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Abstract

:

Many hyperspectral image (HSI) super-resolution (SR) methods have been proposed and have achieved good results; however, they do not sufficiently preserve the spectral information. It is beneficial to sufficiently utilize the spectral correlation. In addition, most works super-resolve hyperspectral images using high computation complexity. To solve the above problems, a novel method based on a channel multilayer perceptron (CMLP) is presented in this article, which aims to obtain a better performance while reducing the computational cost. To sufficiently extract spectral features, a local-global spectral integration block is proposed, which consists of CMLP and some parameter-free operations. The block can extract local and global spectral features with low computational cost. In addition, a spatial feature group extraction block based on the CycleMLP framework is designed; it can extract local spatial features well and reduce the computation complexity and number of parameters. Extensive experiments demonstrate that our method achieves a good performance compared with other methods.
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1. Introduction


Hyperspectral images (HSIs) are a kind of large volume and three-dimensional data cube, and they contain hundreds of bands, which range from visible to infrared wavelengths [1,2]. HSIs contain rich spectral information, which can reflect the unique spectral characteristics of ground objects [3]. HSIs are widely applied in many fields, including geological exploration [4], environmental research [5], agricultural applications [6], and city layout planning [7]. However, because of the limited number of photons in each band, the spatial resolution of HSIs is usually low, which limits their practical application. Thus, it is important to obtain HSIs with high spatial resolution.



Super-resolution (SR) [8] is an approach of obtaining high-resolution (HR) images from low-resolution (LR) images. Because it is very difficult to improve hardware to acquire HR HSIs, many researchers have focused on software algorithms and proposed many HSI super-resolution methods. These methods are mainly divided into two categories: fusion-based hyperspectral image super-resolution (FHISR) and single hyperspectral image super-resolution (SHISR). The FHISR technique aims to obtain HSIs with high spatial resolution by merging the low-resolution HSIs and high-resolution RGB images [9,10], multispectral images [11], or panchromatic images [12,13,14]. The fusion-based methods make significant progress, but they need well-registered images with high resolution in the same scene, which limits the practical application of the FHISR technique.



Compared with FHISR methods, the SHISR technique, which aims to reconstruct an HR image without the use of any auxiliary images, is more applicable; it mainly includes interpolation, sparse representation [15], low-rank tensor [16], and deep learning methods [17]. Interpolation methods such as bicubic interpolation can conveniently predict unknown pixels, but they often produce blurry images. Because there are many similar structures in land cover maps, Huang et al. [15] exploited this to capture the spatial dependency via the use of a multi-dictionary based on sparse representation. Different from the assumption on spatial similarity in natural images [18], He et al. [16] proposed a tensor model to sufficiently mine both spatial and spectral structure information. The sparse representation and low-rank tensor methods depend on sparsity and low-rank assumption, which may not hold in practical applications. Compared with the above three types of methods, methods based on deep learning have achieved better performance over the past few years. Dong et al. [19] made the first attempt to introduce deep learning into the natural image super-resolution process. Many natural image super-resolution methods have improved SR performance, e.g., the very deep super-resolution network (VDSR) [20], enhanced deep super-resolution network (EDSR) [21], residual dense network [22], and image restoration using the Swin transformer [23]. These methods can be used for SHISR methods by super-resolving the HSIs in a band-by-band manner. However, compared with natural image super-resolution, SHISR should improve the spatial resolution while preserving spectral correlation [24]. These methods [20,21,22,23,24,25] ignore the spectral correlation among bands and result in spectral distortion.



To alleviate spectral distortion, Hu et al. [26] proposed a super-resolution network to learn the spectral difference between adjacent bands. Li et al. [27] utilized 2D group convolutions to construct recursive blocks and exploited the spectral angle mapper (SAM) loss function to train the 2D convolutional neural network (CNN) network. The models based on 2D CNN insufficiently extract the spectral features with difficulty. Because 3D convolutions can explore the spatial dependency among adjacent pixels and the spectral similarity among adjacent bands simultaneously, some methods based on 3D CNN have been proposed, e.g., 3D full convolutional neural network (3DFCNN) [28], mixed 2D/3D convolutional network [29], multiscale feature fusion and aggregation network with 3D convolution [30], and multiscale mixed attention network [31]. Three-dimensional convolutions will produce a number of parameters and will much greater computation consumption. To explore the interdependency among bands, some methods have attempted to aggregate the spectral dependency in a recurrent manner, e.g., spectrum and feature context super-resolution networks [32], bidirectional 3D quasi-recurrent neural networks [33], networks with recurrent feedback embedding and spatial-spectral consistency regularization [34], and progressive split-merge super-resolution with group attention and gradient guidance [35]. These recurrent networks are time-consuming due to the many bands present in HSIs. Different from the methods that use a recurrent manner, Yuan et al. [36] employed group convolutions to capture the spectral correlation among bands in the same group and integrated the spectral correlation among groups with a second-order attention mechanism. Even though the CNN-based methods make good progress for SHISR, the CNN-based methods struggle to extract long-range features because of the intrinsic locality of convolution operation.



The nonlocal attention mechanism has shown a powerful ability to capture long-range dependency [37]. Dosovitskiy et al. [38] made the first attempt to introduce self-attention into computer vision and proposed a vision transformer to capture the long-range dependency among a sequence of patches, which achieved remarkable results. Nonlocal attention has sparked great interest in the computer vision community, and many methods have been proposed [39]. Some researchers have also attempted to introduce nonlocal attention into SHISR methods. Because the nonlocal attention mechanism neglects the importance of local details, the applications for SHISR [40,41,42] have focused on combining the convolution with the nonlocal attention. Yang et al. [40] designed a simplified nonlocal attention mechanism and proposed a novel hybrid local and nonlocal 3D attentive convolution neural network (HLNnet) for SHISR processing; however, they only utilized one model layer to extract the long-range features, while the other model layers were still used for local features extraction. As the computation complexity of vanilla self-attention is quadratic to the image size, it is unaffordable for HSI super-resolution. In order to reduce the computation cost, Hu et al. [41] decoupled the vanilla self-attention along the height and width dimensions and proposed an interactive transformer and CNN network (Interactformer), which has a linear computation complexity. A multilevel progressive network with a nonlocal channel attention network was presented [42], which combines the 3D ghost block with a self-attention guided by a spatial-spectral gradient. The nonlocal-attention-based methods can capture the long-range dependency; however, they still insufficiently extract the spectral features, as they still focus on local spectral features. There is still significant room for performance improvement.



Recently, the works that have been based on the multilayer perceptron (MLP) framework have also achieved remarkable results. They are mainly classified into two types: spatial MLP and channel MLP (CMLP). The methods based on spatial MLP [43,44,45] transform the 2D image into a 1D vector and apply the MLP to capture the global dependency from all elements of an image. Their architectures [43,44,45] can achieve competitive performance without the use of the self-attention mechanism or convolution. However, the computational complexity of spatial MLP is quadratic to the image size, and the spatial MLP requires a fixed-size input during both training and inference, which is problematic for SHISR methods. In contrast to spatial MLP, channel MLP (CMLP) is flexible with respect to image sizes; it extracts features along the channel dimension, and the weight parameters of CMLP are only configured by the number of channels. Because the weight parameters of CMLP are not related to the image size, it is more appropriate for dense prediction tasks [46,47,48]. The spatial receptive field of CMLP is limited, so the works based on CMLP have pursued enlarging the spatial receptive field using some novel approaches. Guo et al. [46] rearranged the spatial region to obtain the local and global spatial receptive field. Lian et al. [47] shifted the pixels along the height and width to capture local spatial information, obtaining better performance with less computation complexity when compared with transformers. Different from changing pixel positions, Chen et al. [48] designed a novel variant of channel MLP named CycleMLP. The Cycle FC (fully-connected layer) in CycleMLP extracts features from different channels. Though the Cycle FC is a variant of CMLP, it has a larger spatial receptive field, even a global spatial receptive field. In low-level tasks, Tu et al. [49] solved the fixed-size problem by designing a novel spatial-gated MLP, but the model is large. Some works [46,48] have demonstrated that the CMLP framework can effectively extract global and local features and has a tradeoff between accuracy and computation cost. However, they are designed for natural images and ignore the intrinsic spectral correlation of HSIs. For the SHISR technique, SHISR can exploit the CMLP to enhance the spatial resolution while preserving the spectral information. To the best of our knowledge, there is no research on MLP in SHISR applications.



Though many CNN-based and nonlocal attention-based works have achieved good results for SHISR, there are still some problems: (1) Most works focus on local spectral features and neglect long-range spectral features. They do not sufficiently preserve the spectral information to obtain better SR performance. To alleviate spectral distortion, it is more appropriate to sufficiently extract the local and long-range spectral features. (2) Most SHISR works utilize 3D convolutions and the self-attention mechanism to extract spectral-spatial features. Because HSIs have many bands, they usually require high computation to extract the features. The SHISR methods need to better reconstruct the hyperspectral images with low computation complexity.



To address the above drawbacks, a spectral-spatial MLP network (SSMN) is proposed for SHISR. Considering that previous works usually reconstruct HSIs using high computation cost, our network aims to apply CMLP to obtain better reconstruction performance while reducing computation cost. Specifically, to sufficiently capture the spectral correlation, a local-global spectral integration block (LGSIB) is proposed. The LGSIB consists of CMLP and band group, band shift, and band shuffle operations, and it aims to capture the local and global spectral correlation and reduce computation complexity. Because the spatial receptive field of CMLP is limited, a spatial feature group extraction block (SFGEB) is designed. SFGEB consists of CycleMLP and a group mechanism, which aims to extract spatial features well while reducing computation complexity and the number of parameters. On the one hand, compared with CMLP, the SFGEB has a larger spatial receptive field, so it can extract more spatial features. On the other hand, compared with the convolution and self-attention mechanism, the computation complexity and number of parameters of SFGEB remain unchanged while the spatial receptive field expands.



In summary, the main contributions of this work are provided as follows:




	
A novel network named SSMN that is based on CMLP is proposed for SHISR. The proposed MLP-based network can handle HSIs of different sizes. The experimental results demonstrate that our network achieves better reconstruction performance compared with other methods based on convolution and nonlocal attention.



	
An LGSIB is proposed to extract rich spectral features while reducing the computation complexity; it aims to use the CMLP to extract the local spectral features using group and shift manners, and it extracts the long-range spectral features using group and shuffle manners.



	
In order to extract spatial features well while maintaining computation efficiency, an SFGEB is designed, which consists of CycleMLP and a group manner; its number of parameters and computation complexity do not increase as the spatial receptive field expands.








The rest of this paper is divided into three sections. In Section 2, the proposed SSMN is introduced. In Section 3, the experiments and the results are shown. The conclusion is provided in Section 4.




2. Proposed Method


In this section, the overall network architecture is firstly introduced. Secondly, the details of the LGSIB are given. Thirdly, the SFGEB is described in detail.



2.1. Overall Network Architecture


This section will introduce the overall network architecture. As shown in Figure 1, we first apply one CMLP to extract the shallow features of LR HSIs. Then, several spectral-spatial MLP (SSMLP) blocks are used to extract complex spectral-spatial features. In one SSMLP, the local-global spectral features are captured by the LGSIB, and the spatial features are captured by the SFGEB. Next, the outputs of different SSMLP blocks are fused. Finally, the super-resolution image is reconstructed by upsampling and global residual learning.



Let    I  LR   ∈  ℝ  H × W × B × 1     be a low-resolution hyperspectral image, where 1, B, H, and W sequentially denote the channel dimension, number of bands, height, and width in HSIs. To preserve the structural features of HSIs, the feature map is treated as a four-dimensional cube. The goal is to reconstruct a high-resolution image    I  SR   ∈  ℝ  ( H r ) × ( W r ) × B × 1     from the ILR image, where r is the scale factor. First, one CMLP matrix is used to linearly project the ILR,


   F 0  =  I  LR   ⋅ M ,  



(1)




where   M ∈  ℝ  1 × C     and    F 0  ∈  ℝ  H × W × B × C    ; C denotes the channel dimension.



Next, the F0 is fed into the SSMLP block. The SSMLP block consists of the LGSIB, SFGEB, feed-forward network (FFN), and dropout layer. The FFN is made up of two cascading CMLPs, the layer normalization, and the drop-out layer. The spectral correlation and spatial details are captured by the LGSIB and SFGEB in each SSMLP block, respectively. By separately capturing the spatial and spectral features, the number of parameters and computation complexity are reduced. We will provide more details about the LGSIB and SFGEB blocks in the following two subsections. There are several SSMLP blocks for feature learning, and the output of the previous SSMLP block is the input of the next SSMLP block. The process of extracting spectral-spatial features in one SSMLP can be formulated as:


      H n  =  SFGEB n  (  LGSIB n  (  F  n − 1   ) +  F  n − 1   ) +  F  n − 1        F n  =  FFN n  (  H n  ) +  H n     ,  



(2)




where LGSIBn, SFGEBn, and FFNn represent the blocks in the n-th SSMLP module and Fn−1 represents the output of the previous SSMLP block. Then, we fuse the outputs of all SSMLP blocks, and obtain the output F. Finally, the super-resolution image ISR is reconstructed, and the super-resolution process can be expressed as follows:


   I  SR   =  f  up   ( F ) +  f  bicubic   (  I  LR   ) ,  



(3)




where    f  up   ( ⋅ )   is an upsampling layer made up of three CMLPs and a pixel shuffle operation and    f  bicubic   ( ⋅ )   denotes a bicubic interpolation function.



Transposed convolution is widely used for image super-resolution, but it will result in the checkerboard problem. Shi et al. [50] avoided this problem by rearranging the pixels among channels to enlarge the spatial size. To avoid the checkerboard problem, we combine CMLP with pixel rearrangement [50] to upsample the images. As shown in Figure 1, there are three CMLPs and a pixel shuffle operation in the upsample layer. The HSIs are upsampled in a band-by-band manner. Specifically, for a given band    F k  ∈  ℝ  H × W × C    ,   k ∈ { 1 , … , B }  , the first CMLP is utilized to increase the number of channels from C to Cr2. The pixel shuffle operation is applied to rearrange the pixels from the channel dimension into the spatial domain and obtain    F k  ∈  ℝ  ( H r ) × ( W r ) × C    . The second CMLP is used to decrease the number of channels from C into 1. One reconstructed band    I k  ∈  ℝ  ( H r ) × ( W r ) × 1     is obtained after the upsampling. Then, we concatenate all reconstructed bands and obtain    I  u p   ∈  ℝ  ( H r ) × ( W r ) × B × 1    . Because the HSIs are upsampled in a band-by-band manner, it ignores the spectral correlation among bands. To alleviate spectral distortion, the third CMLP is utilized to refine the image along spectral dimension. The final output    I  SR   ∈  ℝ  ( H r ) × ( W r ) × B × 1     can be obtained by summing the Iup and    I  bicubic   ∈  ℝ  ( H r ) × ( W r ) × B × 1    .




2.2. Local-Global Spectral Integration Block


The previous works insufficiently extract the spectral features. It is more beneficial to sufficiently extract local and long-range spectral features. In addition, because of the many bands in HSIs, much computation is needed to extract the spectral features. To solve these problems, a local and global spectral integration block (LGSIB) is designed. Within the LGSIB, the group-shift-shuffle MLP block (GSSMB) is the core, which can extract the local and long-range spectral features using the CMLP. Some parameter-free operations in the GSSMB, including the band group, band shift, and band shuffle operations, are utilized to improve the feature extraction and reduce the computational complexity.



Firstly, a very simple way to extract the spectral features using CMLP is introduced. The given input   F ∈  ℝ  H × W × B × C     is reshaped into the size of   H W × B C  . One CMLP matrix   M ∈  ℝ  B C × B C     is utilized to extract the spectral features along the   ( B C )   dimension. There are C feature maps in F, and many feature maps are similar [51]. To take the similarity among the feature maps and correlation among the bands, the spectral correlation is captured along the   ( B C )   dimension instead of the band dimension. The number of parameters is     ( C B )  2   . There are many feature maps and bands, so the model is large. To alleviate the limitations, we need a strategy to reduce the number of parameters as well as the computation complexity.



The feature maps are redundant [52], which indicates that it is possible to extract features from redundant feature maps with low computation cost. Therefore, the feature maps are split into two groups in the LGSIB, and only one cheap CMLP is used to linearly project one group along the channel dimension; meanwhile, one GSSMB is used to extract complex spectral features from the other group. Specifically, the input   F ∈  ℝ  H × W × B × C     is firstly projected along the channel dimension, which is then split into two groups:   F 1  ∈  ℝ  H × W × B × α C     and    F 2  ∈  ℝ  H × W × B × ( 1 − α ) C    ,   α ∈ [ 0 , 1 ]  . We set   α = 1 / 2   in our experiments so that both F1 and F2   ∈  ℝ  H × W × B × c    ,   c = C / 2  . In particular, F1 is treated as the redundant feature maps. Only one cheap CMLP matrix   M ∈  ℝ  c × c     is used to project F1, while the GSSMB is used to extract the complex spectral features from F2. Because the redundancy of the feature maps is exploited, the computation cost and number of parameters are reduced. We will provide more details about the GSSMB, which is used to further lessen the number of parameters and computation cost. Finally, we fuse two outputs and obtain    F 3  ∈  ℝ  H × W × B × C    .



As shown in Figure 2, there are three blocks in the GSSMB: the local spectral integration block (LSIB), shift spectral integration block (SSIB), and global spectral integration block (GSIB). The LSIB and SSIB aim to extract two kinds of local spectral features and complement each other. The GSIB aims to extract the global spectral features. In addition, there are three kinds of parameter-free operations in GSSMB, including the band group, band shift, and band shuffle operations. They are used to split the feature maps, shift the bands, and rearrange the bands. The combination of CMLP and parameter-free operations can improve feature extraction. Three blocks and operations will be introduced one-by-one.



The LSIB aims to extract local spectral features in a group-by-group manner. Specifically, the input    F 2  ∈  ℝ  H × W × B × c     is firstly reshaped into   H W × B × c  , then split into D groups along band dimension. Each group    X d  ∈  ℝ  H W × T × c     contains T bands,   d ∈ { 1 , ⋯ , D }   and   B = D ⋅ T  . All Xd are fed into the LSIB. Each group is reshaped into    X d  ∈  ℝ  H W × T c    , and one CMLP is applied to extract the spectral features of a group:


   O d  =  X d  ⋅  M d  ,  



(4)




where    M d  ∈  ℝ  T c × T c     and    O d  ∈  ℝ  H W × T c    . Because the feature maps are split into groups along the band dimension, the adjacent bands are grouped into a group so that the local spectral correlation can be captured. The number of parameters of one group is     ( c T )  2   , and there are D groups in X; thus, the number of parameters of all groups is   D ⋅   ( c T )  2   . The number of parameters is further reduced from     ( C B )  2    to     ( c T )  2    instead of   D ⋅   ( c T )  2    by sharing the weights of Md in the Equation (4). Finally, each group    O d  ∈  ℝ  H W × T c     is reshaped to the original size, and we obtain the output   O ∈  ℝ  H × W × B × c    .



The LSIB groups the feature maps along the band dimension, and the adjacent bands are split into the same group. Thus, local spectral correlation can be captured. The number of parameters and the computational cost are reduced. However, owing to different hyperspectral sensors with different characteristics, different HSIs have different spectral correlation. The fixed group in the LSIB is not suitable for different HSI datasets. To solve this problem, the SSIB is designed to extract complementary spectral features for the LSIB. As the LSIB ignores the connections among adjacent groups, the SSIB aims to obtain those connections. In the SSIB, there are several CMLPs and a band shift operation. Specifically, the band shift operation is firstly used to shift s bands for F2 along the band dimension. Figure 2 provides an example of shifting one band. After shifting, the feature maps are also grouped along the band dimension. All groups are then extracted by several CMLPs. In the SSIB, the next feature extraction process is the same as that of the LSIB. With the shift and group operations, the connection among adjacent groups is obtained in the SSIB. Finally, the bands are shifted back to their original order. Similar to the LSIB, the SSIB also extracts the local spectral features. The LSIB and SSIB can complement each other because they extract local but different spectral features. After fusing the outputs of the LSIB and SSIB, the network can be more suitable for different HSIs.



The LSIB and SSIB only capture the local spectral correlation and ignore the long-range spectral correlation; they are insufficient for preserving the spectral information. For spectral preservation, it is more appropriate for sufficiently extracting local and long-range spectral features. Previous works have extracted the long-range spectral features with much computation cost. To obtain the long-range spectral correlation with low computational cost, we designed the GSIB. In the GSIB, there are several CMLPs and a band shuffle operation. The band shuffle operation is firstly used to rearrange the bands, and several CMLPs are used to extract the long-range spectral features in a group-by-group manner. After fusing the two outputs from LSIB and SSIB, a feature map   Z ∈  ℝ  H × W × B × c     is obtained, and it is reshaped into the size   H W × B × c  . We shall now provide more details about the band shuffle operation. Specifically, the new feature map Z is grouped into D groups along the band dimension and obtain    Z 1  ∈  ℝ  H W × ( D × T ) × c    . Then, Z1 is transposed into    Z 2  ∈  ℝ  H W × ( T × D ) × c    . Next, Z2 is flattened back to the original size    Z 3  ∈  ℝ  H W × B × c    . After flattening, the bands in the feature map Z3 are shuffled. The originally long-range bands now become adjacent bands. To extract the long-range spectral features with low computational cost, Z3 is split into D groups again. Each group contains T bands. We set D and T as 2 and 3, respectively, as an example in Figure 2. All groups will be extracted by several CMLPs. The following feature extraction process of the GSIB is the same as that of the LSIB. Finally, the bands are rearranged back to the original order. The long-range bands are split into the same group using the shuffle and group operations so that the long-range spectral correlation can be captured. The number of parameters in the GSIB is     ( c T )  2   , which is much less than     ( C B )  2   .



Because of the group, shift, and shuffle operations in the LGSIB, the local-global spectral features can be sufficiently captured, and the number of parameters and computation cost are reduced. In particular, the number of parameters is reduced from     ( C B )  2    to    1 4   C 2  ( 3  T 2  + 11 )  , and the computational complexity is reduced from   H W  C 2   B 2    to    1 4  H W  C 2  ( 3  T 2  + 11 )  .




2.3. Spatial Feature Group Extraction Block


The weight parameters of spatial MLP are configured by the image size. Therefore, the methods [43,44,45] based on spatial MLP need a fixed-size input during training and inference modes. For the SHISR technique, it is necessary to design a model to deal with various image sizes. In addition, previous works [31,32,41,42] have usually utilized many convolutions or self-attention mechanisms to capture the spatial details with high computation complexity, and their computation complexity increases as the spatial receptive field expands.



To extract spatial features well with low computational cost, a spatial feature group extraction block (SFGEB) is designed, which consists of CycleMLP and a group mechanism. Because of the limited spatial receptive field of CMLP, CycleMLP is utilized to extract spatial features. Similar to CMLP, CycleMLP can deal with flexible image sizes. The Cycle FC (fully-connected layer) in CycleMLP expands the receptive field of CMLP while keeping the same computation complexity and number of parameters as that of CMLP. To further reduce the computational complexity, the feature maps are split into K groups along channel dimension, and K CycleMLPs are used to extract spatial features from K groups.



The details about the Cycle FC shall be provided. Mathematically, the   F ∈  ℝ  H × W ×  C  i n       denotes an input. As shown in Figure 3, the channel FC extracts spatial features on the same position along the channel dimension; however, the Cycle FC can capture the relationship among patches on neighbor channels. The definition of the Cycle FC can be described as follows:


  Cycle   FC   ( F )   i , j , :   =   ∑  c = 0    C  i n       F  i +  δ i  ( c ) , j +  δ j  ( c ) , c     ⋅  M  c , :   m l p   + b ,  



(5)




where    M  m l p   ∈  ℝ   C  i n   ×  C  o u t       and   b ∈  ℝ   C  o u t      . The parameters    δ i  ( c )   and    δ j  ( c )   mean the offset along the height and width on the c-th channel, and their definition can be formulated as follows:


   δ i  ( c ) = ( c   mod    R H  ) − 1 ,    δ j  ( c ) = (    c   R H      mod    R W  ) − 1 ,  



(6)




where RH and RW are the step size along the height and width. The Cycle FC in CycleMLP introduces a larger receptive field (RH, RW) compared with CMLP. We set RH and RW to 3 and 1, respectively, as an example in Figure 3b.



The Cycle FC can extract features from different positions in a cyclical extraction approach. Therefore, the Cycle FC can extract the spatial features from a larger spatial range and even from a global spatial receptive field. The CycleMLP consists of three parallel Cycle FCs and one CMLP,


  CycleMLP = CMLP ( Cycle   FC  H  ( F ) + Cycle   FC  W  ( F ) + Cycle   FC  C  ( F ) ) ,  



(7)




where F denotes the input and Cycle FCH, Cycle FCW, and Cycle FCC are the applied Cycle FC along the height, width, and channel dimensions, respectively.



More details about the SFGEB are provided in Figure 4. The input   F ∈  ℝ  N × H × W × B × C     is firstly reshaped into the size of   ( N × B ) × H × W × C  . The spatial features are extracted in a band-by-band manner in the SFGEB. Because it is beneficial to extract spatial features by interacting with the information along the channel dimension, the channels of the feature maps are shuffled. Next, the SFGEB is extended into a multiple branch style to reduce the computation cost. As shown in Figure 4, the feature maps are split into K groups   {  F 1  ,  F 2  , … ,  F K  }   along the channel dimension, and each group is fed into one CycleMLP. The outputs of each branch are concatenated, and one CMLP is used to fuse them. Finally, the output   O ∈  ℝ  N × H × W × B × C     is obtained.



Because of the Cycle FC in the SFGEB, the number of parameters and computation complexity do not increase as the spatial receptive field expands. Compared with CMLP, the spatial receptive field of SFGEB is larger. Compared with spatial MLP, whose computation complexity is quadratic to the image size, SFGMB has a linear complexity. Thus, the SFGEB can sufficiently extract spatial features while reducing the computation complexity. In addition, the feature maps are grouped in the SFGEB, meaning that the computational cost can be further reduced.





3. Experiments and Results


In this section, we will verify the performance of the proposed model according to the quantitative and qualitative results. Firstly, four common public hyperspectral remote sensing datasets are considered, and the implementation details are provided. Next, the evaluation metrics and comparison methods are introduced. Then, the ablation experiments are conducted to demonstrate the effectiveness of our network blocks. Finally, the proposed method is compared with state-of-the-arts algorithms.



3.1. Datasets and Implementation Details


3.1.1. Datasets


	
Houston Dataset: The Houston dataset [53] was acquired by a remote sensor ITRES CASI 1500 and was released by the National Center for Airborne Laser Mapping at the University of Houston in 2018. It covers a 380–1050 nm spectral range and contains 48 bands. The image size is 4172 × 1202. We divide it into a training region and testing region at a ratio of seven to three. In addition, the training region is flipped horizontally, rotated (90°, 180°, 270°), and cut into 9180 training reference images with a size of 48 × 48 × 48 each. The test region is randomly cut into 16 non-overlapping testing reference images, and their sizes are all 144 × 144 × 48.



	
Chikusei Dataset: The Chikusei hyperspectral dataset [54] was taken by the Headwall Hyperspec-VNIR-C imaging sensor over agricultural and urban areas in Chikusei, Ibaraki, Japan, in 2014. It covers a spectral range from 363 nm to 1018 nm and contains 128 bands. The image size is 2517 × 2335, and the spatial resolution is 2.5 m. The dataset is divided into two parts: a training region for 70% of the dataset and a test region for 30% of the dataset. The training region is cut into 7872 training reference images, and each sample has a size of 48 × 48 × 128. The test region is randomly cut into 14 non-overlapping testing reference images with the size of 144 × 144 × 128.



	
HSRS-SC Dataset: This dataset [55] was collected by a compact airborne spectrographic imager (CASI). There are 1385 hyperspectral remote sensing images, which are classified into five types of scenes. Each scene contains 154–485 images. Each image consists of 48 bands, which covers a spectral range from 380 nm to 1050 nm. The size of each image is 256 × 256 × 48. We choose 500 images from the 5 scenes and cut 7980 training images with the size of 48 × 48 × 48 each. Ten images are randomly selected from the five types of scenes for testing images, and their top left regions are cut into the testing reference images at a size of 144 × 144 × 48.



	
Washington DC Mall Dataset: This dataset [56] was acquired by a hyperspectral digital image collection experiment (HYDICE); it covers a spectral range from 400 nm to 2400 nm and contains 191 bands. The spatial resolution is 3 m, and the image size is 1280 × 307. We divide the data into two parts: a training region for 70% of the dataset and a testing region for 30% of the dataset. The training region is cut into 7800 reference samples. The size of each training reference image is 48 × 48 × 191. The testing region is split into six testing reference images with a size of 144 × 144 × 191.






The above training images with a size of 48 × 48 are the HR reference images, while the LR training images are generated by a Gaussian point spread function and downsampling of the reference images with three scale factors, i.e., 2, 3, and 4. Because we conduct the experiments with scale factor ×2, ×3, and ×4, the size of 48 × 48 can be divisible by 2, 3 and 4. The size of 48 × 48 is also widely set in SR methods [21,57]. The test image with the size of 144 × 144 is the reference image, while the LR test image is generated by a Gaussian point spread function and by downsampling the reference image with three scale factors. The specific size of 144 × 144 can be divisible by a scale factor of 2, 3 and 4, which was used in [58]. Because our network is made up of CMLP, the weight parameters are not related to the height and width. Thus, our method can handle HSIs of any size in the inference phase. We do not super-resolve test images with a larger size, due to the huge memory requirement of HSIs.




3.1.2. Implementation Details


There are many kinds of loss functions [59,60,61]. The l1 and l2 loss functions are widely used in SHISR. The l2 loss penalizes larger errors compared with the l1 loss, and the l1 loss has a better convergence performance [21,62,63]. In addition, when the final loss function contains multiple losses, it is difficult to control the balance factor to obtain better performance. Thus, the l1 loss function was chosen to train the super-resolution network. An ablation experiment was conducted to prove that our method obtains a better performance with the l1 loss instead of the l2 loss.



The adaptive moment estimation optimizer (ADAM) (   β 1  = 0.9  ,    β 2  = 0.999  ) is used. The initial learning rate is 0.0002 and is halved every 35 epochs. The dropout rate is 0.1, and the batch size is 16. The number of the SSMLP blocks is four. The number of channels is set to 64 for all SSMLP blocks. In the SSIB, we shift three bands for all datasets. In the SSIB and LSIB, we split the feature maps into six groups for the Houston and HSRS-SC datasets, eight groups for the Chikusei dataset, and sixteen groups for the Washington DC Mall dataset. In the GSIB, we split the feature maps into eight groups for the Houston and HSRS-SC datasets, six groups for the Chikusei dataset, and twelve groups for the Washington DC Mall dataset. When the number of bands is not divisible by the group number, the related bands are used for padding. In the SFGEB, the number of branches K is four. We set (RH, RW) as (5, 1), (1, 5), (1, 1) for three Cycle FCs in the CycleMLP. All experiments were conducted on one NVIDIA GTX 1080Ti GPU using the Pytorch framework. The code is released at https://github.com/corkiyao/SSMLP (accessed on 8 June 2023).





3.2. Evaluation Metrics and Comparison Methods


3.2.1. Evaluation Metrics


To evaluate the performance of super-resolution algorithms, three widely used evaluation metrics were used, including the mean peak signal-to-noise ratio (MPSNR), mean structure similarity (MSSIM), and spectral angle mapper (SAM). The MPSNR evaluates the similarity based on the mean squared error (MSE) between the reference image and the reconstructed image. The MSSIM is used to measure the mean structural similarity between the reference image and the reconstructed image. Larger MPSNR and MSSIM values indicate a better visual quality of the reconstructed SR images. The SAM [64] evaluates the spectral fidelity between the reference image and the reconstructed image, and a smaller SAM indicates better spectral preservation. In addition, floating point operations (FLOPs) were used to evaluate the model complexity. It is usually calculated using the number of multiplication and addition operations that a network performs. In our experiments, the FLOPs metric is calculated when a network processes one image in the inference phase. The larger the FLOPs value, the higher the computation cost.




3.2.2. Comparison Methods


In order to demonstrate the performance of the proposed network, our method is compared with seven super-resolution methods: bicubic, VDSR [20], 3DFCNN [28], EDSR [21], gradient-guided residual dense network (GRDN) [25], HLNnet [40], and Interactformer [41]. The bicubic method is the classical interpolation. The VDSR and EDSR are representatives of CNN-based natural image super-resolution methods. For the hyperspectral super-resolution, we apply the VDSR and EDSR networks in a band-by-band manner. The 3DFCNN, GRDN, Interactformer, and HLNnet methods are classical and recent SHISR methods that are based on deep learning. We carefully set the hyper-parameters to obtain the best performance of the compared methods.





3.3. Ablation Study


In this section, we verify the effectiveness of the proposed method by conducting experiments on the Houston dataset with a scale factor of four. The bold text of the evaluation metrics represents the best results of ablation experiments.



First, the experiments on the number of SSMLP blocks are conducted. Table 1 provides the evaluation index of two, three, four, and five SSMLP blocks. From Table 1, we can see that our network performs best when the number of SSMLP blocks is four. Due to the limitation of model capability, a shallow network is difficult to obtain a good reconstruction performance. The results indicate that a deeper network can achieve better results. It can be seen that when the evaluation index is larger, the results are better. However, the performance slightly decreases when the number of SSMLP blocks is five. Because more SSMLP blocks contain a larger number of parameters, it is difficult to train a larger network. In addition, the network with more parameters easily results in overfitting. Therefore, the number of SSMLP blocks is set as four in our network.



Some ablation experiments were conducted to verify the effectiveness of the proposed LGSIB and SFGEB in the SSMLP block. To verify the capability of the LGSIB and SFGEB, one of them was separately removed. The results are shown in Table 2. First, the LGSIB is removed and the SFGEB is kept. It is observed that the SR performance greatly decreases after removing the LGSIB. When the LGSIB is removed, the SAM is larger than that of our method. Thus, these results demonstrate that the proposed LGSIB can effectively extract spectral features. Second, the SFGEB is removed while keeping the LGSIB. We can see that the SR performance greatly decreases after removing the SFGEB. Compared with our method, when the SFGEB is removed, the MPSNR and MSSIM are smaller and the SAM is larger. Thus, the network without the SFGEB can hardly extract spatial features. It proves the benefit of the SFGEB. The above experiments prove that both the LGSIB and SFGEB are beneficial for HSI super-resolution.



Then, to verify the effect of the group manner in GSSMB, some experiments on different numbers of groups were conducted. The results are shown in Table 3. It is observed that the number of parameters is large and the computational cost is high when the group strategy is removed. Compared with methods using the group strategy, the GSSMB without the group manner does not obtain a better performance. We consider that it is difficult to train the GSSMB with so many parameters, and the limited performance is possibly caused by overfitting. Therefore, the group manner can reduce the parameters to avoid the overfitting problem and allow the model to be easily trained. Moreover, it can be found that our method with the group manner obtains the best performance when the number of D is eight. Because of the redundancy of spectral information, when the number of D increases from three to eight, the negative effect of redundancy is gradually reduced. However, the results become worse when the number of D is larger than eight. Because the bands are consecutive, it will cause inconsistent estimation when there are many groups. In addition, it is very complex to be constantly adjusting the number of D to obtain better performance for different HSIs datasets. Therefore, to obtain good performance with less computational cost, the numbers of D and T are designed to reduce the FLOPs as much as possible for other HSIs.



Some ablation experiments were further conducted to verify the effects of three blocks in the GSSMB: the LSIB, SSIB, and GSIB. The results are shown in Table 4. After removing one of three blocks, the evaluation metrics are worse. When one of the LSIB and SSIB blocks is removed, the results become worse, which proves that each of them has a positive effect on improving the reconstruction performance and that they can complement each other. We find that after removing the GSIB, the MPSNR drops. It indicates that the GSIB can improve super-resolution performance by capturing long-range spectral features.



Next, we investigated the effects on the number of branches K in SFGEB. The results are shown in Table 5. It is observed that our network obtains the best performance when the number of K is set to four. As the number K increases from one to four, the results become better and the FLOPs decreases. It is easier to train the SFGMB with less parameters. When the number of K is eight, the MPSNR slightly decreases. Because the input channels for each CycleMLP become fewer, it may the harm representation capability. Therefore, to balance the reconstruction performance and computational cost, the number of K in the SFGEB is set to four for all HSIs datasets.



Finally, we would like to report the effect of the l1 and l2 loss functions, which are commonly used to train super-resolution networks. The quantitative comparisons are shown in Table 6. It is found that our method obtains a better reconstruction performance when using the l1 loss function. The l1 loss function does not penalize larger errors and has better convergence compared with the l2 loss function [21,62,63]. Thus, the l1 norm is chosen to train our network.




3.4. HSI SR Experiments and Results


In this section, we show the experimental results on the Houston, HSRS-SC, Chikusei, and Washington DC Mall datasets. The experiments were conducted with three scale factors, i.e., ×2, ×3, and ×4. The qualitative and quantitative results are analyzed. The red and blue text of the quantitative evaluation metrics represent the best and second best results, respectively.



3.4.1. Results of Houston Dataset


The quantitative results of the Houston dataset are shown in Table 7. It is observed that our method is better than other methods in the literature. For example, when the scale factor is four, the MPSNR of our method is 0.6 dB higher than that of Interactformer, and the SAM of our method is 0.27 lower than that of Interactformer. Because VDSR and EDSR ignore the protection of spectral information, their results are worse than the results of the other algorithms, except for bicubic and 3DFCNN. The evaluation metrics of 3DFCNN are worse than that of VDSR and EDSR. The main reasons are that the 3DFCNN network is shallow; furthermore, there is no residual learning in the 3DFCNN network. Compared with VDSR and EDSR, GRDN achieves a better performance. GRDN can extract extra spatial gradient details, while the VDSR and EDSR ignore that factor. Interactformer obtains the second best performance by combining the CNN with the transformer to capture the local and global dependencies. In addition, compared with the other methods, the superiority of the SAM of our methods gradually increases when the scale factor becomes larger. There are two main reasons for this. The first is that it is more difficult to super-resolve HSIs as the scale factor grows. The second is that the other methods lack sufficient spectral features learning. Because we propose the LGSIB to sufficiently capture the local and global spectral features, our method can alleviate the problem. 3DFCNN and Interactformer only extract local spectral features. HLNnet only utilizes one nonlocal attention block to extract the long-range spectral features in the first model layer, while the other layers are still used for local spectral features learning.



The above quantitative analysis is also supported by the reconstructed images, which are shown in Figure 5. To show more details, an area marked by the red rectangle is enlarged from the ground truth image as a reference. The same region marked by the red rectangle from the reconstructed images of each method is also enlarged. As shown in Figure 5, our method produces sharper edges, as is the case for the edge of the center building; for HLNnet and Interactfomer, artifacts appear, and EDSR and VDSR produce blurry results. This result proves that our network can better reconstruct super-resolution images. To further validate the effectiveness of our methods, we also provide the error images between the super-resolution images and the reference images shown in Figure 6. When the error image is bluer, it means that the super-resolution image is closer to the reference image. The visualization results indicate that the error map of our method is the bluest. Our reconstructed image is the closest to the ground truth image.




3.4.2. Results of the HSRS-SC Dataset


The experiments were also conducted on the HSRS-SC dataset. The quantitative results are shown in Table 8, and the visual results are shown in Figure 7 and Figure 8. From Table 8, it can be seen that our method still obtains the best performance for the three scale factors. For instance, when the scale factor is three, the evaluation metrics of MPSNR, MSSIM and SAM in our method are better than the results of HLNnet, i.e., +0.37 dB, +0.004, and −0.11, respectively. Because VDSR and EDSR ignore the protection of spectral correlation information, their evaluation metrics are still worse than the results of our method. Compared with those of CNN-based methods (i.e., 3DFCNN, VDSR, and EDSR), Interactformer and HLNnet obtain a better performance through the combination of the local and global features. In addition, the SAM of our method is still the smallest for the three scale factors. The proposed local-global spectral integration block (LGSIB) can still sufficiently extract spectral features in the HSRS-SC dataset.



The super-resolution images on the HSRS-SC dataset are presented in Figure 7. The region marked by the red rectangle is enlarged to present more details. From Figure 7, the super-resolution image of our method is better than that of the other comparison methods. Our method can reconstruct more clear edges, as is the case for the edge of the center building, while other comparison methods produce images with artifacts or cause spectral distortion to appear. Moreover, we provide the error maps between the super-resolution images and the reference images in Figure 8. It can be seen that our error map is the bluest, which means that the super-resolution image of our method is the closest to the reference image. Thus, the proposed method obtains the best reconstruction performance on this dataset.




3.4.3. Results of the Chikusei Dataset


Some experiments were also conducted on the Chikusei dataset. In contrast to the Houston and HSRS-SC datasets, the Chikusei dataset contains more bands (up to 128). The evaluation metrics of each method are shown in Table 9. Even though the number of bands increases, the evaluation metrics of our method still are the best for the three scale factors. For example, when the scale factor is four, the MPSNR, MSSIM, and SAM of our method are better than the results of Interactformer, i.e., +0.36 dB, +0.006, and −0.30, respectively. The 3DFCNN network is still worse than VDSR and EDSR because of the shallow network without residual learning. Compared with VDSR, EDSR, and GRDN, HLNnet and Interactformer still obtain better performances because they can extract local-global features and focus on preserving the spectral information. In addition, as the number of bands increases, the evaluation metric SAM of our algorithm is still smaller than that of HLNnet and Interactformer. The proposed LGSIB can still sufficiently extract the local and global spectral features to alleviate the spectral distortion. Therefore, the SAM of our method is smaller.



The super-resolution images and error images are also provided in Figure 9 and Figure 10. From Figure 9, we can find that our method can produce more details, such as the two slashes in the center, while GRDN, HLNnet, and Interactformer only produce one slash or one mutilated slash. In addition, bicubic and 3DFCNN reconstruct blurry images, and VDSR and EDSR produce images with artifacts. Furthermore, we also provide the error maps between the super-resolution images and the reference images; they are shown in Figure 10. It can be seen that our error map presents less error between the reference image and the reconstructed image. Therefore, our method obtains the best performance on the Chikusei dataset.




3.4.4. Results of the Washington DC Mall Dataset


To further prove the effectiveness of our method on a dataset with a higher number of bands, we conducted experiments on the Washington DC Mall dataset. This dataset contains more bands, numbering up to 191 bands, which means that it is more difficult to super-resolve this dataset. Three evaluation metrics for all comparison methods are shown in Table 10. It can be seen that our method still performs the best in the Washington DC Mall dataset. For instance, when the scale factor is three, the MPSNR and MSSIM values are larger than that of Interactformer, i.e., +0.33 and +0.012, respectively. Because the dataset contains more bands compared with the Houston, HSRS-SC, and Chikusei datasets, it is more difficult to capture the spectral correlation. Other comparison methods (i.e., VDSR, EDSR, and GRDN) cannot sufficiently extract spectral features, which leads to spectral distortion. The SAM of our method is the smallest among all methods. The main reason is that the proposed LGSIB can sufficiently extract the local and global spectral features, which better preserves spectral information. Thus, our method obtains the best reconstruction performance despite the dataset containing a higher number of bands.



The super-resolution images are provided in Figure 11. We find that the proposed method reconstructs images with clear boundaries. EDSR, VDSR, and GRDN present spectral distortion, bicubic produces blurry results, and 3DFCNN presents artifacts. In addition, we also provide the error maps between the reconstruction images and the reference images in Figure 12. It is observed that our error map presents lower error between the SR image and the reference image. Therefore, our method still obtains the best reconstruction performance in the dataset that contains a higher number of bands.



The spectral curve can show the continuous spectra of the same location. The difference curve is obtained by calculating the spectral vector difference between the SR image and the reference image. When two spectral curves are consistent, it means that two images are very similar. When the difference curve is closer to zero, it means that the spectral vector of the SR image is closer to that of the reference image. We randomly selected pixels for the spectral curves and difference curves. The curves for the three datasets are shown in Figure 13. As shown in Figure 13, our difference curves are closer to zero. This result means that the spectral vectors of our reconstructed images are closer to that of the reference images. The spectral curves of our methods are more consistent with that of the reference images, while the spectral curves of other methods (i.e., VDSR, GRDN, EDSR, and HLNnet) are inconsistent with that of the reference images. This proves that our method can achieve a better spectral preservation compared with the other methods.





3.5. Computation Cost


In this section, to compare the computation cost of all deep learning methods, the number of parameters, inference time, MPSNR, and FLOPs are provided in Table 11. All methods were tested on Chikusei dataset with a scale factor of four on a GeForce GTX 1080Ti GPU using the Pytorch framework. All methods were tested 50 times, and the inference time is the average of the total time. In Table 11, because VDSR and EDSR super-resolve the HSIs in a band-by-band manner, their inference time are longer than other methods. The FLOPs values of our method are the lowest. The main reason is that our network only consists of the CMLP framework and because the feature maps are grouped along the channel and band dimensions. In addition, the inference time of our method is shorter than that of HLNnet and Interactformer, which demonstrates that our method captures the long-range features with low computational cost. Although the inference time of our method is longer than that of 3DFCNN and GRDN, and although the number of parameters of our method are larger than that of CNN-based methods, we obtained the best SR performance. The proposed method is a tradeoff between the SR performance and computation cost compared with the other methods.





4. Conclusions


In this article, an MLP-based method named SSMN is proposed for hyperspectral image super-resolution. The method achieves better reconstruction performance and low computational cost. To lessen the parameters and computation complexity, the spectral and spatial features are separately extracted in our network. The proposed SSMLP contains two feature extraction blocks to extract the spectral and spatial features from the HSI data. In the LGSIB, the local spectral correlation among adjacent bands is captured by CMLP using group and shift operations, and the global spectral correlation is captured by CMLP using shuffle and group operations. In the SFGEB, CycleMLP with a group mechanism is used to further enhance the capability and reduce the computation complexity. The experimental results demonstrate that our MLP-based method reconstructs better super-resolution images compared with CNN-based, nonlocal attention-based methods. In the future, we will focus on extending our current method to adaptively super-resolve HSIs with multiple degradation.
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Figure 1. Overall network architecture of the spectral-spatial MLP network (SSMN). 
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Figure 2. Overall architecture of the local-global spectral integration block (LGSIB). The LSIB and SSIB are used for local spectral features extraction, and the GSIB is used for global spectral features extraction. In LSIB, SSIB, and GSIB, only one group is shown as an example. 
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Figure 3. Comparison between two kinds of fully-connected layers. (a) The channel FC extracts features along the channel dimension; (b) the Cycle FC along the height is a variant of channel FC but has a larger spatial receptive field. The star position denotes the output position. 
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Figure 4. The architecture of the spatial feature group extraction block (SFGEB). 
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Figure 5. The HSI SR results on the Houston dataset (scale factor 4). (a) Ground truth; (b) bicubic; (c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours. The false color image is used for clear visualization (red: 15, green: 30, and blue: 45). The red boxes are used to mark the original and upsampled area. 
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Figure 6. Error images between the reconstructed images and the reference images in the Houston dataset (scale factor 4). (a) bicubic; (b) VDSR; (c) 3DFCNN; (d) EDSR; (e) GRDN; (f) HLNnet; (g) Interactformer; (h) ours. The red boxes are used to mark the original and upsampled area. 
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Figure 7. The HSI SR results on the HSRS-SC dataset (scale factor 4). (a) Ground truth; (b) bicubic; (c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours. The false color image is used for clear visualization (red: 19, green: 13, and blue: 7). The red boxes are used to mark the original and upsampled area. 
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Figure 8. Error images between the reconstructed images and the reference images in the HSRS-SC dataset (scale factor 4). (a) icubic; (b) VDSR; (c) 3DFCNN; (d) EDSR; (e) GRDN; (f) HLNnet; (g) Interactformer; (h) ours. The red boxes are used to mark the original and upsampled area. 
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Figure 9. The HSI SR results on the Chikusei dataset (scale factor 4). (a) Ground truth; (b) bicubic; (c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours. The false color image is used for clear visualization (red: 55, green: 85, and blue: 30). The red boxes are used to mark the original and upsampled area. 
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Figure 10. Error images between the reconstructed images and the reference images in the Chikusei dataset (scale factor 4). (a) bicubic; (b) VDSR; (c) 3DFCNN; (d) EDSR; (e) GRDN; (f) HLNnet; (g) Interactformer; (h) ours. The red boxes are used to mark the original and upsampled area. 
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Figure 11. The HSI SR results on the Washington DC Mall dataset (scale factor 4). (a) Ground truth; (b) bicubic; (c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours. The false color image is used for clear visualization (red: 60, green: 27, and blue: 17). The red boxes are used to mark the original and upsampled area. 
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Figure 12. Error images between the reconstructed images and the reference images in the Washington DC Mall dataset (scale factor 4). (a) bicubic; (b) VDSR; (c) 3DFCNN; (d) EDSR; (e) GRDN; (f) HLNnet; (g) Interactformer; (h) ours. The red boxes are used to mark the original and upsampled area. 
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Figure 13. Spectral curves and difference curves on a selected pixel value of the three datasets with the scale factor of 4. (a) Houston; (b) HSRS-SC; (c) Chikusei; (d) Washington DC Mall. 
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Table 1. Ablation study of the number of SSMLP blocks in the Houston dataset (scale factor 4).
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	2
	3
	4
	5





	MPSNR
	30.70739
	30.86136
	31.10764
	31.01103



	MSSIM
	0.98126
	0.98190
	0.98286
	0.98230



	SAM
	1.96019
	1.93722
	1.93722
	1.87152
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Table 2. Ablation study of the network structures in the Houston dataset (scale factor 4).
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	Remove

LGSIB
	Remove

SFGEB
	Ours

(LGSIB + SFGEB)





	MPSNR
	30.12244
	28.35876
	31.10764



	MSSIM
	0.97797
	0.96713
	0.98286



	SAM
	2.21080
	2.55483
	1.86055



	FLOPs/Params
	20 G/167 K
	30 G/713 K
	36 G/773 K
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Table 3. Ablation study of the group strategy in the GSSMB in the Houston dataset (scale factor 4).






Table 3. Ablation study of the group strategy in the GSSMB in the Houston dataset (scale factor 4).












	
	MPSNR
	MSSIM
	SAM
	FLOPs/Parmas





	D = 16, T = 3
	30.81104
	0.98160
	1.91978
	37 G/1337 K



	D = 12, T = 4
	30.84086
	0.98178
	1.91453
	36.5 G/935 K



	D = 8, T = 6
	31.10764
	0.98286
	1.86055
	36 G/773 K



	D = 6, T = 8
	30.82077
	0.98150
	1.93260
	36 G/886 K



	D = 4, T = 12
	30.75321
	0.98104
	1.92677
	38 G/1461 K



	D = 3, T = 16
	30.75807
	0.98138
	1.94952
	44 G/2350 K



	Without Group
	30.84261
	0.98167
	1.89772
	100 G/28,000 K
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Table 4. Ablation study of the GSSMB structures in the Houston dataset (scale factor 4).
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	LSIB
	SSIB
	GISB
	MPSNR
	MSSIM
	SAM
	FLOPs/Params





	×
	√
	√
	30.88751
	0.98204
	1.92179
	32 G/621 K



	√
	×
	√
	30.93368
	0.98199
	1.90345
	32 G/621 K



	√
	√
	×
	31.00853
	0.98238
	1.87792
	30 G/510 K



	√
	√
	√
	31.10764
	0.98286
	1.86055
	36 G/773 K
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Table 5. Ablation study of the number of branches in the SFGEB in the Houston dataset (scale factor 4).
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	K = 1
	K = 2
	K = 4
	K = 8





	MPSNR
	30.94025
	30.96333
	31.10764
	30.91139



	MSSIM
	0.98216
	0.98215
	0.98286
	0.98207



	SAM
	1.90974
	1.88769
	1.86055
	1.92063



	FLOPs/Params
	42 G/847 K
	38 G/798 K
	36 G/773 K
	34 G/761 K
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Table 6. Ablation study of the loss function in the Houston dataset (scale factor 4).
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	l1
	l2





	MPSNR
	31.10764
	30.92505



	MSSIM
	0.98286
	0.98218



	SAM
	1.86055
	1.90519
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Table 7. Quantitative comparison of the Houston dataset. The red and blue text indicate the best and second best result values, respectively.
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Scale

	
Metrics

	
Bicubic

	
VDSR

	
3DFCNN

	
EDSR

	
GRDN

	
HLNnet

	
Interactformer

	
Ours






	
×2

	
MPSNR

	
33.61036

	
36.81006

	
36.31081

	
36.90783

	
37.39292

	
37.31068

	
37.41921

	
37.63251




	
MSSIM

	
0.99014

	
0.99544

	
0.99500

	
0.99559

	
0.99604

	
0.99602

	
0.99609

	
0.99634




	
SAM

	
1.43970

	
1.12807

	
1.20455

	
1.08717

	
1.042401

	
1.04733

	
1.03844

	
1.00473




	
×3

	
MPSNR

	
30.33877

	
32.88569

	
32.38918

	
32.93509

	
33.37765

	
33.27358

	
33.47990

	
34.22439




	
MSSIM

	
0.97854

	
0.98837

	
0.98723

	
0.98865

	
0.98967

	
0.98952

	
0.98991

	
0.99180




	
SAM

	
2.03853

	
1.69531

	
1.73596

	
1.64159

	
1.57840

	
1.57629

	
1.55615

	
1.39556




	
×4

	
MPSNR

	
27.82178

	
30.03148

	
29.53820

	
29.98065

	
30.32926

	
30.41107

	
30.50146

	
31.10764




	
MSSIM

	
0.96086

	
0.97711

	
0.97493

	
0.97736

	
0.97874

	
0.97935

	
0.97947

	
0.98286




	
SAM

	
2.73205

	
2.30920

	
2.34192

	
2.24042

	
2.18900

	
2.15620

	
2.13343

	
1.86055
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Table 8. Quantitative comparison of the HSRS-SC dataset. The red and blue text indicate the best and second best result values, respectively.
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Scale

	
Metrics

	
Bicubic

	
VDSR

	
3DFCNN

	
EDSR

	
GRDN

	
Interactformer

	
HLNnet

	
Ours






	
×2

	
MPSNR

	
30.91831

	
34.05928

	
33.47056

	
33.93229

	
34.21800

	
34.80833

	
35.39844

	
35.65883




	
MSSIM

	
0.94983

	
0.97460

	
0.97133

	
0.97399

	
0.97520

	
0.97776

	
0.98000

	
0.98116




	
SAM

	
2.97044

	
2.52064

	
2.63652

	
2.5332

	
2.50794

	
2.43484

	
2.41159

	
2.31576




	
×3

	
MPSNR

	
28.25784

	
30.30507

	
29.89933

	
30.22463

	
30.43345

	
30.73033

	
31.28533

	
31.64508




	
MSSIM

	
0.90746

	
0.94316

	
0.93805

	
0.94254

	
0.94499

	
0.94814

	
0.95406

	
0.95812




	
SAM

	
3.60363

	
3.21843

	
3.32278

	
3.25291

	
3.23010

	
3.15388

	
3.14645

	
3.03447




	
×4

	
MPSNR

	
26.43125

	
28.04833

	
27.80732

	
28.02282

	
28.27791

	
28.60088

	
28.68334

	
29.41301




	
MSSIM

	
0.85667

	
0.90510

	
0.89981

	
0.90566

	
0.90980

	
0.91632

	
0.91747

	
0.93254




	
SAM

	
4.15459

	
3.79804

	
3.83266

	
3.83179

	
3.75885

	
3.60442

	
3.71579

	
3.48209
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Table 9. Quantitative comparison of the Chikusei dataset. The red and blue text indicate the best and second best result values, respectively.
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Scale

	
Metrics

	
Bicubic

	
VDSR

	
3DFCNN

	
EDSR

	
GRDN

	
HLNnet

	
Interactformer

	
Ours






	
×2

	
MPSNR

	
31.35162

	
34.66397

	
33.56629

	
35.41532

	
34.76920

	
35.65999

	
35.70729

	
36.36153




	
MSSIM

	
0.97117

	
0.98690

	
0.98344

	
0.98850

	
0.98714

	
0.98916

	
0.98915

	
0.99095




	
SAM

	
2.33774

	
1.86435

	
1.92614

	
1.74509

	
1.86396

	
1.66459

	
1.66064

	
1.51879




	
×3

	
MPSNR

	
28.74680

	
30.77485

	
30.20889

	
31.19459

	
30.66312

	
31.41036

	
31.53661

	
32.07586




	
MSSIM

	
0.94507

	
0.96684

	
0.96262

	
0.96877

	
0.96589

	
0.96959

	
0.97034

	
0.97443




	
SAM

	
3.13851

	
2.77739

	
2.74645

	
2.65812

	
2.81941

	
2.60161

	
2.57006

	
2.29185




	
×4

	
MPSNR

	
26.84760

	
28.41971

	
27.94085

	
28.70123

	
28.23195

	
29.13901

	
29.15101

	
29.51723




	
MSSIM

	
0.91151

	
0.94050

	
0.93509

	
0.94331

	
0.93866

	
0.94607

	
0.94665

	
0.95208




	
SAM

	
3.95445

	
3.61779

	
3.54112

	
3.47155

	
3.64814

	
3.32975

	
3.32009

	
3.01902
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Table 10. Quantitative comparison of the Washington DC Mall dataset. The red and blue text indicate the best and second best values, respectively.
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Scale

	
Metrics

	
Bicubic

	
VDSR

	
3DFCNN

	
EDSR

	
GRDN

	
HLNnet

	
Interactformer

	
Ours






	
×2

	
MPSNR

	
26.31294

	
28.61898

	
28.40655

	
28.22535

	
28.82269

	
29.02062

	
29.11935

	
29.51473




	
MSSIM

	
0.93673

	
0.96601

	
0.96450

	
0.96328

	
0.96810

	
0.96945

	
0.96998

	
0.97324




	
SAM

	
5.33994

	
4.53473

	
4.58621

	
5.26906

	
4.84116

	
4.42888

	
4.25528

	
4.09366




	
×3

	
MPSNR

	
23.96104

	
24.76885

	
25.04055

	
24.89591

	
25.19442

	
25.41548

	
25.47882

	
25.81161




	
MSSIM

	
0.88532

	
0.91593

	
0.91989

	
091829

	
0.92320

	
0.92764

	
0.92855

	
0.93672




	
SAM

	
6.85189

	
7.40664

	
6.24949

	
7.09555

	
6.63486

	
6.37467

	
6.10688

	
5.80900




	
×4

	
MPSNR

	
22.40923

	
22.62539

	
23.27383

	
22.99236

	
23.45084

	
23.49942

	
23.61296

	
23.80055




	
MSSIM

	
0.82603

	
0.85669

	
0.87577

	
0.87095

	
0.88010

	
0.88131

	
0.88516

	
0.89830




	
SAM

	
8.12052

	
9.36632

	
7.44784

	
8.52248

	
7.65482

	
7.47232

	
7.30512

	
7.07873
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Table 11. Computation cost for all methods in the Chikusei dataset (scale factor 4).






Table 11. Computation cost for all methods in the Chikusei dataset (scale factor 4).





	Metrics
	VDSR
	3DFCNN
	EDSR
	GRDN
	HLNnet
	Interactformer
	Ours





	Time (s)
	1.91
	0.12
	0.56650
	0.14
	0.30
	0.37
	0.23



	FLOPs (G)
	220
	208
	640
	556
	2960
	2530
	124



	Params (K)
	665
	39
	1515
	838
	9899
	4642
	2592



	MPSNR (dB)
	28.41971
	27.94085
	28.23195
	28.70123
	29.13901
	29.15101
	29.51723
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