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Abstract: Many hyperspectral image (HSI) super-resolution (SR) methods have been proposed and
have achieved good results; however, they do not sufficiently preserve the spectral information. It
is beneficial to sufficiently utilize the spectral correlation. In addition, most works super-resolve
hyperspectral images using high computation complexity. To solve the above problems, a novel
method based on a channel multilayer perceptron (CMLP) is presented in this article, which aims to
obtain a better performance while reducing the computational cost. To sufficiently extract spectral
features, a local-global spectral integration block is proposed, which consists of CMLP and some
parameter-free operations. The block can extract local and global spectral features with low computa-
tional cost. In addition, a spatial feature group extraction block based on the CycleMLP framework is
designed; it can extract local spatial features well and reduce the computation complexity and number
of parameters. Extensive experiments demonstrate that our method achieves a good performance
compared with other methods.

Keywords: hyperspectral image (HSI); super-resolution (SR); local-global spectral integration block
(LGSIB); channel multilayer perceptron (CMLP); CycleMLP

1. Introduction

Hyperspectral images (HSIs) are a kind of large volume and three-dimensional data
cube, and they contain hundreds of bands, which range from visible to infrared wave-
lengths [1,2]. HSIs contain rich spectral information, which can reflect the unique spectral
characteristics of ground objects [3]. HSIs are widely applied in many fields, including
geological exploration [4], environmental research [5], agricultural applications [6], and
city layout planning [7]. However, because of the limited number of photons in each band,
the spatial resolution of HSIs is usually low, which limits their practical application. Thus,
it is important to obtain HSIs with high spatial resolution.

Super-resolution (SR) [8] is an approach of obtaining high-resolution (HR) images from
low-resolution (LR) images. Because it is very difficult to improve hardware to acquire
HR HSIs, many researchers have focused on software algorithms and proposed many
HSI super-resolution methods. These methods are mainly divided into two categories:
fusion-based hyperspectral image super-resolution (FHISR) and single hyperspectral image
super-resolution (SHISR). The FHISR technique aims to obtain HSIs with high spatial
resolution by merging the low-resolution HSIs and high-resolution RGB images [9,10],
multispectral images [11], or panchromatic images [12–14]. The fusion-based methods
make significant progress, but they need well-registered images with high resolution in the
same scene, which limits the practical application of the FHISR technique.

Compared with FHISR methods, the SHISR technique, which aims to reconstruct an
HR image without the use of any auxiliary images, is more applicable; it mainly includes
interpolation, sparse representation [15], low-rank tensor [16], and deep learning meth-
ods [17]. Interpolation methods such as bicubic interpolation can conveniently predict
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unknown pixels, but they often produce blurry images. Because there are many similar
structures in land cover maps, Huang et al. [15] exploited this to capture the spatial depen-
dency via the use of a multi-dictionary based on sparse representation. Different from the
assumption on spatial similarity in natural images [18], He et al. [16] proposed a tensor
model to sufficiently mine both spatial and spectral structure information. The sparse
representation and low-rank tensor methods depend on sparsity and low-rank assumption,
which may not hold in practical applications. Compared with the above three types of
methods, methods based on deep learning have achieved better performance over the
past few years. Dong et al. [19] made the first attempt to introduce deep learning into the
natural image super-resolution process. Many natural image super-resolution methods
have improved SR performance, e.g., the very deep super-resolution network (VDSR) [20],
enhanced deep super-resolution network (EDSR) [21], residual dense network [22], and
image restoration using the Swin transformer [23]. These methods can be used for SHISR
methods by super-resolving the HSIs in a band-by-band manner. However, compared
with natural image super-resolution, SHISR should improve the spatial resolution while
preserving spectral correlation [24]. These methods [20–25] ignore the spectral correlation
among bands and result in spectral distortion.

To alleviate spectral distortion, Hu et al. [26] proposed a super-resolution network
to learn the spectral difference between adjacent bands. Li et al. [27] utilized 2D group
convolutions to construct recursive blocks and exploited the spectral angle mapper (SAM)
loss function to train the 2D convolutional neural network (CNN) network. The models
based on 2D CNN insufficiently extract the spectral features with difficulty. Because 3D
convolutions can explore the spatial dependency among adjacent pixels and the spec-
tral similarity among adjacent bands simultaneously, some methods based on 3D CNN
have been proposed, e.g., 3D full convolutional neural network (3DFCNN) [28], mixed
2D/3D convolutional network [29], multiscale feature fusion and aggregation network
with 3D convolution [30], and multiscale mixed attention network [31]. Three-dimensional
convolutions will produce a number of parameters and will much greater computation con-
sumption. To explore the interdependency among bands, some methods have attempted to
aggregate the spectral dependency in a recurrent manner, e.g., spectrum and feature con-
text super-resolution networks [32], bidirectional 3D quasi-recurrent neural networks [33],
networks with recurrent feedback embedding and spatial-spectral consistency regulariza-
tion [34], and progressive split-merge super-resolution with group attention and gradient
guidance [35]. These recurrent networks are time-consuming due to the many bands
present in HSIs. Different from the methods that use a recurrent manner, Yuan et al. [36]
employed group convolutions to capture the spectral correlation among bands in the same
group and integrated the spectral correlation among groups with a second-order attention
mechanism. Even though the CNN-based methods make good progress for SHISR, the
CNN-based methods struggle to extract long-range features because of the intrinsic locality
of convolution operation.

The nonlocal attention mechanism has shown a powerful ability to capture long-range
dependency [37]. Dosovitskiy et al. [38] made the first attempt to introduce self-attention
into computer vision and proposed a vision transformer to capture the long-range depen-
dency among a sequence of patches, which achieved remarkable results. Nonlocal attention
has sparked great interest in the computer vision community, and many methods have been
proposed [39]. Some researchers have also attempted to introduce nonlocal attention into
SHISR methods. Because the nonlocal attention mechanism neglects the importance of local
details, the applications for SHISR [40–42] have focused on combining the convolution with
the nonlocal attention. Yang et al. [40] designed a simplified nonlocal attention mechanism
and proposed a novel hybrid local and nonlocal 3D attentive convolution neural network
(HLNnet) for SHISR processing; however, they only utilized one model layer to extract
the long-range features, while the other model layers were still used for local features
extraction. As the computation complexity of vanilla self-attention is quadratic to the image
size, it is unaffordable for HSI super-resolution. In order to reduce the computation cost,
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Hu et al. [41] decoupled the vanilla self-attention along the height and width dimensions
and proposed an interactive transformer and CNN network (Interactformer), which has a
linear computation complexity. A multilevel progressive network with a nonlocal channel
attention network was presented [42], which combines the 3D ghost block with a self-
attention guided by a spatial-spectral gradient. The nonlocal-attention-based methods can
capture the long-range dependency; however, they still insufficiently extract the spectral
features, as they still focus on local spectral features. There is still significant room for
performance improvement.

Recently, the works that have been based on the multilayer perceptron (MLP) frame-
work have also achieved remarkable results. They are mainly classified into two types:
spatial MLP and channel MLP (CMLP). The methods based on spatial MLP [43–45] trans-
form the 2D image into a 1D vector and apply the MLP to capture the global dependency
from all elements of an image. Their architectures [43–45] can achieve competitive per-
formance without the use of the self-attention mechanism or convolution. However, the
computational complexity of spatial MLP is quadratic to the image size, and the spatial
MLP requires a fixed-size input during both training and inference, which is problematic
for SHISR methods. In contrast to spatial MLP, channel MLP (CMLP) is flexible with
respect to image sizes; it extracts features along the channel dimension, and the weight
parameters of CMLP are only configured by the number of channels. Because the weight
parameters of CMLP are not related to the image size, it is more appropriate for dense
prediction tasks [46–48]. The spatial receptive field of CMLP is limited, so the works based
on CMLP have pursued enlarging the spatial receptive field using some novel approaches.
Guo et al. [46] rearranged the spatial region to obtain the local and global spatial receptive
field. Lian et al. [47] shifted the pixels along the height and width to capture local spatial
information, obtaining better performance with less computation complexity when com-
pared with transformers. Different from changing pixel positions, Chen et al. [48] designed
a novel variant of channel MLP named CycleMLP. The Cycle FC (fully-connected layer) in
CycleMLP extracts features from different channels. Though the Cycle FC is a variant of
CMLP, it has a larger spatial receptive field, even a global spatial receptive field. In low-level
tasks, Tu et al. [49] solved the fixed-size problem by designing a novel spatial-gated MLP,
but the model is large. Some works [46,48] have demonstrated that the CMLP framework
can effectively extract global and local features and has a tradeoff between accuracy and
computation cost. However, they are designed for natural images and ignore the intrinsic
spectral correlation of HSIs. For the SHISR technique, SHISR can exploit the CMLP to
enhance the spatial resolution while preserving the spectral information. To the best of our
knowledge, there is no research on MLP in SHISR applications.

Though many CNN-based and nonlocal attention-based works have achieved good
results for SHISR, there are still some problems: (1) Most works focus on local spectral
features and neglect long-range spectral features. They do not sufficiently preserve the
spectral information to obtain better SR performance. To alleviate spectral distortion, it is
more appropriate to sufficiently extract the local and long-range spectral features. (2) Most
SHISR works utilize 3D convolutions and the self-attention mechanism to extract spectral-
spatial features. Because HSIs have many bands, they usually require high computation
to extract the features. The SHISR methods need to better reconstruct the hyperspectral
images with low computation complexity.

To address the above drawbacks, a spectral-spatial MLP network (SSMN) is proposed
for SHISR. Considering that previous works usually reconstruct HSIs using high computa-
tion cost, our network aims to apply CMLP to obtain better reconstruction performance
while reducing computation cost. Specifically, to sufficiently capture the spectral correla-
tion, a local-global spectral integration block (LGSIB) is proposed. The LGSIB consists of
CMLP and band group, band shift, and band shuffle operations, and it aims to capture
the local and global spectral correlation and reduce computation complexity. Because the
spatial receptive field of CMLP is limited, a spatial feature group extraction block (SFGEB)
is designed. SFGEB consists of CycleMLP and a group mechanism, which aims to extract
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spatial features well while reducing computation complexity and the number of parameters.
On the one hand, compared with CMLP, the SFGEB has a larger spatial receptive field, so
it can extract more spatial features. On the other hand, compared with the convolution
and self-attention mechanism, the computation complexity and number of parameters of
SFGEB remain unchanged while the spatial receptive field expands.

In summary, the main contributions of this work are provided as follows:

• A novel network named SSMN that is based on CMLP is proposed for SHISR. The
proposed MLP-based network can handle HSIs of different sizes. The experimental
results demonstrate that our network achieves better reconstruction performance
compared with other methods based on convolution and nonlocal attention.

• An LGSIB is proposed to extract rich spectral features while reducing the computation
complexity; it aims to use the CMLP to extract the local spectral features using group
and shift manners, and it extracts the long-range spectral features using group and
shuffle manners.

• In order to extract spatial features well while maintaining computation efficiency, an
SFGEB is designed, which consists of CycleMLP and a group manner; its number
of parameters and computation complexity do not increase as the spatial receptive
field expands.

The rest of this paper is divided into three sections. In Section 2, the proposed SSMN
is introduced. In Section 3, the experiments and the results are shown. The conclusion is
provided in Section 4.

2. Proposed Method

In this section, the overall network architecture is firstly introduced. Secondly, the
details of the LGSIB are given. Thirdly, the SFGEB is described in detail.

2.1. Overall Network Architecture

This section will introduce the overall network architecture. As shown in Figure 1, we
first apply one CMLP to extract the shallow features of LR HSIs. Then, several spectral-
spatial MLP (SSMLP) blocks are used to extract complex spectral-spatial features. In one
SSMLP, the local-global spectral features are captured by the LGSIB, and the spatial features
are captured by the SFGEB. Next, the outputs of different SSMLP blocks are fused. Finally,
the super-resolution image is reconstructed by upsampling and global residual learning.
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Figure 1. Overall network architecture of the spectral-spatial MLP network (SSMN). Figure 1. Overall network architecture of the spectral-spatial MLP network (SSMN).

Let ILR ∈ RH×W×B×1 be a low-resolution hyperspectral image, where 1, B, H, and W
sequentially denote the channel dimension, number of bands, height, and width in HSIs.
To preserve the structural features of HSIs, the feature map is treated as a four-dimensional
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cube. The goal is to reconstruct a high-resolution image ISR ∈ R(Hr)×(Wr)×B×1 from the ILR
image, where r is the scale factor. First, one CMLP matrix is used to linearly project the ILR,

F0 = ILR ·M, (1)

where M ∈ R1×C and F0 ∈ RH×W×B×C; C denotes the channel dimension.
Next, the F0 is fed into the SSMLP block. The SSMLP block consists of the LGSIB,

SFGEB, feed-forward network (FFN), and dropout layer. The FFN is made up of two
cascading CMLPs, the layer normalization, and the drop-out layer. The spectral correlation
and spatial details are captured by the LGSIB and SFGEB in each SSMLP block, respectively.
By separately capturing the spatial and spectral features, the number of parameters and
computation complexity are reduced. We will provide more details about the LGSIB and
SFGEB blocks in the following two subsections. There are several SSMLP blocks for feature
learning, and the output of the previous SSMLP block is the input of the next SSMLP block.
The process of extracting spectral-spatial features in one SSMLP can be formulated as:

Hn = SFGEBn(LGSIBn(Fn−1) + Fn−1) + Fn−1
Fn = FFNn(Hn) + Hn

, (2)

where LGSIBn, SFGEBn, and FFNn represent the blocks in the n-th SSMLP module and Fn−1
represents the output of the previous SSMLP block. Then, we fuse the outputs of all SSMLP
blocks, and obtain the output F. Finally, the super-resolution image ISR is reconstructed,
and the super-resolution process can be expressed as follows:

ISR = fup(F) + fbicubic(ILR), (3)

where fup(·) is an upsampling layer made up of three CMLPs and a pixel shuffle operation
and fbicubic(·) denotes a bicubic interpolation function.

Transposed convolution is widely used for image super-resolution, but it will result in
the checkerboard problem. Shi et al. [50] avoided this problem by rearranging the pixels
among channels to enlarge the spatial size. To avoid the checkerboard problem, we combine
CMLP with pixel rearrangement [50] to upsample the images. As shown in Figure 1,
there are three CMLPs and a pixel shuffle operation in the upsample layer. The HSIs
are upsampled in a band-by-band manner. Specifically, for a given band Fk ∈ RH×W×C,
k ∈ {1, . . . , B}, the first CMLP is utilized to increase the number of channels from C to Cr2.
The pixel shuffle operation is applied to rearrange the pixels from the channel dimension
into the spatial domain and obtain Fk ∈ R(Hr)×(Wr)×C. The second CMLP is used to
decrease the number of channels from C into 1. One reconstructed band Ik ∈ R(Hr)×(Wr)×1

is obtained after the upsampling. Then, we concatenate all reconstructed bands and obtain
Iup ∈ R(Hr)×(Wr)×B×1. Because the HSIs are upsampled in a band-by-band manner, it
ignores the spectral correlation among bands. To alleviate spectral distortion, the third
CMLP is utilized to refine the image along spectral dimension. The final output ISR ∈
R(Hr)×(Wr)×B×1 can be obtained by summing the Iup and Ibicubic ∈ R(Hr)×(Wr)×B×1.

2.2. Local-Global Spectral Integration Block

The previous works insufficiently extract the spectral features. It is more beneficial
to sufficiently extract local and long-range spectral features. In addition, because of the
many bands in HSIs, much computation is needed to extract the spectral features. To solve
these problems, a local and global spectral integration block (LGSIB) is designed. Within
the LGSIB, the group-shift-shuffle MLP block (GSSMB) is the core, which can extract the
local and long-range spectral features using the CMLP. Some parameter-free operations in
the GSSMB, including the band group, band shift, and band shuffle operations, are utilized
to improve the feature extraction and reduce the computational complexity.

Firstly, a very simple way to extract the spectral features using CMLP is introduced.
The given input F ∈ RH×W×B×C is reshaped into the size of HW × BC. One CMLP matrix



Remote Sens. 2023, 15, 3066 6 of 24

M ∈ RBC×BC is utilized to extract the spectral features along the (BC) dimension. There are
C feature maps in F, and many feature maps are similar [51]. To take the similarity among
the feature maps and correlation among the bands, the spectral correlation is captured
along the (BC) dimension instead of the band dimension. The number of parameters
is (CB)2. There are many feature maps and bands, so the model is large. To alleviate
the limitations, we need a strategy to reduce the number of parameters as well as the
computation complexity.

The feature maps are redundant [52], which indicates that it is possible to extract
features from redundant feature maps with low computation cost. Therefore, the feature
maps are split into two groups in the LGSIB, and only one cheap CMLP is used to linearly
project one group along the channel dimension; meanwhile, one GSSMB is used to extract
complex spectral features from the other group. Specifically, the input F ∈ RH×W×B×C

is firstly projected along the channel dimension, which is then split into two groups:
F1 ∈ RH×W×B×αC and F2 ∈ RH×W×B×(1−α)C, α ∈ [0, 1]. We set α = 1/2 in our experiments
so that both F1 and F2 ∈ RH×W×B×c, c = C/2. In particular, F1 is treated as the redundant
feature maps. Only one cheap CMLP matrix M ∈ Rc×c is used to project F1, while the
GSSMB is used to extract the complex spectral features from F2. Because the redundancy
of the feature maps is exploited, the computation cost and number of parameters are
reduced. We will provide more details about the GSSMB, which is used to further lessen
the number of parameters and computation cost. Finally, we fuse two outputs and obtain
F3 ∈ RH×W×B×C.

As shown in Figure 2, there are three blocks in the GSSMB: the local spectral integra-
tion block (LSIB), shift spectral integration block (SSIB), and global spectral integration
block (GSIB). The LSIB and SSIB aim to extract two kinds of local spectral features and
complement each other. The GSIB aims to extract the global spectral features. In addition,
there are three kinds of parameter-free operations in GSSMB, including the band group,
band shift, and band shuffle operations. They are used to split the feature maps, shift the
bands, and rearrange the bands. The combination of CMLP and parameter-free operations
can improve feature extraction. Three blocks and operations will be introduced one-by-one.
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Figure 2. Overall architecture of the local-global spectral integration block (LGSIB). The LSIB and
SSIB are used for local spectral features extraction, and the GSIB is used for global spectral features
extraction. In LSIB, SSIB, and GSIB, only one group is shown as an example.

The LSIB aims to extract local spectral features in a group-by-group manner. Specifi-
cally, the input F2 ∈ RH×W×B×c is firstly reshaped into HW× B× c, then split into D groups
along band dimension. Each group Xd ∈ RHW×T×c contains T bands, d ∈ {1, · · · , D} and
B = D · T. All Xd are fed into the LSIB. Each group is reshaped into Xd ∈ RHW×Tc, and one
CMLP is applied to extract the spectral features of a group:

Od = Xd ·Md, (4)
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where Md ∈ RTc×Tc and Od ∈ RHW×Tc. Because the feature maps are split into groups
along the band dimension, the adjacent bands are grouped into a group so that the local
spectral correlation can be captured. The number of parameters of one group is (cT)2,
and there are D groups in X; thus, the number of parameters of all groups is D · (cT)2.
The number of parameters is further reduced from (CB)2 to (cT)2 instead of D · (cT)2

by sharing the weights of Md in the Equation (4). Finally, each group Od ∈ RHW×Tc is
reshaped to the original size, and we obtain the output O ∈ RH×W×B×c.

The LSIB groups the feature maps along the band dimension, and the adjacent bands
are split into the same group. Thus, local spectral correlation can be captured. The number
of parameters and the computational cost are reduced. However, owing to different
hyperspectral sensors with different characteristics, different HSIs have different spectral
correlation. The fixed group in the LSIB is not suitable for different HSI datasets. To solve
this problem, the SSIB is designed to extract complementary spectral features for the LSIB.
As the LSIB ignores the connections among adjacent groups, the SSIB aims to obtain those
connections. In the SSIB, there are several CMLPs and a band shift operation. Specifically,
the band shift operation is firstly used to shift s bands for F2 along the band dimension.
Figure 2 provides an example of shifting one band. After shifting, the feature maps are
also grouped along the band dimension. All groups are then extracted by several CMLPs.
In the SSIB, the next feature extraction process is the same as that of the LSIB. With the
shift and group operations, the connection among adjacent groups is obtained in the SSIB.
Finally, the bands are shifted back to their original order. Similar to the LSIB, the SSIB also
extracts the local spectral features. The LSIB and SSIB can complement each other because
they extract local but different spectral features. After fusing the outputs of the LSIB and
SSIB, the network can be more suitable for different HSIs.

The LSIB and SSIB only capture the local spectral correlation and ignore the long-
range spectral correlation; they are insufficient for preserving the spectral information.
For spectral preservation, it is more appropriate for sufficiently extracting local and long-
range spectral features. Previous works have extracted the long-range spectral features
with much computation cost. To obtain the long-range spectral correlation with low
computational cost, we designed the GSIB. In the GSIB, there are several CMLPs and a
band shuffle operation. The band shuffle operation is firstly used to rearrange the bands,
and several CMLPs are used to extract the long-range spectral features in a group-by-group
manner. After fusing the two outputs from LSIB and SSIB, a feature map Z ∈ RH×W×B×c is
obtained, and it is reshaped into the size HW × B× c. We shall now provide more details
about the band shuffle operation. Specifically, the new feature map Z is grouped into D
groups along the band dimension and obtain Z1 ∈ RHW×(D×T)×c. Then, Z1 is transposed
into Z2 ∈ RHW×(T×D)×c. Next, Z2 is flattened back to the original size Z3 ∈ RHW×B×c.
After flattening, the bands in the feature map Z3 are shuffled. The originally long-range
bands now become adjacent bands. To extract the long-range spectral features with low
computational cost, Z3 is split into D groups again. Each group contains T bands. We set D
and T as 2 and 3, respectively, as an example in Figure 2. All groups will be extracted by
several CMLPs. The following feature extraction process of the GSIB is the same as that of
the LSIB. Finally, the bands are rearranged back to the original order. The long-range bands
are split into the same group using the shuffle and group operations so that the long-range
spectral correlation can be captured. The number of parameters in the GSIB is (cT)2, which
is much less than (CB)2.

Because of the group, shift, and shuffle operations in the LGSIB, the local-global
spectral features can be sufficiently captured, and the number of parameters and com-
putation cost are reduced. In particular, the number of parameters is reduced from
(CB)2 to 1

4 C2(3T2 + 11), and the computational complexity is reduced from HWC2B2

to 1
4 HWC2(3T2 + 11).
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2.3. Spatial Feature Group Extraction Block

The weight parameters of spatial MLP are configured by the image size. Therefore,
the methods [43–45] based on spatial MLP need a fixed-size input during training and
inference modes. For the SHISR technique, it is necessary to design a model to deal with
various image sizes. In addition, previous works [31,32,41,42] have usually utilized many
convolutions or self-attention mechanisms to capture the spatial details with high com-
putation complexity, and their computation complexity increases as the spatial receptive
field expands.

To extract spatial features well with low computational cost, a spatial feature group
extraction block (SFGEB) is designed, which consists of CycleMLP and a group mechanism.
Because of the limited spatial receptive field of CMLP, CycleMLP is utilized to extract
spatial features. Similar to CMLP, CycleMLP can deal with flexible image sizes. The
Cycle FC (fully-connected layer) in CycleMLP expands the receptive field of CMLP while
keeping the same computation complexity and number of parameters as that of CMLP. To
further reduce the computational complexity, the feature maps are split into K groups along
channel dimension, and K CycleMLPs are used to extract spatial features from K groups.

The details about the Cycle FC shall be provided. Mathematically, the F ∈ RH×W×Cin

denotes an input. As shown in Figure 3, the channel FC extracts spatial features on the same
position along the channel dimension; however, the Cycle FC can capture the relationship
among patches on neighbor channels. The definition of the Cycle FC can be described
as follows:

Cycle FC(F)i,j,: =
Cin

∑
c=0

Fi+δi(c),j+δj(c),c ·M
mlp
c,: + b, (5)

where Mmlp ∈ RCin×Cout and b ∈ RCout . The parameters δi(c) and δj(c) mean the offset
along the height and width on the c-th channel, and their definition can be formulated
as follows:

δi(c) = (c mod RH)− 1, δj(c) = (

⌊
c

RH

⌋
mod RW)− 1, (6)

where RH and RW are the step size along the height and width. The Cycle FC in CycleMLP
introduces a larger receptive field (RH, RW) compared with CMLP. We set RH and RW to 3
and 1, respectively, as an example in Figure 3b.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 25 
 

 

(b)(a)

RH=1
RW=1

RH=3
RW=1

W
H

C

H
W

C

 
Figure 3. Comparison between two kinds of fully-connected layers. (a) The channel FC extracts fea-
tures along the channel dimension; (b) the Cycle FC along the height is a variant of channel FC but 
has a larger spatial receptive field. The star position denotes the output position. 

The Cycle FC can extract features from different positions in a cyclical extraction ap-
proach. Therefore, the Cycle FC can extract the spatial features from a larger spatial range 
and even from a global spatial receptive field. The CycleMLP consists of three parallel 
Cycle FCs and one CMLP, 

H W CCycleMLP CMLP(Cycle FC ( ) Cycle FC ( ) Cycle FC ( ))F F F=  +  +  , (7)

where F denotes the input and Cycle FCH, Cycle FCW, and Cycle FCC are the applied Cycle 
FC along the height, width, and channel dimensions, respectively. 

More details about the SFGEB are provided in Figure 4. The input N H W B CF × × × ×∈  is 
firstly reshaped into the size of ( )N B H W C× × × × . The spatial features are extracted in a 
band-by-band manner in the SFGEB. Because it is beneficial to extract spatial features by 
interacting with the information along the channel dimension, the channels of the feature 
maps are shuffled. Next, the SFGEB is extended into a multiple branch style to reduce the 
computation cost. As shown in Figure 4, the feature maps are split into K groups 

1 2{ , ,..., }KF F F  along the channel dimension, and each group is fed into one CycleMLP. The 
outputs of each branch are concatenated, and one CMLP is used to fuse them. Finally, the 
output N H W B CO × × × ×∈  is obtained. 

CM
LP

Sh
uf

fle

CycleMLP

CycleMLP

CM
LPR

F1

F2

F3

Reshape

N
×

H
×
W

×
B×

C

(N
×

B)
×

H
×
W

×
C

N
×

H
×
W

×
B×

C

Concatenate

(N
×

B)
×
H

×
W

×
C

CFCH

CFCW

CFCC

CM
LP

CycleMLP

C R

CFC Cycle FC

R
C

 
Figure 4. The architecture of the spatial feature group extraction block (SFGEB). 

Because of the Cycle FC in the SFGEB, the number of parameters and computation 
complexity do not increase as the spatial receptive field expands. Compared with CMLP, 
the spatial receptive field of SFGEB is larger. Compared with spatial MLP, whose compu-
tation complexity is quadratic to the image size, SFGMB has a linear complexity. Thus, the 
SFGEB can sufficiently extract spatial features while reducing the computation complex-
ity. In addition, the feature maps are grouped in the SFGEB, meaning that the computa-
tional cost can be further reduced. 

  

Figure 3. Comparison between two kinds of fully-connected layers. (a) The channel FC extracts
features along the channel dimension; (b) the Cycle FC along the height is a variant of channel FC
but has a larger spatial receptive field. The star position denotes the output position.

The Cycle FC can extract features from different positions in a cyclical extraction
approach. Therefore, the Cycle FC can extract the spatial features from a larger spatial
range and even from a global spatial receptive field. The CycleMLP consists of three parallel
Cycle FCs and one CMLP,

CycleMLP = CMLP(CycleFCH(F) + CycleFCW(F) + CycleFCC(F)), (7)

where F denotes the input and Cycle FCH, Cycle FCW, and Cycle FCC are the applied Cycle
FC along the height, width, and channel dimensions, respectively.
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More details about the SFGEB are provided in Figure 4. The input F ∈ RN×H×W×B×C

is firstly reshaped into the size of (N × B)× H ×W × C. The spatial features are extracted
in a band-by-band manner in the SFGEB. Because it is beneficial to extract spatial features
by interacting with the information along the channel dimension, the channels of the
feature maps are shuffled. Next, the SFGEB is extended into a multiple branch style to
reduce the computation cost. As shown in Figure 4, the feature maps are split into K groups
{F1, F2, . . . , FK} along the channel dimension, and each group is fed into one CycleMLP.
The outputs of each branch are concatenated, and one CMLP is used to fuse them. Finally,
the output O ∈ RN×H×W×B×C is obtained.
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Figure 4. The architecture of the spatial feature group extraction block (SFGEB).

Because of the Cycle FC in the SFGEB, the number of parameters and computation
complexity do not increase as the spatial receptive field expands. Compared with CMLP, the
spatial receptive field of SFGEB is larger. Compared with spatial MLP, whose computation
complexity is quadratic to the image size, SFGMB has a linear complexity. Thus, the SFGEB
can sufficiently extract spatial features while reducing the computation complexity. In
addition, the feature maps are grouped in the SFGEB, meaning that the computational cost
can be further reduced.

3. Experiments and Results

In this section, we will verify the performance of the proposed model according to
the quantitative and qualitative results. Firstly, four common public hyperspectral remote
sensing datasets are considered, and the implementation details are provided. Next, the
evaluation metrics and comparison methods are introduced. Then, the ablation experiments
are conducted to demonstrate the effectiveness of our network blocks. Finally, the proposed
method is compared with state-of-the-arts algorithms.

3.1. Datasets and Implementation Details
3.1.1. Datasets

1. Houston Dataset: The Houston dataset [53] was acquired by a remote sensor ITRES
CASI 1500 and was released by the National Center for Airborne Laser Mapping at the
University of Houston in 2018. It covers a 380–1050 nm spectral range and contains
48 bands. The image size is 4172 × 1202. We divide it into a training region and
testing region at a ratio of seven to three. In addition, the training region is flipped
horizontally, rotated (90◦, 180◦, 270◦), and cut into 9180 training reference images with
a size of 48 × 48 × 48 each. The test region is randomly cut into 16 non-overlapping
testing reference images, and their sizes are all 144 × 144 × 48.

2. Chikusei Dataset: The Chikusei hyperspectral dataset [54] was taken by the Headwall
Hyperspec-VNIR-C imaging sensor over agricultural and urban areas in Chikusei,
Ibaraki, Japan, in 2014. It covers a spectral range from 363 nm to 1018 nm and contains
128 bands. The image size is 2517 × 2335, and the spatial resolution is 2.5 m. The
dataset is divided into two parts: a training region for 70% of the dataset and a test
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region for 30% of the dataset. The training region is cut into 7872 training reference
images, and each sample has a size of 48 × 48 × 128. The test region is randomly cut
into 14 non-overlapping testing reference images with the size of 144 × 144 × 128.

3. HSRS-SC Dataset: This dataset [55] was collected by a compact airborne spectro-
graphic imager (CASI). There are 1385 hyperspectral remote sensing images, which
are classified into five types of scenes. Each scene contains 154–485 images. Each
image consists of 48 bands, which covers a spectral range from 380 nm to 1050 nm.
The size of each image is 256 × 256 × 48. We choose 500 images from the 5 scenes and
cut 7980 training images with the size of 48 × 48 × 48 each. Ten images are randomly
selected from the five types of scenes for testing images, and their top left regions are
cut into the testing reference images at a size of 144 × 144 × 48.

4. Washington DC Mall Dataset: This dataset [56] was acquired by a hyperspectral digital
image collection experiment (HYDICE); it covers a spectral range from 400 nm to
2400 nm and contains 191 bands. The spatial resolution is 3 m, and the image size
is 1280 × 307. We divide the data into two parts: a training region for 70% of the
dataset and a testing region for 30% of the dataset. The training region is cut into
7800 reference samples. The size of each training reference image is 48 × 48 × 191. The
testing region is split into six testing reference images with a size of 144 × 144 × 191.

The above training images with a size of 48× 48 are the HR reference images, while the
LR training images are generated by a Gaussian point spread function and downsampling
of the reference images with three scale factors, i.e., 2, 3, and 4. Because we conduct the
experiments with scale factor ×2, ×3, and ×4, the size of 48 × 48 can be divisible by 2, 3
and 4. The size of 48 × 48 is also widely set in SR methods [21,57]. The test image with the
size of 144 × 144 is the reference image, while the LR test image is generated by a Gaussian
point spread function and by downsampling the reference image with three scale factors.
The specific size of 144 × 144 can be divisible by a scale factor of 2, 3 and 4, which was used
in [58]. Because our network is made up of CMLP, the weight parameters are not related
to the height and width. Thus, our method can handle HSIs of any size in the inference
phase. We do not super-resolve test images with a larger size, due to the huge memory
requirement of HSIs.

3.1.2. Implementation Details

There are many kinds of loss functions [59–61]. The l1 and l2 loss functions are widely
used in SHISR. The l2 loss penalizes larger errors compared with the l1 loss, and the l1
loss has a better convergence performance [21,62,63]. In addition, when the final loss
function contains multiple losses, it is difficult to control the balance factor to obtain
better performance. Thus, the l1 loss function was chosen to train the super-resolution
network. An ablation experiment was conducted to prove that our method obtains a better
performance with the l1 loss instead of the l2 loss.

The adaptive moment estimation optimizer (ADAM) (β1 = 0.9, β2 = 0.999) is used.
The initial learning rate is 0.0002 and is halved every 35 epochs. The dropout rate is 0.1, and
the batch size is 16. The number of the SSMLP blocks is four. The number of channels is set
to 64 for all SSMLP blocks. In the SSIB, we shift three bands for all datasets. In the SSIB and
LSIB, we split the feature maps into six groups for the Houston and HSRS-SC datasets, eight
groups for the Chikusei dataset, and sixteen groups for the Washington DC Mall dataset.
In the GSIB, we split the feature maps into eight groups for the Houston and HSRS-SC
datasets, six groups for the Chikusei dataset, and twelve groups for the Washington DC
Mall dataset. When the number of bands is not divisible by the group number, the related
bands are used for padding. In the SFGEB, the number of branches K is four. We set
(RH, RW) as (5, 1), (1, 5), (1, 1) for three Cycle FCs in the CycleMLP. All experiments were
conducted on one NVIDIA GTX 1080Ti GPU using the Pytorch framework. The code is
released at https://github.com/corkiyao/SSMLP (accessed on 8 June 2023).

https://github.com/corkiyao/SSMLP
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3.2. Evaluation Metrics and Comparison Methods
3.2.1. Evaluation Metrics

To evaluate the performance of super-resolution algorithms, three widely used evalu-
ation metrics were used, including the mean peak signal-to-noise ratio (MPSNR), mean
structure similarity (MSSIM), and spectral angle mapper (SAM). The MPSNR evaluates
the similarity based on the mean squared error (MSE) between the reference image and
the reconstructed image. The MSSIM is used to measure the mean structural similarity be-
tween the reference image and the reconstructed image. Larger MPSNR and MSSIM values
indicate a better visual quality of the reconstructed SR images. The SAM [64] evaluates the
spectral fidelity between the reference image and the reconstructed image, and a smaller
SAM indicates better spectral preservation. In addition, floating point operations (FLOPs)
were used to evaluate the model complexity. It is usually calculated using the number of
multiplication and addition operations that a network performs. In our experiments, the
FLOPs metric is calculated when a network processes one image in the inference phase.
The larger the FLOPs value, the higher the computation cost.

3.2.2. Comparison Methods

In order to demonstrate the performance of the proposed network, our method is com-
pared with seven super-resolution methods: bicubic, VDSR [20], 3DFCNN [28], EDSR [21],
gradient-guided residual dense network (GRDN) [25], HLNnet [40], and Interactformer [41].
The bicubic method is the classical interpolation. The VDSR and EDSR are representatives
of CNN-based natural image super-resolution methods. For the hyperspectral super-
resolution, we apply the VDSR and EDSR networks in a band-by-band manner. The
3DFCNN, GRDN, Interactformer, and HLNnet methods are classical and recent SHISR
methods that are based on deep learning. We carefully set the hyper-parameters to obtain
the best performance of the compared methods.

3.3. Ablation Study

In this section, we verify the effectiveness of the proposed method by conducting
experiments on the Houston dataset with a scale factor of four. The bold text of the
evaluation metrics represents the best results of ablation experiments.

First, the experiments on the number of SSMLP blocks are conducted. Table 1 provides
the evaluation index of two, three, four, and five SSMLP blocks. From Table 1, we can see
that our network performs best when the number of SSMLP blocks is four. Due to the
limitation of model capability, a shallow network is difficult to obtain a good reconstruction
performance. The results indicate that a deeper network can achieve better results. It
can be seen that when the evaluation index is larger, the results are better. However, the
performance slightly decreases when the number of SSMLP blocks is five. Because more
SSMLP blocks contain a larger number of parameters, it is difficult to train a larger network.
In addition, the network with more parameters easily results in overfitting. Therefore, the
number of SSMLP blocks is set as four in our network.

Table 1. Ablation study of the number of SSMLP blocks in the Houston dataset (scale factor 4).

2 3 4 5

MPSNR 30.70739 30.86136 31.10764 31.01103
MSSIM 0.98126 0.98190 0.98286 0.98230

SAM 1.96019 1.93722 1.93722 1.87152

Some ablation experiments were conducted to verify the effectiveness of the proposed
LGSIB and SFGEB in the SSMLP block. To verify the capability of the LGSIB and SFGEB,
one of them was separately removed. The results are shown in Table 2. First, the LGSIB is
removed and the SFGEB is kept. It is observed that the SR performance greatly decreases
after removing the LGSIB. When the LGSIB is removed, the SAM is larger than that of our
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method. Thus, these results demonstrate that the proposed LGSIB can effectively extract
spectral features. Second, the SFGEB is removed while keeping the LGSIB. We can see
that the SR performance greatly decreases after removing the SFGEB. Compared with our
method, when the SFGEB is removed, the MPSNR and MSSIM are smaller and the SAM is
larger. Thus, the network without the SFGEB can hardly extract spatial features. It proves
the benefit of the SFGEB. The above experiments prove that both the LGSIB and SFGEB are
beneficial for HSI super-resolution.

Table 2. Ablation study of the network structures in the Houston dataset (scale factor 4).

Remove
LGSIB

Remove
SFGEB

Ours
(LGSIB + SFGEB)

MPSNR 30.12244 28.35876 31.10764
MSSIM 0.97797 0.96713 0.98286

SAM 2.21080 2.55483 1.86055
FLOPs/Params 20 G/167 K 30 G/713 K 36 G/773 K

Then, to verify the effect of the group manner in GSSMB, some experiments on different
numbers of groups were conducted. The results are shown in Table 3. It is observed that the
number of parameters is large and the computational cost is high when the group strategy
is removed. Compared with methods using the group strategy, the GSSMB without the
group manner does not obtain a better performance. We consider that it is difficult to train
the GSSMB with so many parameters, and the limited performance is possibly caused by
overfitting. Therefore, the group manner can reduce the parameters to avoid the overfitting
problem and allow the model to be easily trained. Moreover, it can be found that our
method with the group manner obtains the best performance when the number of D is
eight. Because of the redundancy of spectral information, when the number of D increases
from three to eight, the negative effect of redundancy is gradually reduced. However, the
results become worse when the number of D is larger than eight. Because the bands are
consecutive, it will cause inconsistent estimation when there are many groups. In addition,
it is very complex to be constantly adjusting the number of D to obtain better performance
for different HSIs datasets. Therefore, to obtain good performance with less computational
cost, the numbers of D and T are designed to reduce the FLOPs as much as possible for
other HSIs.

Some ablation experiments were further conducted to verify the effects of three blocks
in the GSSMB: the LSIB, SSIB, and GSIB. The results are shown in Table 4. After removing
one of three blocks, the evaluation metrics are worse. When one of the LSIB and SSIB blocks
is removed, the results become worse, which proves that each of them has a positive effect
on improving the reconstruction performance and that they can complement each other.
We find that after removing the GSIB, the MPSNR drops. It indicates that the GSIB can
improve super-resolution performance by capturing long-range spectral features.

Next, we investigated the effects on the number of branches K in SFGEB. The results
are shown in Table 5. It is observed that our network obtains the best performance when the
number of K is set to four. As the number K increases from one to four, the results become
better and the FLOPs decreases. It is easier to train the SFGMB with less parameters. When
the number of K is eight, the MPSNR slightly decreases. Because the input channels for
each CycleMLP become fewer, it may the harm representation capability. Therefore, to
balance the reconstruction performance and computational cost, the number of K in the
SFGEB is set to four for all HSIs datasets.

Finally, we would like to report the effect of the l1 and l2 loss functions, which are
commonly used to train super-resolution networks. The quantitative comparisons are
shown in Table 6. It is found that our method obtains a better reconstruction performance
when using the l1 loss function. The l1 loss function does not penalize larger errors and
has better convergence compared with the l2 loss function [21,62,63]. Thus, the l1 norm is
chosen to train our network.
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Table 3. Ablation study of the group strategy in the GSSMB in the Houston dataset (scale factor 4).

MPSNR MSSIM SAM FLOPs/Parmas

D = 16, T = 3 30.81104 0.98160 1.91978 37 G/1337 K
D = 12, T = 4 30.84086 0.98178 1.91453 36.5 G/935 K
D = 8, T = 6 31.10764 0.98286 1.86055 36 G/773 K
D = 6, T = 8 30.82077 0.98150 1.93260 36 G/886 K

D = 4, T = 12 30.75321 0.98104 1.92677 38 G/1461 K
D = 3, T = 16 30.75807 0.98138 1.94952 44 G/2350 K

Without Group 30.84261 0.98167 1.89772 100 G/28,000 K

Table 4. Ablation study of the GSSMB structures in the Houston dataset (scale factor 4).

LSIB SSIB GISB MPSNR MSSIM SAM FLOPs/Params

×
√ √

30.88751 0.98204 1.92179 32 G/621 K√
×

√
30.93368 0.98199 1.90345 32 G/621 K√ √

× 31.00853 0.98238 1.87792 30 G/510 K√ √ √
31.10764 0.98286 1.86055 36 G/773 K

Table 5. Ablation study of the number of branches in the SFGEB in the Houston dataset (scale factor 4).

K = 1 K = 2 K = 4 K = 8

MPSNR 30.94025 30.96333 31.10764 30.91139
MSSIM 0.98216 0.98215 0.98286 0.98207

SAM 1.90974 1.88769 1.86055 1.92063
FLOPs/Params 42 G/847 K 38 G/798 K 36 G/773 K 34 G/761 K

Table 6. Ablation study of the loss function in the Houston dataset (scale factor 4).

l1 l2

MPSNR 31.10764 30.92505
MSSIM 0.98286 0.98218

SAM 1.86055 1.90519

3.4. HSI SR Experiments and Results

In this section, we show the experimental results on the Houston, HSRS-SC, Chikusei,
and Washington DC Mall datasets. The experiments were conducted with three scale
factors, i.e., ×2, ×3, and ×4. The qualitative and quantitative results are analyzed. The
red and blue text of the quantitative evaluation metrics represent the best and second best
results, respectively.

3.4.1. Results of Houston Dataset

The quantitative results of the Houston dataset are shown in Table 7. It is observed that
our method is better than other methods in the literature. For example, when the scale factor
is four, the MPSNR of our method is 0.6 dB higher than that of Interactformer, and the SAM
of our method is 0.27 lower than that of Interactformer. Because VDSR and EDSR ignore
the protection of spectral information, their results are worse than the results of the other
algorithms, except for bicubic and 3DFCNN. The evaluation metrics of 3DFCNN are worse
than that of VDSR and EDSR. The main reasons are that the 3DFCNN network is shallow;
furthermore, there is no residual learning in the 3DFCNN network. Compared with VDSR
and EDSR, GRDN achieves a better performance. GRDN can extract extra spatial gradient
details, while the VDSR and EDSR ignore that factor. Interactformer obtains the second
best performance by combining the CNN with the transformer to capture the local and
global dependencies. In addition, compared with the other methods, the superiority of the
SAM of our methods gradually increases when the scale factor becomes larger. There are
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two main reasons for this. The first is that it is more difficult to super-resolve HSIs as the
scale factor grows. The second is that the other methods lack sufficient spectral features
learning. Because we propose the LGSIB to sufficiently capture the local and global spectral
features, our method can alleviate the problem. 3DFCNN and Interactformer only extract
local spectral features. HLNnet only utilizes one nonlocal attention block to extract the
long-range spectral features in the first model layer, while the other layers are still used for
local spectral features learning.

Table 7. Quantitative comparison of the Houston dataset. The red and blue text indicate the best and
second best result values, respectively.

Scale Metrics Bicubic VDSR 3DFCNN EDSR GRDN HLNnet Interactformer Ours

×2
MPSNR 33.61036 36.81006 36.31081 36.90783 37.39292 37.31068 37.41921 37.63251
MSSIM 0.99014 0.99544 0.99500 0.99559 0.99604 0.99602 0.99609 0.99634

SAM 1.43970 1.12807 1.20455 1.08717 1.042401 1.04733 1.03844 1.00473

×3
MPSNR 30.33877 32.88569 32.38918 32.93509 33.37765 33.27358 33.47990 34.22439
MSSIM 0.97854 0.98837 0.98723 0.98865 0.98967 0.98952 0.98991 0.99180

SAM 2.03853 1.69531 1.73596 1.64159 1.57840 1.57629 1.55615 1.39556

×4
MPSNR 27.82178 30.03148 29.53820 29.98065 30.32926 30.41107 30.50146 31.10764
MSSIM 0.96086 0.97711 0.97493 0.97736 0.97874 0.97935 0.97947 0.98286

SAM 2.73205 2.30920 2.34192 2.24042 2.18900 2.15620 2.13343 1.86055

The above quantitative analysis is also supported by the reconstructed images, which
are shown in Figure 5. To show more details, an area marked by the red rectangle is
enlarged from the ground truth image as a reference. The same region marked by the
red rectangle from the reconstructed images of each method is also enlarged. As shown
in Figure 5, our method produces sharper edges, as is the case for the edge of the center
building; for HLNnet and Interactfomer, artifacts appear, and EDSR and VDSR produce
blurry results. This result proves that our network can better reconstruct super-resolution
images. To further validate the effectiveness of our methods, we also provide the error
images between the super-resolution images and the reference images shown in Figure 6.
When the error image is bluer, it means that the super-resolution image is closer to the
reference image. The visualization results indicate that the error map of our method is the
bluest. Our reconstructed image is the closest to the ground truth image.
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8, it can be seen that our method still obtains the best performance for the three scale fac-
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and SAM in our method are better than the results of HLNnet, i.e., +0.37 dB, +0.004, and 

Figure 5. The HSI SR results on the Houston dataset (scale factor 4). (a) Ground truth; (b) bicubic;
(c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours. The false color
image is used for clear visualization (red: 15, green: 30, and blue: 45). The red boxes are used to mark
the original and upsampled area.
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3.4.2. Results of the HSRS-SC Dataset

The experiments were also conducted on the HSRS-SC dataset. The quantitative
results are shown in Table 8, and the visual results are shown in Figures 7 and 8. From
Table 8, it can be seen that our method still obtains the best performance for the three scale
factors. For instance, when the scale factor is three, the evaluation metrics of MPSNR,
MSSIM and SAM in our method are better than the results of HLNnet, i.e., +0.37 dB,
+0.004, and −0.11, respectively. Because VDSR and EDSR ignore the protection of spectral
correlation information, their evaluation metrics are still worse than the results of our
method. Compared with those of CNN-based methods (i.e., 3DFCNN, VDSR, and EDSR),
Interactformer and HLNnet obtain a better performance through the combination of the
local and global features. In addition, the SAM of our method is still the smallest for the
three scale factors. The proposed local-global spectral integration block (LGSIB) can still
sufficiently extract spectral features in the HSRS-SC dataset.

Table 8. Quantitative comparison of the HSRS-SC dataset. The red and blue text indicate the best and
second best result values, respectively.

Scale Metrics Bicubic VDSR 3DFCNN EDSR GRDN Interactformer HLNnet Ours

×2
MPSNR 30.91831 34.05928 33.47056 33.93229 34.21800 34.80833 35.39844 35.65883
MSSIM 0.94983 0.97460 0.97133 0.97399 0.97520 0.97776 0.98000 0.98116

SAM 2.97044 2.52064 2.63652 2.5332 2.50794 2.43484 2.41159 2.31576

×3
MPSNR 28.25784 30.30507 29.89933 30.22463 30.43345 30.73033 31.28533 31.64508
MSSIM 0.90746 0.94316 0.93805 0.94254 0.94499 0.94814 0.95406 0.95812

SAM 3.60363 3.21843 3.32278 3.25291 3.23010 3.15388 3.14645 3.03447

×4
MPSNR 26.43125 28.04833 27.80732 28.02282 28.27791 28.60088 28.68334 29.41301
MSSIM 0.85667 0.90510 0.89981 0.90566 0.90980 0.91632 0.91747 0.93254

SAM 4.15459 3.79804 3.83266 3.83179 3.75885 3.60442 3.71579 3.48209
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Figure 7. The HSI SR results on the HSRS-SC dataset (scale factor 4). (a) Ground truth; (b) bicubic; 
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Figure 7. The HSI SR results on the HSRS-SC dataset (scale factor 4). (a) Ground truth; (b) bicubic;
(c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours. The false color
image is used for clear visualization (red: 19, green: 13, and blue: 7). The red boxes are used to mark
the original and upsampled area.
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The super-resolution images on the HSRS-SC dataset are presented in Figure 7. The
region marked by the red rectangle is enlarged to present more details. From Figure 7, the
super-resolution image of our method is better than that of the other comparison methods.
Our method can reconstruct more clear edges, as is the case for the edge of the center
building, while other comparison methods produce images with artifacts or cause spectral
distortion to appear. Moreover, we provide the error maps between the super-resolution
images and the reference images in Figure 8. It can be seen that our error map is the
bluest, which means that the super-resolution image of our method is the closest to the
reference image. Thus, the proposed method obtains the best reconstruction performance on
this dataset.

3.4.3. Results of the Chikusei Dataset

Some experiments were also conducted on the Chikusei dataset. In contrast to the
Houston and HSRS-SC datasets, the Chikusei dataset contains more bands (up to 128).
The evaluation metrics of each method are shown in Table 9. Even though the number
of bands increases, the evaluation metrics of our method still are the best for the three
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scale factors. For example, when the scale factor is four, the MPSNR, MSSIM, and SAM of
our method are better than the results of Interactformer, i.e., +0.36 dB, +0.006, and −0.30,
respectively. The 3DFCNN network is still worse than VDSR and EDSR because of the
shallow network without residual learning. Compared with VDSR, EDSR, and GRDN,
HLNnet and Interactformer still obtain better performances because they can extract local-
global features and focus on preserving the spectral information. In addition, as the number
of bands increases, the evaluation metric SAM of our algorithm is still smaller than that
of HLNnet and Interactformer. The proposed LGSIB can still sufficiently extract the local
and global spectral features to alleviate the spectral distortion. Therefore, the SAM of our
method is smaller.

Table 9. Quantitative comparison of the Chikusei dataset. The red and blue text indicate the best and
second best result values, respectively.

Scale Metrics Bicubic VDSR 3DFCNN EDSR GRDN HLNnet Interactformer Ours

×2
MPSNR 31.35162 34.66397 33.56629 35.41532 34.76920 35.65999 35.70729 36.36153
MSSIM 0.97117 0.98690 0.98344 0.98850 0.98714 0.98916 0.98915 0.99095

SAM 2.33774 1.86435 1.92614 1.74509 1.86396 1.66459 1.66064 1.51879

×3
MPSNR 28.74680 30.77485 30.20889 31.19459 30.66312 31.41036 31.53661 32.07586
MSSIM 0.94507 0.96684 0.96262 0.96877 0.96589 0.96959 0.97034 0.97443

SAM 3.13851 2.77739 2.74645 2.65812 2.81941 2.60161 2.57006 2.29185

×4
MPSNR 26.84760 28.41971 27.94085 28.70123 28.23195 29.13901 29.15101 29.51723
MSSIM 0.91151 0.94050 0.93509 0.94331 0.93866 0.94607 0.94665 0.95208

SAM 3.95445 3.61779 3.54112 3.47155 3.64814 3.32975 3.32009 3.01902

The super-resolution images and error images are also provided in Figures 9 and 10.
From Figure 9, we can find that our method can produce more details, such as the two
slashes in the center, while GRDN, HLNnet, and Interactformer only produce one slash
or one mutilated slash. In addition, bicubic and 3DFCNN reconstruct blurry images, and
VDSR and EDSR produce images with artifacts. Furthermore, we also provide the error
maps between the super-resolution images and the reference images; they are shown in
Figure 10. It can be seen that our error map presents less error between the reference image
and the reconstructed image. Therefore, our method obtains the best performance on the
Chikusei dataset.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 25 
 

 

maps between the super-resolution images and the reference images; they are shown in 
Figure 10. It can be seen that our error map presents less error between the reference image 
and the reconstructed image. Therefore, our method obtains the best performance on the 
Chikusei dataset. 

     
(a) (b) (c) (d) (e) 

 

    
 (f) (g) (h) (i) 

Figure 9. The HSI SR results on the Chikusei dataset (scale factor 4). (a) Ground truth; (b) bicubic; 
(c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours. The false color 
image is used for clear visualization (red: 55, green: 85, and blue: 30). The red boxes are used to mark 
the original and upsampled area. 

    

 

(a) (b) (c) (d)  

     
(e) (f) (g) (h)  

Figure 10. Error images between the reconstructed images and the reference images in the Chikusei 
dataset (scale factor 4). (a) bicubic; (b) VDSR; (c) 3DFCNN; (d) EDSR; (e) GRDN; (f) HLNnet; (g) 
Interactformer; (h) ours. The red boxes are used to mark the original and upsampled area. 

3.4.4. Results of the Washington DC Mall Dataset 
To further prove the effectiveness of our method on a dataset with a higher number 

of bands, we conducted experiments on the Washington DC Mall dataset. This dataset 
contains more bands, numbering up to 191 bands, which means that it is more difficult to 
super-resolve this dataset. Three evaluation metrics for all comparison methods are 
shown in Table 10. It can be seen that our method still performs the best in the Washington 
DC Mall dataset. For instance, when the scale factor is three, the MPSNR and MSSIM val-
ues are larger than that of Interactformer, i.e., +0.33 and +0.012, respectively. Because the 
dataset contains more bands compared with the Houston, HSRS-SC, and Chikusei da-
tasets, it is more difficult to capture the spectral correlation. Other comparison methods 
(i.e., VDSR, EDSR, and GRDN) cannot sufficiently extract spectral features, which leads 

Figure 9. The HSI SR results on the Chikusei dataset (scale factor 4). (a) Ground truth; (b) bicubic;
(c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours. The false color
image is used for clear visualization (red: 55, green: 85, and blue: 30). The red boxes are used to mark
the original and upsampled area.
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3.4.4. Results of the Washington DC Mall Dataset

To further prove the effectiveness of our method on a dataset with a higher number
of bands, we conducted experiments on the Washington DC Mall dataset. This dataset
contains more bands, numbering up to 191 bands, which means that it is more difficult
to super-resolve this dataset. Three evaluation metrics for all comparison methods are
shown in Table 10. It can be seen that our method still performs the best in the Washington
DC Mall dataset. For instance, when the scale factor is three, the MPSNR and MSSIM
values are larger than that of Interactformer, i.e., +0.33 and +0.012, respectively. Because
the dataset contains more bands compared with the Houston, HSRS-SC, and Chikusei
datasets, it is more difficult to capture the spectral correlation. Other comparison methods
(i.e., VDSR, EDSR, and GRDN) cannot sufficiently extract spectral features, which leads
to spectral distortion. The SAM of our method is the smallest among all methods. The
main reason is that the proposed LGSIB can sufficiently extract the local and global spectral
features, which better preserves spectral information. Thus, our method obtains the best
reconstruction performance despite the dataset containing a higher number of bands.

The super-resolution images are provided in Figure 11. We find that the proposed
method reconstructs images with clear boundaries. EDSR, VDSR, and GRDN present
spectral distortion, bicubic produces blurry results, and 3DFCNN presents artifacts. In
addition, we also provide the error maps between the reconstruction images and the
reference images in Figure 12. It is observed that our error map presents lower error
between the SR image and the reference image. Therefore, our method still obtains the best
reconstruction performance in the dataset that contains a higher number of bands.

Table 10. Quantitative comparison of the Washington DC Mall dataset. The red and blue text indicate
the best and second best values, respectively.

Scale Metrics Bicubic VDSR 3DFCNN EDSR GRDN HLNnet Interactformer Ours

×2
MPSNR 26.31294 28.61898 28.40655 28.22535 28.82269 29.02062 29.11935 29.51473
MSSIM 0.93673 0.96601 0.96450 0.96328 0.96810 0.96945 0.96998 0.97324

SAM 5.33994 4.53473 4.58621 5.26906 4.84116 4.42888 4.25528 4.09366

×3
MPSNR 23.96104 24.76885 25.04055 24.89591 25.19442 25.41548 25.47882 25.81161
MSSIM 0.88532 0.91593 0.91989 091829 0.92320 0.92764 0.92855 0.93672

SAM 6.85189 7.40664 6.24949 7.09555 6.63486 6.37467 6.10688 5.80900

×4
MPSNR 22.40923 22.62539 23.27383 22.99236 23.45084 23.49942 23.61296 23.80055
MSSIM 0.82603 0.85669 0.87577 0.87095 0.88010 0.88131 0.88516 0.89830

SAM 8.12052 9.36632 7.44784 8.52248 7.65482 7.47232 7.30512 7.07873
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Figure 11. The HSI SR results on the Washington DC Mall dataset (scale factor 4). (a) Ground truth; 
(b) bicubic; (c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours. 
The false color image is used for clear visualization (red: 60, green: 27, and blue: 17). The red boxes 
are used to mark the original and upsampled area. 

  

Figure 11. The HSI SR results on the Washington DC Mall dataset (scale factor 4). (a) Ground truth;
(b) bicubic; (c) VDSR; (d) 3DFCNN; (e) EDSR; (f) GRDN; (g) HLNnet; (h) Interactformer; (i) ours.
The false color image is used for clear visualization (red: 60, green: 27, and blue: 17). The red boxes
are used to mark the original and upsampled area.
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Figure 12. Error images between the reconstructed images and the reference images in the Washington
DC Mall dataset (scale factor 4). (a) bicubic; (b) VDSR; (c) 3DFCNN; (d) EDSR; (e) GRDN; (f) HLNnet;
(g) Interactformer; (h) ours. The red boxes are used to mark the original and upsampled area.

The spectral curve can show the continuous spectra of the same location. The difference
curve is obtained by calculating the spectral vector difference between the SR image and
the reference image. When two spectral curves are consistent, it means that two images are
very similar. When the difference curve is closer to zero, it means that the spectral vector
of the SR image is closer to that of the reference image. We randomly selected pixels for
the spectral curves and difference curves. The curves for the three datasets are shown in
Figure 13. As shown in Figure 13, our difference curves are closer to zero. This result means
that the spectral vectors of our reconstructed images are closer to that of the reference
images. The spectral curves of our methods are more consistent with that of the reference
images, while the spectral curves of other methods (i.e., VDSR, GRDN, EDSR, and HLNnet)
are inconsistent with that of the reference images. This proves that our method can achieve
a better spectral preservation compared with the other methods.



Remote Sens. 2023, 15, 3066 20 of 24
Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 25 
 

 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 13. Spectral curves and difference curves on a selected pixel value of the three datasets with
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3.5. Computation Cost

In this section, to compare the computation cost of all deep learning methods, the
number of parameters, inference time, MPSNR, and FLOPs are provided in Table 11. All
methods were tested on Chikusei dataset with a scale factor of four on a GeForce GTX
1080Ti GPU using the Pytorch framework. All methods were tested 50 times, and the
inference time is the average of the total time. In Table 11, because VDSR and EDSR super-
resolve the HSIs in a band-by-band manner, their inference time are longer than other
methods. The FLOPs values of our method are the lowest. The main reason is that our
network only consists of the CMLP framework and because the feature maps are grouped
along the channel and band dimensions. In addition, the inference time of our method
is shorter than that of HLNnet and Interactformer, which demonstrates that our method
captures the long-range features with low computational cost. Although the inference time
of our method is longer than that of 3DFCNN and GRDN, and although the number of
parameters of our method are larger than that of CNN-based methods, we obtained the
best SR performance. The proposed method is a tradeoff between the SR performance and
computation cost compared with the other methods.

Table 11. Computation cost for all methods in the Chikusei dataset (scale factor 4).

Metrics VDSR 3DFCNN EDSR GRDN HLNnet Interactformer Ours

Time (s) 1.91 0.12 0.56650 0.14 0.30 0.37 0.23
FLOPs (G) 220 208 640 556 2960 2530 124
Params (K) 665 39 1515 838 9899 4642 2592

MPSNR (dB) 28.41971 27.94085 28.23195 28.70123 29.13901 29.15101 29.51723

4. Conclusions

In this article, an MLP-based method named SSMN is proposed for hyperspectral
image super-resolution. The method achieves better reconstruction performance and low
computational cost. To lessen the parameters and computation complexity, the spectral and
spatial features are separately extracted in our network. The proposed SSMLP contains
two feature extraction blocks to extract the spectral and spatial features from the HSI data.
In the LGSIB, the local spectral correlation among adjacent bands is captured by CMLP
using group and shift operations, and the global spectral correlation is captured by CMLP
using shuffle and group operations. In the SFGEB, CycleMLP with a group mechanism
is used to further enhance the capability and reduce the computation complexity. The
experimental results demonstrate that our MLP-based method reconstructs better super-
resolution images compared with CNN-based, nonlocal attention-based methods. In the
future, we will focus on extending our current method to adaptively super-resolve HSIs
with multiple degradation.
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