies, buildings, roads and bare ground are unlikely to
be rocky desertified, they need to be removed to avoid the misclassification of rocky areas
and masked to obtain the spectral feature space shown in Figure 4b. This spectral feature
space was in an approximate triangular shape, and the pixels in the Figure were mainly
vegetation, rocky or a mixture of vegetation and rocky. It can be observed that the bare
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rocky areas were mainly distributed in the purple oval area and the vegetation was mainly
distributed in the lower border of the triangle, where the dark green oval area was mainly
dark vegetation cover, such as coniferous forest, and the bright green oval area was mainly
bright vegetation cover such as grassland. The vegetation from the dark vegetation cover
to the bright vegetation cover went through the process of change from coniferous forest,
broad-leaved forest, scrub and grassland, forming the concept of a vegetation line, denoted
by L1, which was proposed by Xia Xueqi [39] et al. in 2006.
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space after being masked. (c) Distribution of rocky desertification classes in the SWIR-NIR feature
space: No-no rocky desertification; Slight-slight rocky desertification; Moderate-moderate rocky
desertification, Intensive-intensive rocky desertification; Severe-severe rocky desertification. (d) Fitted
curve of vegetation line L1 in the SWIR-NIR spectral feature space.

The scatter of image elements in geometric space can be abstracted into a single
monomorph (trihedron or polyhedron), with pure elements (those covered by only one
type of ground cover) corresponding to the vertices of the single monomorph, and mixed
elements (those made up of two or more types of ground cover) distributed within or on
the edges of the single monomorph [40]. Figure 4c is a simulation of the SWIR-NIR feature
space scatter plot. The pure image elements formed by bare rocky, light vegetation and
dark vegetation are distributed at the three vertices of A, B and C, respectively, and the
mixed image elements between them are distributed inside and on the edge of the triangle.
It was found that there was a certain distribution pattern of rocky desertification image
elements in the triangle: the closer the distance from point A, the more pure bare rock
distribution, the less vegetation cover and the more serious rocky desertification; the closer
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the distance from the vegetation line L1, the more vegetation cover, the less pure bare rocky
distribution and the less rocky desertification. It can be seen that more and more rocky
areas were exposed along the direction perpendicular to the vegetation line, which means
that the degree of rocky desertification is increasing, and that different degrees of rocky
desertification can be better distinguished by an ellipse parallel to the vegetation line L1.
Therefore, this study constructed a rocky desertification index based on the purity of the
rocky desertification image element to the vegetation line, named the perpendicular rocky
desertification index 1 (PRDI1). The following rocky desertification index was established
based on the formula for the distance from the point to the line.

PRDI1 =
|M × ρNIR − ρSWIR + a|√

M2 + 1
(1)

where ρNIR and ρSWIR represent the surface reflectance of the near-infrared band (band 5)
and shortwave infrared band 1 (band 6) of the Landsat-8 OLI image, respectively; M is
the slope of the vegetation line L1 and a is the intercept of the vegetation line on the
perpendicular axis.

Based on the SWIR-NIR reflectance spectral feature space established by the 2D Plot
tool in ENVI 5.3, the minimum shortwave infrared reflectance value corresponding to each
NIR reflectance value in the feature space was extracted based on the unique distribution of
vegetation image elements in the 2D spectral feature space, and the trend line was obtained
as the vegetation line; see Figure 4d. Therefore, the value of M in this study was 0.4338 and
the value of a was 0.0047. Substituting the values of M and a into Equation (1) yields:

PRDI1 =
|0.4338× ρNIR− ρSWIR + 0.0047|√

0.43382 + 1
(2)

3.1.2. Model Construction Based on the Red-NIR Spectral Feature Space

The scatter plot shown in Figure 5a was obtained by constructing the feature space
for the red band (Red) and the near infrared band (NIR). It was found that the water
bodies were mainly distributed in the blue ellipse area, the dark buildings were mainly
distributed in the dark yellow ellipse area and the bright buildings were mainly distributed
in the bright yellow ellipse area. The two-dimensional feature space scatter plot shown in
Figure 5b was obtained after masking the areas where rocky desertification is unlikely to
occur. The feature space scatter plot has a flat and long triangular shape due to the low
reflectance of rocky areas and vegetation in the red wavelength band (Red). The purple
ellipse in Figure 4b is mainly the bare rocky area, the lower line of the triangle is mainly
the vegetation cover area, the dark green ellipse is mainly the dark vegetation cover area,
such as coniferous forest, and the bright green ellipse is mainly the bright vegetation cover
area, such as grassland. The vegetation from the dark vegetation cover area to the bright
vegetation cover area goes through the process of changing from coniferous forest, broad-
leaved forest, scrub and grassland, forming a vegetation line, which is represented by L2.
Figure 5c shows a simulation of the scatter plot of the Red-NIR feature space. Similarly, the
spatial distribution of rocky desertification pixels in this feature space also has a certain
regularity, with bare rocky distribution areas near point A, vegetation distribution areas
near L2, and mixed vegetation and rocky pixels inside and at the edges of the triangle;
an ellipse parallel to the vegetation line L2 can better distinguish different degrees. The
ellipse parallel to the vegetation line L2 can better distinguish the different degrees of rocky
desertification. Therefore, the perpendicular rocky desertification index 2 (PRDI2) can be
constructed based on the degree of purity of the rocky desertification image element to the
vegetation line L2, and the formula is established as follows.

PRDI2 =
|N × ρRed− ρNIR + b|√

N2 + 1
(3)
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where ρNIR and ρRed represent the surface reflectance of the near-infrared band (band 5)
and red band (band 4) of the Landsat-8 OLI image, respectively; N is the slope of the
vegetation line L2 and b is the intercept of the vegetation line on the perpendicular axis.
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Figure 5. (a) Red-NIR spectral feature space before being masked. (b) Red-NIR spectral feature
space after being masked. (c) Distribution of rocky desertification classes in Red-NIR spectral feature
space: No-no rocky desertification; Slight-slight rocky desertification; Moderate-moderate rocky
desertification, Intensive-intensive rocky desertification; Severe-severe rocky desertification. (d) Fitted
curve of vegetation lines L2 in Red-NIR spectral feature space.

Based on the Red-NIR reflectance spectral feature space established by the 2D Plot
tool in ENVI5.3, the minimum red reflectance value corresponding to each NIR reflectance
value in the feature space was extracted based on the unique distribution of vegetation
image elements in the 2D spectral feature space, and the trend line was obtained as the
vegetation line; see Figure 5d. Therefore, the value of N in this study is 0.1667 and the value
of a is 0.0015. Substituting the values of N and b into Equation (3) yields:

PRDI2 =
|0.1667× ρRed− ρNIR + 0.0015|√

0.16672 + 1
(4)

3.1.3. Model Construction Based on the SWIR-Red Spectral Feature Space

Unlike the previous two spectral feature spaces, the spectral feature spaces constructed
by SWIR and Red are narrower, but also approximate a triangular shape. As shown in
Figure 6a, water bodies are mainly distributed in the blue oval region, and dark and light
buildings are mainly distributed in the yellow oval region. The spectral feature space map
shown in Figure 6b was obtained after masking those areas where rocky desertification
does not occur. The lower left part of the figure near the origin was mainly the vegetation
cover area, which is easily saturated due to the low reflectance of vegetation in the red
band, making the distribution of vegetation in the feature space more concentrated [41].



Remote Sens. 2023, 15, 3056 10 of 20

Due to artificial mining, weathering and erosion, the rocky surface color changes to varying
degrees [42], with darker colorful rocky areas and brighter rocky areas located in the dark
purple oval and bright purple oval areas, respectively. It can be observed that there is also a
certain distribution pattern of rocky desertification image elements in this spectral feature
space (as shown in Figure 6c): the closer to the AB side, the more rock distribution and the
more serious rocky desertification; the closer to the origin O, the more vegetation coverage
and the less rocky desertification. The interior of the triangle is mainly a mixture of rock
and vegetation image elements, and the ellipse perpendicular to the OP line can better
distinguish different degrees of rocky desertification. Therefore, the distance from any
point in the triangular feature space to the origin O (0, 0) is used to represent the process
of rocky desertification. Based on the formula for the distance between two points, the
expression for the rocky desertification index is as follows.

PRDI3 =
√

ρRed2 + ρSWIR2 (5)

where ρRed and ρSWIR represent the surface reflectance of the red band (band 4) and
shortwave infrared band 1 (band 6) of the Landsat-8 OLI image, respectively.
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space after being masked. (c) Distribution of rocky desertification classes in the SWIR-Red feature
space: No-no rocky desertification; Slight-slight rocky desertification; Moderate-moderate rocky
desertification, Intensive-intensive rocky desertification; Severe-severe rocky desertification.

3.2. Calculation of Feature Space Model Based on Surface Parameters

To determine the reliability of the rocky desertification information extraction index
model proposed in this paper, this study compares it with two previously constructed rocky
desertification information extraction index models based on the feature space of surface
parameters, namely, the karst rocky desertification index (KRDI) and the rocky desertifica-
tion difference index (RSDDI). KRDI is a rocky desertification information extraction index
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model based on the three surface parameters of brightness, greenness and humidity of the
tassel hat transformation, which has good sensitivity to different karst rocky desertification
classes [20]. The RSDDI is a model for extracting rocky desertification information based
on two surface parameters: NDVI and Albedo. This index model can extract and classify
rocky desertification information more accurately and conveniently [21], calculated using
the following equations.

KRDI = B− G−W (6)

where B, G and W represent the brightness, greenness and moisture components of the
tassel hat shift, respectively. Their calculation is referenced in the literature [43].

RSDDI = 2.8969× NDVI − Albedo (7)

where NDVI is the normalized vegetation index and Albedo is the albedo of Landsat-8 OLI
image. Their calculation is referenced in the literature [44].

3.3. Rocky Desertification Classification

According to Equations (2), (4) and (5)–(7), this study used the Band Math tool of
ENVI5.3 to obtain five rocky desertification indices, namely PRDI1, PRDI2, PRDI3, KRDI
and RSDDI. Referring to the grading method of Guo, Bing and Wei, Haishuo et al. [18,45],
these five rocky desertification indices were classified into five grades based on the natural
breakpoint method in ArcGIS 10.2, namely, no rocky desertification (No), slight rocky deser-
tification (Slight), moderate rocky desertification (Moderate), intense rocky desertification
(Intense) and severe rocky desertification (Severe). The natural breakpoint method is a
grading method obtained based on Jenks’ optimization algorithm, which takes full account
of the histogram distribution of the rocky desertification index and will set boundaries at
locations with relatively large differences in data values, so that the differences in rocky
desertification within each grade of the classification are minimized and the differences
between grades of rocky desertification are maximized [46,47].

3.4. Accuracy Assessment

To compare the performance of the models in distinguishing different degrees of
karstic desertification, a confusion matrix approach was used to evaluate the accuracy of
the models. Four main accuracy evaluation elements were calculated and observed based
on the confusion matrix, namely, production accuracy (Psm), user accuracy (Pni), overall
classification accuracy (P0) and kappa coefficient [48]. Firstly, random sample points were
created in ArcGIS 10.2, and 205 random sample points were obtained after deleting those
falling in non-karst areas; the distribution of sample points is shown in Figure 1c. The
coordinates of these 205 sample points were then imported into high-resolution Google
Earth software, and a 30 × 30 m sized sample square was delineated at each sample
point. Combined with the field survey, the degree of rocky desertification of each sample
square was judged as the true value of rocky desertification, and finally the confusion
matrix of model estimates and observations was established for each sample point. The
overall precision, kappa coefficient, user precision and producer precision of each rocky
desertification information mention model were calculated.

Psm =
Pmm

∑n
i=1 Pim

(8)

Pki =
Pii

∑n
i=1 Pik

(9)

P0 =
n

∑
i=1

Pii/P (10)
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Kappa =
N ∑r

i=1 Xii −∑r
i=1(Xi+X+i)

N2 −∑r
i=1(Xi+X+i)

(11)

where Psm denotes the production accuracy of class m and ∑n
i=1 Pim denotes the number of

samples for which the selected true ground class is class m; Pki denotes the user accuracy
of class i and ∑n

i=1 Pik denotes the total number of samples classified as class i in the
classification result; P0 denotes the producer precision of class O, n denotes the number
of sample categories, Pii denotes the number of samples correctly classified in class i, and
P denotes the total number of samples; and r is the number of columns in the confusion
matrix, Xii is the number of samples in row i and column i, representing the number of
samples correctly classified, Xi+ denotes the number of samples in row i, X+i denotes the
number of samples in column i, and N is the total number of validation samples.

4. Results
4.1. Comparison of the Results of Rocky Desertification Extraction

After masking non-karst areas and areas where rocky desertification is unlikely to oc-
cur, the models constructed above were applied to extract rocky desertification information
from the Huaxi District. Table 2 shows the range of values for the PRDI1, PRDI2, PRDI3,
KRDI and RSDDI models for areas with different degrees of rocky desertification, where
they have different ranges of values for areas with different degrees of rocky desertification.
The range of values includes the highest reflectance values for almost rocky cover and
the lowest reflectance values for almost vegetation cover, as well as reflectance values
for mixed pixels with vegetation and rocky cover together. Figure 7 shows the spatial
distribution map and area of rocky desertification in the study area extracted using each
model. Figure 7a–c were extracted from PRDI1, PRDI2 and PRDI3 constructed based on the
reflectance spectral feature space, respectively, while Figure 7d,e were extracted from KRDI
and RSDDI, constructed based on the surface parameter feature space. Figure 7f shows the
area of rocky desertification for each class extracted using each model. From Figure 7, it
can be seen that PRDI1 extracted the largest total area of rocky desertification, followed by
KRDI, RSDDI and PRDI3, with the smallest area extracted being PRDI1. Among the rocky
desertification classes extracted from each model, there was little difference in the area of
moderate rocky desertification, while the area of the other classes varied. For no rocky
desertification and slight rocky desertification, PRDI2 extracted the largest area, while the
other models extracted more or less the same. For intense rocky desertification, PRDI2
extracted the smallest area, while the other models extracted more or less the same. For
heavy rocky desertification, PRDI2 and PRDI3 extract very little area, while PRDI1, KRDI
and RSDDI extracted more area and were more or less the same.

Table 2. Range of model values for PRDI1, PRDI2, PRDI3, KRDI and RSDDI.

Levels of Rocky
Desertification PRDI1 PRDI2 PRDI3 KRDI RSDDI

No 0–0.04 0–0.02 0–0.12 0–0.16 0.47–0.77
Slight 0.04–0.07 0.02–0.05 0.12–0.18 0.16–0.27 0.38–0.47

Moderate 0.07–0.10 0.05–0.10 0.18–0.22 0.27–0.36 0.28–0.38
Intensive 0.10–0.13 0.10–0.25 0.22–0.29 0.36–0.56 0.13–0.28

Severe 0.13–0.36 0.25–0.63 0.29–0.98 0.56–1.92 0–0.13
Note: No—no rocky desertification; Slight—slight rocky desertification; Moderate—moderate rocky desertifica-
tion, Intensive—intensive rocky desertification; Severe—severe rocky desertification.

From the above analysis, it can be seen that the spatial distribution and area size
of each grade of rocky desertification extracted by PRDI1 were reasonable and basically
similar to the results extracted by KRDI and RSDDI, which had good rocky desertification
information extraction ability.
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4.2. Comparison of the Accuracy of the Models

In this study, the confusion matrix for different degrees of rocky desertification in the
Huaxi District of China was studied using the perpendicular rocky desertification index
1 (PRDI1) model as an example, as shown in Table 3. The accuracy of PRDI1, PRDI2,
PRDI3, KRDI and RSDDI models were compared by means of creating confusion matrices,
and the results are shown in Figure 8. According to the calculated statistics, the overall
accuracy of PRDI1 was 0.829 and the Kappa coefficient was 0.784, which were higher than
the other models. Moreover, the no rocky desertification, intensive rocky desertification
and heavy rocky desertification values extracted by PRDI1 all had better user accuracy
and producer accuracy, of above 84%, indicating that PRDI1 performed the best in the
classification of rocky desertification in each model. The overall accuracy and Kappa
coefficient of PRDI2 were only 0.254 and 0.073, respectively, and the producer and user
accuracies for all five classes of rocky desertification were less than 60%, indicating that
the index model was poor in both individual classes of rocky desertification and overall
rocky desertification extraction, and that the model is not suitable for rocky desertification
information extraction in the study area. The overall precision was 0.615, the Kappa
coefficient was 0.512, and the only categories with producer precision greater than 80%
were no rocky desertification and heavy rocky desertification. The producer precision and
user precision of the other three grades of rocky desertification were lower, indicating
that the model is only applicable to the extraction of no rocky desertification and heavy
rocky desertification, and not to the extraction of slight rocky desertification, moderate
no rocky desertification and severe rocky desertification. The overall precision of KRDI is
0.820 and the Kappa coefficient is 0.770, with good user precision and producer precision
of 84% or more for no rocky desertification, intensive rocky desertification and severe
rocky desertification, indicating that KRDI performs relatively well in rocky desertification
classification and is more accurate for the extraction of this type of rocky desertification
information in the study area. The overall precision of RSDDI extraction was 0.818, the
Kappa coefficient was 0.767, and the user precision was higher than 84% for no rocky
desertification, intensive rocky desertification and severe rocky desertification, and the
producer precision was also higher than 78%, indicating that RSDDI performs better in the
rocky desertification classification and is more accurate for the extraction of this type of
rocky desertification information in the study area.

Table 3. Confusion matrix, using PRDI1 as an example.

PRDI1
Levels of Rocky
Desertification

Observed Value

No Slight Moderate Intensive Severe Total PA OA Kappa

Inversed
value

No 30 4 32 0.938

0.829 0.784
Slight 3 21 2 1 27 0.704

Moderate 3 3 42 1 49 0.776
Intensive 1 1 4 42 2 50 0.840

Severe 3 3 41 47 0.872
Total 37 29 49 49 43 205
UA 0.811 0.655 0.776 0.857 0.953

Note: No—no rocky desertification; Slight: slight rocky desertification; Moderate—moderate rocky desertifica-
tion, Intensive—intensive rocky desertification; Severe—severe rocky desertification; PA—production accuracy;
UA—user accuracy; OA—Overall Accuracy.

The above comparison shows that the overall classification accuracy, Kappa coefficient,
producer accuracy and user accuracy of PRDI1 are better than other models, and the extrac-
tion ability of rocky desertification is stronger for the overall and each class. It shows that
PRDI1, an exponential model based on the SWIR-NIR feature space, has good performance
and is feasible and applicable to the extraction of karstic rocky desertification information.



Remote Sens. 2023, 15, 3056 15 of 20Remote Sens. 2023, 15, 3056 16 of 22 
 

 

 
Figure 8. Accuracy comparison of PRDI1, PRDI2, PRDI3, KRDI and RSDDI: (a) comparison of 
producer accuracy; (b) comparison of user accuracy; (c) comparison of overall accuracy and kappa 
coefficients. 

4.3. Spatial Distribution Characteristics of Rocky Desertification Extracted by PDRI1 
The above study shows that the index model PRDI1, constructed based on the 

SWIR-NIR reflectance spectral feature space, had a higher accuracy than other models, 
and the spatial distribution of rocky desertification extracted by the index model was 
consistent with the actual distribution of rocky desertification in the field survey of the 
study area, which indicates that the method based on the SWIR-NIR reflectance spectral 
feature space is feasible and applicable for extracting the grade and spatial distribution of 
rocky desertification. The method based on the SWIR-NIR reflectance spectral feature 
space is feasible and applicable for extracting the grade and spatial distribution of rocky 
desertification. Therefore, in this study, PDRI1 was used to invert the spatial distribution 
of rocky desertification in the Huaxi District, and the results are shown in Figure 9. As 
can be seen in Figure 9, the serious rocky desertification areas are mainly concentrated in 
the western, southwestern, northwestern and southeastern parts of Huaxi District, 
mainly due to the high altitude, steep terrain, thin soil thickness and severe soil erosion in 
the above-mentioned areas, as well as the influence of human activities, resulting in more 
serious rocky desertification in these areas [49]. In the eastern and central regions, the low 
altitude, gentle terrain, thick soil layer and lighter soil erosion, as well as the implemen-
tation of the project to return farmland to forest and grass and the comprehensive rocky 
desertification management project measures in place since 2005 and 2008, respectively, 
have allowed the vegetation ecosystem in the region to recover and soil erosion to be 
reduced, resulting in a lesser degree of rocky desertification [50].  
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4.3. Spatial Distribution Characteristics of Rocky Desertification Extracted by PDRI1

The above study shows that the index model PRDI1, constructed based on the SWIR-
NIR reflectance spectral feature space, had a higher accuracy than other models, and the
spatial distribution of rocky desertification extracted by the index model was consistent
with the actual distribution of rocky desertification in the field survey of the study area,
which indicates that the method based on the SWIR-NIR reflectance spectral feature space
is feasible and applicable for extracting the grade and spatial distribution of rocky desertifi-
cation. The method based on the SWIR-NIR reflectance spectral feature space is feasible and
applicable for extracting the grade and spatial distribution of rocky desertification. There-
fore, in this study, PDRI1 was used to invert the spatial distribution of rocky desertification
in the Huaxi District, and the results are shown in Figure 9. As can be seen in Figure 9, the
serious rocky desertification areas are mainly concentrated in the western, southwestern,
northwestern and southeastern parts of Huaxi District, mainly due to the high altitude,
steep terrain, thin soil thickness and severe soil erosion in the above-mentioned areas, as
well as the influence of human activities, resulting in more serious rocky desertification in
these areas [49]. In the eastern and central regions, the low altitude, gentle terrain, thick
soil layer and lighter soil erosion, as well as the implementation of the project to return
farmland to forest and grass and the comprehensive rocky desertification management
project measures in place since 2005 and 2008, respectively, have allowed the vegetation
ecosystem in the region to recover and soil erosion to be reduced, resulting in a lesser
degree of rocky desertification [50].
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desertification; (d) intensive rocky desertification; and (e) severe rocky desertification. 
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shows that PRDI1 was able to extract all levels of rocky desertification well, probably 
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Figure 9. (1) Results of rocky desertification extracted using PDRI1 (the red squares represent the
different levels of rocky desertification). (2) Google Earth remote sensing images (the red dots
represent the location of the different levels of rocky desertification on the Google Earth image).
(3) Field photographs: (a) no rocky desertification; (b) slight rocky desertification; (c) moderate rocky
desertification; (d) intensive rocky desertification; and (e) severe rocky desertification.

5. Discussion
5.1. Sources of Error and Applicability of Each Model

The desirability of a constructed spectral index model is determined by its sensitivity
to information about the target feature of interest [46]. In a karst environment, the spectral
reflectance of exposed bedrock, vegetation, exposed lime-rocky soils and construction
sites show significantly different characteristics in SWIR of OLI images (Figure 3), with
water, hydroxyl and carbonate rock being the main determinants of the spectral absorption
characteristics in the SWIR band [51]. Therefore, SWIR is one of the suitable bands for
characterizing typical land cover types in karst areas [52]. In addition, the combination
of the Red, NIR and SWIR bands was finally identified as the basis for the new proposed
index model due to the significant differences in spectral reflectance trends for different
classes of features in the red to shortwave infrared bands.

In general, establishing a relatively optimal index is the key to extracting land cover [53].
According to Feng, Haixia and Pei, Jie et al. [14,41], it can be seen that the NIR band is
highly sensitive to vegetation, the SWIR band is highly sensitive to rocks, and the red band
is relatively less sensitive to vegetation and rocks. The comparison in Figure 7 shows that
PRDI1 was able to extract all levels of rocky desertification well, probably because the index
was constructed from the NIR and SWIR bands, which are sensitive to vegetation and rocks,
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and the distribution of each scatter in the spectral feature space constructed based on them
is more uniform, not concentrated in one place or scattered elsewhere, so the model is able
to better extract PRDI2, which has better extraction ability for no, slight and moderate rocky
desertification, but poorer extraction ability for intensive and severe rocky desertification,
probably because PRDI2 is constructed based on the reflectance of red and near-infrared
bands, which are sensitive to soil and vegetation, but less sensitive to rocks, resulting in the
underestimation of intensive and heavy rocky desertification. The poor extraction ability of
PRDI3 for heavy rocky desertification and the high extraction ability for other classes of
rocky desertification may be due to the fact that PRDI3 is constructed from the short-wave
infrared band and the red band, and although the short-wave infrared band is sensitive to
rocks, the red band is less sensitive to both rocks and vegetation, making the extraction
ability of heavy rocky desertification weaker. For KRDI and RSDDI, constructed based
on surface parameter feature space, they are index models with high accuracy that have
been verified by previous authors; the size and spatial distribution of rocky desertification
extracted by them and PRDI1 were relatively similar, but the accuracy verification showed
that the accuracy of PRDI1 proposed in this study was slightly higher than that of KRDI
and RSDDI, thus indicating that the exponential model PRDI1 constructed based on the
SWIR-NIR reflectance spectral feature space is feasible for karst rocky desertification infor-
mation extraction. In addition, it can be seen from Figure 8 that the accuracy of each index
model was relatively low in both mild and moderate rocky-deserted areas, due to the fact
that there were more mixed pixels consisting of rocks, vegetation and bare ground in these
areas, which leads to misclassification and the omission of pixels [54].

In addition to these factors, as the mathematical expressions and related parameters
of PRDI1 and PRDI2 are determined based on a fixed vegetation baseline, which is only
an ideal assumption, in reality the shape, width, thickness and other characteristics of the
vegetation line are related to the type of vegetation, leaf water content, etc. Strictly speaking,
the vegetation line is not a fixed line, and this may also cause errors in the model [39]. In
the feature space, there are a small number of images outside the triangle, which may be a
mixture of uncensored buildings, bare ground, etc. The images of these features participate
in the construction of the model, which brings some influence on the accuracy of the model,
and the model should be further optimized in future research.

Although the feature space method based on surface parameters has the advantages
of easy access to surface parameters, the ability to reflect changes in the hydrothermal
combination of the surface cover and clear biophysical significance, we found in the course
of our research that because the values of the surface parameters tend to change with the
study area and the time season, the shape of the feature space constructed using them also
changes, sometimes even in irregular polygons. It is difficult to form a feature space with
a specific shape, such as a triangle or trapezoid, so this method is more difficult to apply.
The method of constructing feature space based on wave reflectance can overcome these
shortcomings, and the shape of the feature space constructed by it is relatively fixed, in the
shape of an approximate triangle, which is not easily influenced by other factors.

5.2. Research Limitations

The study area was located in the karst mountains area of southwest China, with the
most severe land degradation, uneven ground surface and complex topographic conditions,
all of which increase the difficulty of accurately extracting information on karstic rocky
desertification [28]. At present, there are three main difficulties in extracting information on
rocky desertification: firstly, as the spectral characteristics of soil and rocky are very similar,
it is very easy to confuse rocky and soil on remote sensing images, and the presence of soil
will directly affect the accuracy of rocky desertification information extraction. This affects
the accuracy of the results. Secondly, due to the large variation in topography, there are
some backlit areas which are also affected by reflected radiation between adjacent objects,
resulting in a certain number of shadow areas on the satellite images, and these shadows
may also lead to uncertainty in the estimation of rocky desertification [16]; future studies
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should consider the effect of shadows. Thirdly, as remote sensing images are flat images
after projection, and the topography of karstic rocky desertification areas is undulating, it
is difficult to obtain the results of the field survey of rocky desertification after projection.
Coupled with the irregularity of the distribution of rocks and vegetation in the field, it
is difficult to calculate quantitatively the proportion of rocks and vegetation within the
sampling units, which brings great difficulties to the accuracy verification of the results of
rocky desertification information extraction.

In summary, the index PRDI1, constructed based on the SWIR-NIR reflectance spectral
feature space, takes advantage of the two-dimensional spatial information to effectively
characterize the dynamic changes of ground cover types and rocky desertification with
clear biophysical significance, and the method is simple, effective and easy to access and
operate. In addition, the question of how to improve the performance of the index PRDI1
by considering the influence of factors such as shading and soil and rocky confusion on the
accuracy of PRDI1 will be the focus of future work.

6. Conclusions

Rocky desertification has caused serious ecological and socio-economic problems in
the karst region of southwest China, with far-reaching effects, while the rugged terrain and
complex topography of the karst region make it extremely difficult to extract rocky deserti-
fication information over large areas. To this end, this study proposes a simple method to
effectively and automatically extract information on rocky desertification in the karst region
of southwest China. The method firstly constructed two-dimensional SWIR-NIR, Red-NIR
and SWIR-Red reflectance spectral feature spaces using the SWIR, NIR and Red reflectances
of Landsat-8 OLI remote sensing imagery based on the analysis of the spectral response
characteristics of the main land cover types. Secondly, three new rocky desertification infor-
mation extraction index models, PRDI1, PRDI2 and PRDI3, were developed based on the
point-to-point and point-to-line principles. Finally, the three index models were compared
with the index models KRDI and RSDDI, which were constructed based on the surface
parameter feature space. The results show that the index model constructed by this study
based on the wave reflectance feature space method had the advantages of easy access to
data, simple calculation and good stability, which were convenient for the monitoring and
quantitative evaluation of rocky desertification in karst areas. In addition, the index model
PRDI1 established in this study had an overall accuracy of 0.829 and a Kappa coefficient of
0.784, which was more accurate than other index models, and its performance was good.
The overall accuracy of PRDI1 was 0.9% and 1.1% higher than that of KRDI1 and RSDDI,
and was more accurate and effective in extracting information on the spatial distribution
and extent of rocky desertification. Therefore, this study provides important information
on the total area of rocky desertification and the spatial distribution of each grade of rocky
desertification in Huaxi District. These findings can provide basic research data for the
monitoring and assessment of karst rocky desertification, which can be used to support the
local government’s ecological and environmental management decisions.

Author Contributions: L.Z. constructed and conceived the project. L.Z. and J.C. designed the
research. J.C., W.Y. and Q.F. performed the research. J.C., R.Z. and F.F. analyzed the data. L.Z. and J.C.
wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Project of Guizhou Province of
China (QKHZC [2022]YB202), the Project for Talented Young Scientists of Guizhou Province of China
(QJHKYZ [2021]025) and the Forestry Science Project of Guizhou Province of China (QLKH[2022]23H).

Data Availability Statement: Data are available upon request from the corresponding author.

Acknowledgments: We wish to thank the editor of this journal and the anonymous reviewers during
the revision process.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 3056 19 of 20

References
1. Wang, S.J.; Liu, Q.M.; Zhang, D.F. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and

rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [CrossRef]
2. Bai, X.Y.; Wang, S.J.; Xiong, K.N. Assessing Spatial-Temporal Evolution Processes of Karst Rocky Desertification Land: Indications

for Restoration Strategies. Land Degrad. Dev. 2013, 24, 47–56. [CrossRef]
3. Peng, X.D.; Dai, Q.H.; Ding, G.J.; Shi, D.M.; Li, C.L. Impact of vegetation restoration on soil properties in near-surface fissures

located in karst rocky desertification regions. Soil Till. Res. 2020, 200, 104620. [CrossRef]
4. Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth

Sci. Rev. 2014, 138, 61–88. [CrossRef]
5. Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014,

132, 1–12. [CrossRef]
6. Tong, X.W.; Wang, K.L.; Yue, Y.M.; Brandt, M.; Liu, B.; Zhang, C.H.; Liao, C.J.; Fensholt, R. Quantifying the effectiveness of

ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs.
Geoinf. 2017, 54, 105–113. [CrossRef]

7. Yue, Y.M.; Wang, K.L.; Liu, B.; Li, R.; Zhang, B.; Chen, H.S.; Zhang, M.Y. Development of new remote sensing methods for
mapping green vegetation and exposed bedrocky fractions within heterogeneous landscapes. Int. J. Remote Sens. 2013, 34,
5136–5153. [CrossRef]

8. Huang, Q.H.; Cai, Y.L.; Xing, X.S. Rocky desertification, antidesertification, and sustainable development in the karst mountain
region of Southwest China. Ambio 2008, 37, 390–392. [CrossRef]

9. Yin, C.; Zhou, Z.F.; Tan, W.Y.; Wang, P.; Feng, Q. Inversion model of soil profile moisture content in rocky desertification area
based on microwave and optical remote sensing. J. Infrared Millim. Waves 2018, 37, 360–370. [CrossRef]

10. Zhang, M.Y.; Wang, K.L.; Zhang, C.H.; Chen, H.S.; Liu, H.Y.; Yue, Y.M.; Luffman, I.; Qi, X.K. Using the radial basis function
network model to assess rocky desertification in northwest Guangxi, China. Environ. Earth Sci. 2010, 62, 69–76. [CrossRef]

11. Li, Y.F.; Sun, B.; Gao, Z.H.; Su, W.S.; Wang, B.Y.; Yan, Z.Y.; Gao, T. Extraction of rocky desertification information in karst area by
using different multispectral sensor data and multiple endmember spectral mixture analysis method. Front. Environ. Sci. 2022,
10, 2085. [CrossRef]

12. Guo, B.; Zhang, D.F.; Lu, Y.F.; Yang, F.; Meng, C.; Han, B.M.; Zang, W.Q.; Zhao, H.H.; Wei, C.X.; Wu, H.W.; et al. A novel-
optimal monitoring model of rocky desertification based on feature space models with typical surface parameters derived from
LANDSAT_8 OLI. Land Degrad. Dev. 2021, 32, 5023–5036. [CrossRef]

13. Guo, B.; Yang, F.; Li, J.L.; Lu, Y.F. A novel-optimal monitoring index of rocky desertification based on feature space model and red
edge indices that derived from sentinel-2 MSI image. Geomat. Nat. Hazards Risk 2022, 13, 1571–1592. [CrossRef]

14. Pei, J.; Wang, L.; Huang, N.; Geng, J.; Cao, J.H.; Niu, Z. Analysis of Landsat-8 OLI Imagery for Estimating Exposed Bedrocky
Fractions in Typical Karst Regions of Southwest China Using a Karst Bare-Rocky Index. Remote Sens. 2018, 10, 1321. [CrossRef]

15. Xie, X.J.; Tian, S.F.; Du, P.J.; Zhan, W.F.; Samat, A.; Chen, J.K. Quantitative Estimation of Carbonate Rocky Fraction in Karst
Regions Using Field Spectra in 2.0–2.5 µm. Remote Sens. 2016, 8, 68. [CrossRef]

16. Yue, Y.M.; Wang, K.L.; Zhang, B.; Liu, B.; Chen, H.S.; Zhang, M.Y. Uncertainty of Remotely Sensed Extraction of Information of
Karst Rocky Desertification. Adv. Earth Sci. 2011, 26, 266–274.

17. Qin, Q.M.; You, L.; Zhao, Y.; Zhao, S.H.; Yao, Y.J. Soil line automatic identification algorithm based on two-dimensional feature
space. Trans. Chin. Soc. Agric. Eng. 2012, 28, 167–171. [CrossRef]

18. Wei, H.S.; Wang, J.L.; Cheng, K.; Li, G.; Ochir, A.; Davaasuren, D.; Chonokhuu, S. Desertification Information Extraction Based on
Feature Space Combinations on the Mongolian Plateau. Remote Sens. 2018, 10, 1614. [CrossRef]

19. Guo, B.; Han, B.M.; Yang, F.; Fan, Y.W.; Jiang, L.; Chen, S.T.; Yang, W.N.; Gong, R.; Liang, T. Salinization information extraction
model based on VI–SI feature space combinations in the Yellow River Delta based on Landsat 8 OLI image. Geomat. Nat. Hazards
Risk 2019, 10, 1863–1878. [CrossRef]

20. Zhang, J.; Liu, M.L.; Liu, X.N.; Luo, W.Q.; Wu, L.; Zhu, L.H. Spectral analysis of seasonal rocky and vegetation changes for
detecting karst rocky desertification in southwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102337. [CrossRef]

21. Luo, J.; Liu, S.H.; Ruan, O.; Hu, H.T. Extraction of rocky desertification information using NDVI-Albedo feature space. Bull. Surv.
Mapp. 2022, 56, 56–60. [CrossRef]

22. Zhan, Z.M.; Qin, Q.M.; Ghulan, A.; Wang, D.D. NIR-Red spectral space based new method for soil moisture monitoring. Sci.
China Earth Sci. 2007, 36, 1020–1026. [CrossRef]

23. Zhang, J.Y.; Zhang, Q.L.; Bao, A.M.; Wang, Y.J. A New Remote Sensing Dryness Index Based on the Near-Infrared and Red
Spectral Space. Remote Sens. 2019, 11, 456. [CrossRef]

24. Amani, M.; Mobasheri, M.R.; Mahdavi, S. Contemporaneous estimation of Leaf Area Index and soil moisture using the red-NIR
spectral space. Remote Sens. Lett. 2017, 9, 264–273. [CrossRef]

25. Li, Z.; Tan, D.B. The Second Modified Perpendicular Drought Index (MPDI1): A Combined Drought Monitoring Method with
Soil Moisture and Vegetation Index. J. Indian Soc. Remote Sens. 2013, 41, 873–881. [CrossRef]

26. Ajaj, Q.M.; Pradhan, B.; Noori, A.M.; Jebur, M.N. Spatial Monitoring of Desertification Extent in Western Iraq using Landsat
Images and GIS. Land Degrad. Dev. 2017, 28, 2418–2431. [CrossRef]

27. Li, S.; Wu, H.G. Mapping karst rocky desertification using Landsat 8 images. Remote Sens. Lett. 2015, 6, 657–666. [CrossRef]

https://doi.org/10.1002/ldr.592
https://doi.org/10.1002/ldr.1102
https://doi.org/10.1016/j.still.2020.104620
https://doi.org/10.1016/j.earscirev.2014.08.002
https://doi.org/10.1016/j.earscirev.2014.01.005
https://doi.org/10.1016/j.jag.2016.09.013
https://doi.org/10.1080/01431161.2013.787500
https://doi.org/10.1579/08-S-493.1
https://doi.org/10.11972/j.issn.1001-9014.2018.03.017
https://doi.org/10.1007/s12665-010-0498-2
https://doi.org/10.3389/fenvs.2022.996708
https://doi.org/10.1002/ldr.4088
https://doi.org/10.1080/19475705.2022.2092038
https://doi.org/10.3390/rs10091321
https://doi.org/10.3390/rs8010068
https://doi.org/10.3969/j.issn.1002-6819.2012.03.029
https://doi.org/10.3390/rs10101614
https://doi.org/10.1080/19475705.2019.1650125
https://doi.org/10.1016/j.jag.2021.102337
https://doi.org/10.13474/j.cnki.11-2246.2022.0110
https://doi.org/10.1007/s11430-007-2004-6
https://doi.org/10.3390/rs11040456
https://doi.org/10.1080/2150704X.2017.1415472
https://doi.org/10.1007/s12524-013-0264-5
https://doi.org/10.1002/ldr.2775
https://doi.org/10.1080/2150704X.2015.1070315


Remote Sens. 2023, 15, 3056 20 of 20

28. Huang, Q.H.; Cai, Y.L. Mapping Karst Rocky in Southwest China. Mt. Res. Dev. 2009, 29, 14–20. [CrossRef]
29. Xie, X.J.; Du, P.J.; Xia, J.S.; Luo, J.Q. Spectral indices for estimating exposed carbonate rocky fraction in karst areas of southwest

China. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1988–1992. [CrossRef]
30. Xia, L. A two-axis adjusted vegetation index (TWVI). Int. J. Remote Sens. 2007, 15, 1447–1458. [CrossRef]
31. Yan, M.M.; Zhou, Z.; Wang, J.; Gu, X.P.; Xiao, J.Y. Study on the dynamic change of soil moisture in karst area: A case of Huaxi

district in Guiyang City. Carsologica Sin. 2016, 35, 446–452. [CrossRef]
32. Wang, Z.J.; Dai, L. Assessment of land use /cover changes and its ecological effect in karst mountainous cities in central Guizhou

Province: Taking Huaxi District of Guiyang City as a case. Acta Ecol. Sin. 2021, 41, 3429–3440. [CrossRef]
33. Yang, Y.; Gao, H.D.; Wang, Q.; Li, X.S. Study on the Distribution Characteristics of Sloping Farmland in Karst Mountain Area

Under the Influence of Multiple Factors—A Case Study of Huaxi District of Guiyang. Res. Soil Water Conserv. 2022, 29, 361–367.
[CrossRef]

34. Zhu, S.P.; Chen, Y. Methods for Atmospheric Radiation Correction. Geospat. Inf. 2010, 8, 119–122.
35. Zheng, W.; Zeng, Z.Y. A Review on Methods of Atmospheric Correction for Remote Sensing Images. Remote Sens. Inf. 2004, 4,

66–70. [CrossRef]
36. Ghulam, A.; Qin, Q.M.; Zhu, L.J. 6S Model Based Atmospheric Correction of Visible and Near-Infrared Data and Sensitivity

Analysis. Univ. Pekin. 2004, 40, 611–618. [CrossRef]
37. Hou, X.Z.; Yi, W.N.; Qiao, Y.L.; Huang, H.L.; Cui, W.Y.; Du, L.L.; Chen, C. Atmospheric Correction of Remote Sensing Image

Based on 6S Model. J. Atmos. Environ. Opt. 2015, 10, 63. [CrossRef]
38. Chen, F.; Wang, S.J.; Bai, X.Y.; Liu, F.; Tian, Y.C.; Luo, G.J.; Li, Q.; Wang, J.F.; Wu, L.H.; Cao, Y.; et al. Spatio-temporal evolution and

future scenario prediction of karst rocky desertification based on CA–Markov model. Arab. J Geosci. 2021, 14, 1262. [CrossRef]
39. Xia, X.Q.; Tian, Q.J.; Du, F.L. Retrieval of Rocky-desertification Degree from Multi-spectral Remote Sensing Images. J. Remote Sens.

2006, 10, 1007–4619. [CrossRef]
40. Boardman, J.W.; Kruscl, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data. Fifth JPL Airborne Earth

Sci. Workshop 1995, 95, 23–26.
41. Feng, H.X.; Qin, Q.M.; Li, B.Y.; Liu, F.; Jiang, H.B.; Dong, H.; Wang, J.L.; Liu, M.C.; Zhang, N. The New Method Monitoring

Agricultural Drought Based on SWIR-Red Spectrum Feature Space. Spectrosc. Spectr. Anal. 2011, 31, 3069–3073. [CrossRef]
42. Xiang, K.Q.; Zhang, C.H.; Wang, K.L. Comparing Remote Sensing Methods for Monitoring Karst Rocky Desertification at

Sub-pixel Scales in a Highly Heterogeneous Karst Region. Sci. Rep. 2019, 9, 13368. [CrossRef]
43. Baig, M.H.A.; Zhang, L.F.; Shuai, T.; Tong, Q.X. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite

reflectance. Remote Sens. Lett. 2014, 5, 423–431. [CrossRef]
44. Ma, Z.Y.; Xie, Y.W.; Jiao, J.Z.; Li, L.L.; Wang, X.Q. The Construction and Application of an Aledo-NDVI Based Desertification

Monitoring Model. Procedia Environ. Sci. 2011, 10, 2029–2035. [CrossRef]
45. Guo, B.; Zang, W.Q.; Han, B.M.; Yang, F.; Luo, W.; He, T.L.; Fan, Y.W.; Yang, X.; Chen, S.T. Dynamic monitoring of desertification

in Naiman Banner based on feature space models with typical surface parameters derived from LANDSAT images. Land Degrad.
Dev. 2020, 31, 1573–1592. [CrossRef]

46. Verstraete, M.M.; Pinty, B. Designing Optimal Spectral Indexes for Remote Sensing Applications. Trans. Geosci. Remote Sens. 1996,
34, 1254–1265. [CrossRef]

47. Lamqadem, A.A.; Saber, H.; Pradhan, B. Quantitative Assessment of Desertification in an Arid Oasis Using Remote Sensing Data
and Spectral Index Techniques. Remote Sens. 2018, 10, 1862. [CrossRef]

48. Qian, C.H.; Qiang, H.Q.; Wang, F.; Li, M.Y. Optimization of Rocky Desertification Classification Model Based on Vegetation Type
and Seasonal Characteristic. Remote Sens. 2021, 13, 2935. [CrossRef]

49. Wang, H.; Wang, Y.Y.; Cai, H.; Jia, Y.; Zhou, Q. Research on Temporal and Spatial Changes of Multi-scale Rocky Desertification
Based on Multi-source Data. Chin. J. Undergr. Space Eng. 2021, 17.

50. Chen, S.T.; Guo, B.; Zhang, R.; Zang, W.Q.; Wei, C.X.; Wu, H.W.; Yang, X.; Zhen, X.Y.; Li, X.; Zhang, D.F.; et al. Quantitatively
determine the dominant driving factors of the spatial—Temporal changes of vegetation NPP in the Hengduan Mountain area
during 2000–2015. J. Mt. Sci. Engl. 2021, 18, 427–445. [CrossRef]

51. Guo, B.F. Hyperspectral Image Classification via Matching Absorption Features. IEEE Access 2019, 7, 131039–131049. [CrossRef]
52. Yue, Y.M.; Zhang, B.; Wang, K.L.; Liu, B.; Li, R.; Jiao, Q.J.; Yang, Q.Q.; Zhang, M.Y. Spectral indices for estimating ecological

indicators of karst rocky desertification. Int. J. Remote Sens. 2010, 31, 2115–2122. [CrossRef]
53. Li, H.; Wang, C.z.; Zhong, C.; Su, A.j.; Xiong, C.R.; Wang, J.G.; Liu, J.G. Mapping Urban Bare Land Automatically from Landsat

Imagery with a Simple Index. Remote Sens. 2017, 9, 249. [CrossRef]
54. Zhao, Q.H.; Ran, Y.H.; Liu, J.X.; Li, J. The changing distribution of rocky desertification in the Guangxi Region, 1930s to 2000. Acta

Geogr. Sin. 2016, 71, 390–399. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1659/mrd.857
https://doi.org/10.1109/LGRS.2015.2441962
https://doi.org/10.1080/01431169408954176
https://doi.org/10.11932/karst20160413
https://doi.org/10.5846/stxb201909242006
https://doi.org/10.13869/j.cnki.rswc.2022.01.040
https://doi.org/10.1023/B:APIN.0000033637.51909.04
https://doi.org/10.13209/j.0479-8023.2004.093
https://doi.org/10.3969/j.issn.1673-6141.2015.01.008
https://doi.org/10.1007/s12517-021-07584-4
https://doi.org/10.1016/S0379-4172(06)60102-9
https://doi.org/10.3964/j.issn.1000-0593(2011)11-3069-05
https://doi.org/10.1038/s41598-019-49730-9
https://doi.org/10.1080/2150704X.2014.915434
https://doi.org/10.1016/j.proenv.2011.09.318
https://doi.org/10.1002/ldr.3533
https://doi.org/10.1109/36.536541
https://doi.org/10.3390/rs10121862
https://doi.org/10.3390/rs13152935
https://doi.org/10.1007/s11629-020-6404-9
https://doi.org/10.1109/ACCESS.2019.2940268
https://doi.org/10.1080/01431160903382892
https://doi.org/10.3390/rs9030249
https://doi.org/10.11821/dlxb201603003

	Introduction 
	Materials 
	Study Area 
	Data Collection and Processing 
	Spectral Characteristics of Each Land Cover Type 

	Methods 
	Model Construction Based on Reflectance Spectral Feature Space 
	Model Construction Based on the SWIR-NIR Spectral Feature Space 
	Model Construction Based on the Red-NIR Spectral Feature Space 
	Model Construction Based on the SWIR-Red Spectral Feature Space 

	Calculation of Feature Space Model Based on Surface Parameters 
	Rocky Desertification Classification 
	Accuracy Assessment 

	Results 
	Comparison of the Results of Rocky Desertification Extraction 
	Comparison of the Accuracy of the Models 
	Spatial Distribution Characteristics of Rocky Desertification Extracted by PDRI1 

	Discussion 
	Sources of Error and Applicability of Each Model 
	Research Limitations 

	Conclusions 
	References

