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Abstract: Whether or not large-scale vegetation restoration will lead to a decrease in regional ter-
restrial water storage is a controversial topic. This study employed the Geodetector model, in
conjunction with observed and satellite hydro-meteorological data, to detect the changes in terrestrial
water storage anomaly (TWSA) and to identify the contributions of climate change and vegetation
greening across China during the years 1982–2019. The results revealed that: (1) during the period of
1982–2019, TWSA showed a downward trend in about two thirds of the country, with significant de-
clines in North China, southeast Tibet, and northwest Xinjiang, and an upward trend in the remaining
third of the country, with significant increases mainly in the Qaidam Basin, the Yangtze River, and the
Songhua River; (2) the positive correlation between normalized vegetation index (NDVI) and TWSA
accounts for 48.64% of the total vegetation area across China. In addition, the response of vegetation
greenness lags behind the TWSA and precipitation, and the lag time was shorter in arid and semi-arid
regions dominated by grasslands, and longer in relatively humid regions dominated by forests and
savannas; (3) furthermore, TWSAs decreased with the increase in NDVI and evapotranspiration (ET)
in arid and semi-arid areas, and increased with the rise in NDVI and ET in the humid regions. The
Geodetector model was used to detect the effects of climate, vegetation, and human factors on TWSA.
It is worth mentioning that NDVI, precipitation, and ET were some of the main factors affecting
TWSA. Therefore, it is essential to implement rational ecological engineering to mitigate climate
change’s negative effects and maintain water resources’ sustainability in arid and semi-arid regions.

Keywords: vegetation; TWSA; Geodetector; NDVI; China

1. Introduction

Terrestrial vegetation is vital in regulating global water balance and climate change [1].
Afforestation can affect the hydrological cycle by increasing evapotranspiration (ET) and
precipitation interception [2]. Despite the positive effects of reforestation on carbon se-
questration, the impact on the hydrological cycle remains controversial [3,4]. Research has
shown that vegetation retains water through its root system and promotes regional water
vapor transport to increase precipitation [5,6]. In contrast, other studies have shown that
afforestation may promote ET and reduce soil moisture content [7]. Therefore, balancing

Remote Sens. 2023, 15, 3104. https://doi.org/10.3390/rs15123104 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15123104
https://doi.org/10.3390/rs15123104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7740-5207
https://orcid.org/0000-0003-1823-6049
https://orcid.org/0000-0003-3647-5617
https://orcid.org/0000-0003-4826-5350
https://doi.org/10.3390/rs15123104
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15123104?type=check_update&version=1


Remote Sens. 2023, 15, 3104 2 of 22

terrestrial vegetation carbon and water resources is essential to promote the sustainable
management of vegetation restoration programs [8].

Since 1998, China has implemented ecological projects to increase vegetation coverage
and positively combat desertification [9]. Additionally, they also have a particular impact
on the regional water balance. Afforestation sequesters carbon in vegetation, but soil
moisture depletion presents new challenges to the water and carbon trade-off [3]. It is
worth mentioning that the spatial and temporal distribution of water resources varies
significantly across China, and the northern region has limited water resources [10]. For
instance, Zhao et al. [11] showed that the average decline in the rate of terrestrial water
storage (TWS) was 16.6 ± 5.0 mm/a in the Mu Us Sandy Land of northern China from 1982
to 2016 due to the large-scale ecological restoration. Feng et al. [8] suggested that ecological
engineering promoted the increase in net primary productivity (NPP) and ET in China’s
Loess Plateau. They also found that NPP was close to the 400 ± 5 g C m−2a−1 threshold
according to the carbon–water balance. According to field observations, Jia et al. [12]
indicated that soil moisture in the 0–4 m soil profile decreased significantly in China’s Loess
Plateau during the years 2004–2014 due to afforestation. To effectively manage basins in
the context of climate change, it is essential to understand the comprehensive impact of
vegetation on water resources.

Recently, research mainly focuses on the effect of vegetation on a single component of
TWS, including precipitation and ET [11]. For example, van Dijke et al. [13] reported that the
large-scale expansion of tree cover could increase water availability by 6% in some regions.
In comparison, it could reduce water availability by 38% in other areas. Papagiannopoulou
et al. [14] pointed out that terrestrial water was essential in promoting vegetation growth,
which dominates 61% of the global vegetation cover. However, precipitation only provides
information on water availability indirectly [15]. Additionally, Meng et al. [2] indicated
that the average growth rate of ET in the Three-North region of China was about 2.9 mm/a
during the years 2000–2015, and its spatial variation was similar to that of the leaf area
index (LAI). Zeng et al. [16] investigated that an 8% increase in the global LAI increased
12.0 ± 2.4 mm/a and 12.1 ± 2.7 mm/a in ET and precipitation, respectively. However, the
hydrological impact of large-scale afforestation on ET may vary by scale [2]. In contrast,
soil moisture can directly reflect the response of vegetation growth to water. However,
obtaining soil moisture monitoring data is often labor-intensive and limited in spatial
distribution [17].

Subsequently, TWS obtained by the Gravity Recovery and Climate Experiment
(GRACE) satellite modulates ecosystem vegetation generation and strongly affects the
carbon cycle [18]. For instance, Andrew et al. [19] showed that the interannual variations
of the Normalized Difference Vegetation Index (NDVI) and TWS were consistent across
Australia from 2003 to 2014, and the response of grassland to TWS was more rapid. Using
the GRACE satellite, Zhao et al. [11] investigated the impact of ecological restoration on
TWS in northern China from 1982 to 2016. Wang et al. [20] suggested that vegetation
was more strongly affected by TWS than precipitation on both the annual and monthly
scales in the Pearl River basin from 2002 to 2015. In addition to the effects of vegetation,
climate change and human activities were altering the hydrological cycle with significant
consequences for TWS. Climate change mainly manifested in the influence of temporal and
spatial precipitation and temperature variations on TWS [21]. Human activities change
the hydrological cycle by altering land cover, water conservation projects, and human
usage [22]. Nevertheless, it was difficult to distinguish between the natural and human
effects because of incomplete data and uncertainty in climate and hydrological models [23].

Many studies have researched ways of determining the attribution of natural and
human effects to the hydrological cycle. For example, Xie et al. [24] used the variable
infiltration capacity (VIC) model to detect the changes in the hydrological cycle and to
identify the contributions of land cover and climate change over the Three-North region
of China during the years 1989–2009. Gao et al. [25] determined the contributions of
precipitation, ET, and land use/cover changes to streamflow and runoff coefficient changes



Remote Sens. 2023, 15, 3104 3 of 22

in the Loess Plateau based on the Budyko hypothesis. Scanlon et al. [26] indicated that
decreasing trends from GRACE were primarily related to human use (irrigation) and
climate variations, whereas increasing trends reflected climate variations globally during
the years 2002–2014. However, most previous studies considered natural and human
factors independently while ignoring their interaction with the hydrological cycle. The
Geodetector model is a new statistical method to detect spatial heterogeneity and explore
its driving mechanism [27]. The core of its theory is to detect the consistency of the spatial
distribution pattern between the dependent and independent variables through spatial
heterogeneity [28]. One significant advantage of this method is that it can detect the
interaction of two driving factors on dependent variables and does not have to follow the
linear assumption of traditional statistical methods [29]. Although some investigations
on contributions to the hydrological cycle have been conducted, there are relatively few
studies on regional TWSA in China based on the Geodetector model.

China’s climate is complex and diverse, with pronounced differences in climate and
vegetation among different basins. Based on the observed and satellite hydro-meteorological
data, this study investigated the effects of the hydrological cycle on TWSA across China
from 1982 to 2019. Furthermore, the Geodetector model was used to detect the climate
and human factor responses to TWSA. The specific objectives were to: (1) analyze the
spatiotemporal evolution trend of TWSA and explore the influence of hydrological cycle
changes on TWSA across China; (2) determine the contributions of climate and human
factors to TWSA across China; and (3) investigate the impact of vegetation greening on
TWSA under different climate regions and vegetation types across China. This work is
undoubtedly helpful in understanding the impact of climate and vegetation on TWSA and
offers guidance for regional water resource management and ecological restoration.

2. Materials and Methods
2.1. Study Area

China is located in the southeastern part of Eurasia, and its climate types include trop-
ical, subtropical, temperate, frigid regions, and so on [30]. The distribution of precipitation
in China is uneven, with more in the southeast and less in the northwest. A map of land
cover types in China is shown in Figure 1. According to the river basin classification criteria,
China is divided into nine major river basins. Table 1 shows precipitation and temperature
characteristics and represents typical natural vegetation in the nine river basins of China.
The annual average precipitation and temperature in the southern region were higher
than in the northwest region. In particular, the annual average precipitation was above
1000 mm in the southern region. Due to topographic and climatic differences, the distribu-
tion of rivers in China is extremely uneven. Most rivers are located in the monsoon region
of eastern China and directly enter the sea, mainly including the Liaohe River, Huaihe
River, Haihe River, Yangtze River, Yellow River, and Pearl River [31]. Additionally, the
northwest region is arid and has less precipitation; a number of rivers are primarily inland.
Affected by terrain, climate and other factors, China’s vegetation is rich in variety and
uneven in space. At the same time, the regional distribution of forest resources is hugely
unbalanced. The allocation of forest resources in the southeast, southwest, and northeast
was significantly higher than that in north, central, and northwest China [32].
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Table 1. Representative typical natural vegetation and climate factors in the nine river basins.

Serial Typical Natural Vegetation Area
(×104 km2)

Precipitation
(mm)

Temperature
(◦C)

I Coniferous forest, Broad-leaved mixed
forest, Meadow 123.81 518.21 2.44

II Coniferous forest, Deciduous
broad-leaved forest, Meadow 31.70 511.09 9.66

III Deciduous broad-leaved forest,
Shrublands, Meadow 80.89 468.31 5.93

IV Broad-leaved mixed forest 32.40 835.10 14.37
V Evergreen broad-leaved forest 179.92 1086.24 10.99
VI Subtropical evergreen broad-leaved forest 24.02 1753.20 17.11
VII Evergreen broad-leaved forest 57.06 1527.85 19.25

VIII
Evergreen broad-leaved forest,

Broad-leaved mixed forest, Shrublands,
Meadow

85.26 709.23 4.29

IX Alpine shrub meadow, alpine steppe 333.89 183.66 3.31
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2.2. Data Sources

The data used in this study are shown in Table 2. The reconstructed GRACE products,
provided by the Center for Space Research (CSR) from 1982 to 2019, were employed at a
resolution of 0.5◦ by 0.5◦ [33]. Combining machine learning with statistical decomposition
techniques, Li et al. [33] reconstructed a GRACE-like TWSA on the global land from 1979
to 2020. They verified that it agreed with the observations of most grids of the GRACE-
FO global land. The GRACE gravity satellite obtains the global monthly land water
storage changes by measuring the Earth’s time-varying gravity field signal [34]. It has the
advantages of high data acquisition efficiency, repeated observations, uniform scale, and
uniform distribution [35]. Many applications exist in large-scale terrestrial water storage
inversion and extreme climate monitoring [36].

Table 2. Information of the data used in this study.

Date Period Resolution Source

GRACE TWSA (mm) 1982–2019 0.5◦ × 0.5◦ https://doi.org/10.5061/dryad.z612jm6bt, accessed on
15 May 2022

GLEAM ET (mm) 1982–2019 0.25◦ × 0.25◦ https://www.gleam.eu/, accessed on 21 July 2022
AVHRR NDVI 1982–2019 0.05◦ × 0.05◦ http://www.geodata.cn/, accessed on 14 July 2022

Precipitation (mm) 1982–2019 0.5◦ × 0.5◦ https://data.cma.cn/, accessed on 10 January 2021
Temperature (◦C) 1982–2019 0.5◦ × 0.5◦ https://data.cma.cn/, accessed on 10 January 2021

Streamflow (mm3/s) 1982–2019 / /

Land cover (categorical) 2019 0.05◦ × 0.05◦ https://lpdaac.usgs.gov/products/mcd12c1v006/,
accessed on 21 May 2023

Elevation (m) / 90 m http://www.gscloud.cn/, accessed on 22 August 2022
Soil type (categorical) / 1 km http://www.resdc.cn/, accessed on 18 June 2022

Population density
(people/km2) 2019 1 km https://www.worldpop.org/, accessed on 10 May 2022

The ET data were derived from the Global Land Evaporation Amsterdam Model
(GLEAM) version 3.6a data set, at a resolution of 0.25◦ by 0.25◦, from 1982 to 2019 [37,38].
The GLEAM product algorithm consists of four modules: the rainfall interception module,
soil module, potential evaporation module, and stress module [37]. It considers four
surface land types: tall vegetation, low vegetation, water body, and bare soil. The data used
by GLEAM are mainly from satellite observations, including radiant flux, soil moisture,
precipitation, and temperature data, vegetation optical thickness data, and snow water
equivalent data. The product considers the process of snow sublimation, improves the
algorithm for soil layer drainage simulation, and obtains the moisture of different soil
layers according to the melting of snow water.

The CDR AVHRR NDVI data were obtained from the National Science Data Center
from 1982 to 2019, with 0.05◦ × 0.05◦ degree resolution (http://www.geodata.cn/, accessed
on 14 July 2022). This data set is based on NOAA CDR AVHRR NDVI V5 data. The rgee
package of R language was used to call the Google Earth Engine service for processing,
and the terra package of R language was further used for band fusion, clipping, and other
processing [39,40]. In this study, the maximum value composition (MVC) method was used
to obtain the maximum yearly NDVI data, which eliminated the influence of cloud haze
and the uncertainty caused by the difference in crop phenology to a large extent [41].

The observed meteorological data (temperature and precipitation) were derived from
2472 meteorological stations across China from 1982 to 2019, with a spatial resolution
of 0.5◦ × 0.5◦ (https://data.cma.cn/, accessed on 10 January 2021). The observed me-
teorological data are obtained from the National Meteorological Information Center of
China’s Meteorological Administration. The dataset was obtained based on the data of
2472 meteorological stations, using thin plate spline (TPS) interpolation combined with 3D
geospatial information. The streamflow data were recorded by 38 hydrological stations
across China from 1982 to 2019.

https://doi.org/10.5061/dryad.z612jm6bt
https://www.gleam.eu/
http://www.geodata.cn/
https://data.cma.cn/
https://data.cma.cn/
https://lpdaac.usgs.gov/products/mcd12c1v006/
http://www.gscloud.cn/
http://www.resdc.cn/
https://www.worldpop.org/
http://www.geodata.cn/
https://data.cma.cn/
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Land cover products came from the land cover type (MCD12C1) data of MODIS,
which have a spatial resolution of 0.05◦ (https://lpdaac.usgs.gov/products/mcd12c1v006/,
accessed on 21 May 2023). The digital elevation model (DEM) data, with a spatial resolution
of 90 m, was downloaded from the Geospatial Data Cloud (http://www.gscloud.cn/,
accessed on 22 August 2022). The elevation and slope were derived from the DEM data
using ArcGIS 10.2 (ESRI, Redlands, CA, USA). The soil type data, with a spatial resolution
of 1 km, was obtained from (http://www.resdc.cn/, accessed on 18 June 2022). The
population density data, with a spatial resolution of 1 km, was collected from (https:
//www.worldpop.org/, accessed on 10 May 2022).

2.3. Methodology
2.3.1. Time Lag Analysis

GRACE-derived TWSA during our study period (1982–2019) was calculated by re-
moving the TWS mean in 2004–2009. Therefore, changes in NDVI, ET, precipitation, and
streamflow were based on averages from 2004 to 2009. The response of NDVI to TWSA
and precipitation had a specific time lag [15,42]. This study analyzed the relationship
between TWSA (or precipitation) and NDVI at different time lags (0–6 months) to quantify
these timescales. Therefore, this study analyzed the correlation coefficients between the
average NDVI of each month, and the average TWSA and precipitation of the previous 0
to 6 months. The Pearson correlation coefficient was used to quantify the strength of the
correlation across time delays. According to the correlation coefficient (the absolute value
was taken when the value was negative), the time-response characteristics of NDVI to
TWSA and precipitation were compared, and the lag period corresponding to the maximum
correlation coefficient was analyzed.

2.3.2. Water Budget Analysis

Analyzing the total water budget, that is, the balance of precipitation, evapotran-
spiration, runoff, and the changes in water storage at the terrestrial surface, is critical to
understanding the regional water cycle [23,43]. These components are related through the
equation:

∆TWS = P− ET − R (1)

where ∆TWS (mm) represents TWS change, P (mm) is the precipitation, ET (mm) refers to
evapotranspiration, and R (mm) denotes the runoff.

2.3.3. Trend Analysis

Mann–Kendall (MK) test is a commonly used non-parametric test method, often used
in the trend testing of long-sequence hydrological and meteorological data. A modified
Mann–Kendall (MMK) test was used to detect trends, which resulted in a reliable trend
analysis compared to traditional MK [44]. Based on a confidence level of 0.05 in the MMK
test, if |Z| ≥ 1.96, the trend is significant. Below are the calculation steps.

For a time series X = {x_1, x_2, . . . , x_n}, the period statistic S is:

S = ∑
i<j

aij = ∑
i<j

sgn
(
xj − xi

)
(2)

where sgn is the sign function, the time lag correlation coefficient rI of the original
time series X corresponding to the rank is calculated, and, if rI passes the significance
test at a given significance level α, the variance var(S) is calculated according to the
following formula:

var(S) = η × n(n− 1)(2n + 5)
18

(3)

https://lpdaac.usgs.gov/products/mcd12c1v006/
http://www.gscloud.cn/
http://www.resdc.cn/
https://www.worldpop.org/
https://www.worldpop.org/
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η = 1 + 1
n(n−1)(n−2) ×

n−1
∑

i=1
(n− i)(n− i− 1)(n− i− 2)ri, the statistic Z in the MMK

trend test can be obtained, and the calculation formula is as follows:

Z =


S−1√
var(S)

S > 0

0 S = 0
S+1√
var(S)

S < 0
(4)

The combination of the Theil–Sen slope and MMK trend test can improve the accuracy
of climate trend change analysis to a certain extent [45]. The Theil–Sen slope method is a
non-parametric test that is often used to estimate trends in time series [46]. For the time
series xt = (x1, x2, · · · , xn), the Theil–Sen slope is calculated as:

β = median
( xj − xi

j− i

)
, ∀ j > i (5)

where β represents the average rate of change in this series and the trend of the time series.
When β > 0, the series shows an upward trend; when β < 0, the series offers a downward
trend. The median is the median function.

2.3.4. Correlation Analysis and Partial Correlation Analysis

The Pearson correlation coefficient estimates the degree of correlation between two
variables, such as NDVI and TWSA. The significance of the correlation coefficient was
evaluated at the 0.05 level. The calculation formula is as follows:

rxy =
∑n

i=1
(

xi − X
)(

yi −Y
)√

∑n
i=1
(
xi − X

)2
√

∑n
i=1
(
yi −Y

)2
(6)

where i refers to year, n refers to length of time, X refers to the average x value, Y refers to
the average y value, and rxy refers to the correlation coefficient between x and y.

When two factors are correlated with NDVI simultaneously, the influence of other
factors can be eliminated using partial correlation analysis, and the degree of correlation
between a single factor and NDVI can be analyzed separately. The calculation formula of
partial correlation analysis is as follows:

Rxy,z =
Rxy − Rxz − Ryz√

(1− R2
xz)

√(
1− R2

yz

) (7)

Rxy,z is the partial correlation coefficient between the dependent variable x and the
independent variable y after z is fixed. The significance test of the partial correlation
analysis was performed by t-test.

2.3.5. Geodetector Model

The Geodetector model, which was proposed by Wang et al. [47], compares indepen-
dent variables’ spatial distribution with the latent factors’ distribution. A spatial analysis
method is suitable for measuring the degree of heterogeneity of spatial stratification. It
should be analyzed comprehensively from both natural and human factors to explore the
changing aspects of TWSA. This paper selects seven types of natural factors and two types
of human factors, as shown in Table 3. The Geodetector software can only deal with discrete
variables [27]. This study divided elevation, precipitation, temperature, ET, and NDVI into
6 categories based on the natural breakpoint method in ArcGIS 10.2. [48]. The slope was
divided into 6 categories based on the Technical Regulations for Land Use Status Survey.
The population density, soil type, and land cover were divided into 6, 9, and 9 categories
based on existing specifications.
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Table 3. Influencing factors of TWSA change.

Category Factors Code Unit

Natural factors

Elevation X1 m
Slope X2 degree

Soil type X3 categorical
Temperature X4 ◦C
Precipitation X5 mm

ET X6 mm
NDVI X7 /

Human factors
Land cover X8 categorical

Population density X9 people/km2

The Geodetector model consists of four parts, namely the factor detector, interaction
detector, risk detector, and ecological detector. This paper applies the first two.

(1) Factor detector. This module can quantitatively detect the extent to which a driving
factor X can explain the spatial differentiation of TWSA through the value of q statistic:

q = 1− ∑L
h=1 Nhδ2

h
Nδ2 (8)

where q represents the explanatory power of the impact factor on the temporal and spatial
changes of TWSA, h is the stratification of the category number of a driving factor, L is the
sample size of the impact factor, Nh and N are numbers of units for layer h and the whole
region, respectively, and δ2

h and δ2 are the variance of h and the whole area. The larger the
q value, the greater the factor’s influence on TWSA.

(2) Interaction detector. This module can identify the interactive effect on the NDVI
between two driving factors. Firstly, the q values of two driving factors for NDVI were
calculated (q(X1) and q(X2)). Then, the q values of the interactive effect were calculated
(q(X1∩X2)) and compared with q(X1) and q(X2) to determine the interaction type between
the two driving factors (Table 4).

Table 4. Definition of the interaction types in the Geodetector model.

Interaction Relationship Interaction Types

q(Xi∩Xj) < Min(q(Xi), q(Xj)) Nonlinear-weaken
Min(q(Xi), q(Xj)) < q(Xi∩Xj) < Max(q(Xi), q(Xj)) Uni-variable weaken
q(Xi∩Xj) = q(Xi) + q(Xj) Independent
Max(q(Xi), q(Xj)) < q(Xi∩Xj) < q(Xi) + q(Xj) Bi-variable enhanced
q(Xi∩Xj) > q(Xi) + q(Xj) Nonlinear-enhanced

3. Results
3.1. Influence of the Hydrological Cycle on TWSA across China

The global climate and underlying surface changes affect water resources by affecting
precipitation, ET, and runoff in the hydrological cycle. Precipitation, ET, and runoff are
often regarded as the dominant factors of TWSA. Based on the Theil–Sen slope and MMK
trend test, the distribution of the change in TWSA, precipitation, ET, and streamflow in
space across China from 1982 to 2019 was obtained (Figure 2). As shown in Figure 2a,
TWSA showed a noticeable decreasing trend in North China, southeast Tibet and northwest
Xinjiang. In contrast, the trend increased in the Qaidam Basin, the Yangtze River, and the
Songhua River. Furthermore, the number of pixels with an increasing trend in the TWSA
was 38.84%, while 61.16% showed decreasing trends. Through the MMK test, 33.13% of
pixels showed significantly increasing trends, while the number of pixels with significantly
decreasing trends of TWSA was 55.33%.
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Figure 2. Spatial distribution of the rate of TWSA (a), precipitation (b), ET (c), and streamflow (d)
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According to the calculations, the percentage of precipitation pixels with an increasing
trend was 71.39% (Figure 2b). Additionally, 16.46% of pixels showed significantly increasing
trends in precipitation. Precipitation exhibited an increasing trend with the majority of
China, and a significant increase was distributed in the northwest region. Subsequently, an
increasing ET trend was observed for 96.33% of the pixels, and 58.30% showed a significant
increase (Figure 2c). The increase in ET was primarily distributed in the Yangtze River
basin and the Yellow River basin. As shown in Figure 2d, the streamflow decrease was
mainly distributed in eastern China, while the increase was primarily distributed in the
Inland areas.

Figure 3 shows the interannual variation of annual average TWSA and precipitation,
ET, and streamflow anomalies from 1982 to 2019 across China. Table 5 shows the variation
trend of TWSA and its components with R values. The TWSA showed an apparent upward
trend in the Yangtze, Southeast, and Pearl River basins, while other basins showed a
significant downward trend. In most of China’s rivers, except for the inland areas, the
precipitation and streamflow anomalies had no statistical change. Moreover, the results
showed that the change in annual streamflow in North China was more significant than
that of annual precipitation. Furthermore, ET displayed a significant increase in most areas
of China. Among the water cycle elements, precipitation and streamflow did not change
significantly across China, but ET showed a significant increasing trend. The change in
TWS calculated according to the water balance had not passed the significance test in the
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analysis of the interannual variation trend. Among them, most of the basins showed a
slight fluctuation trend. It should be noted that there was particular uncertainty in the
change in TWS when the data of the three influencing factors were included [23].
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Figure 3. Comparison between annual mean TWSA and precipitation, ET, and streamflow anomalies
in the nine river basins of China (a−i) from 1982 to 2019.

Table 5. Statistical trend R value of TWSA, precipitation, ET, streamflow, and TWS change anomalies
across China from 1982 to 2019.

Serial TWSA Precipitation ET Streamflow ∆TWS
(P-ET-R)

I −0.72 ** 0.02 0.48 ** −0.28 −0.07
II −0.99 ** 0.01 0.49 ** −0.36 * −0.27
III −0.99 ** 0.28 0.69 ** −0.23 −0.05
IV −0.98 ** −0.01 0.56 ** −0.19 −0.07
V 0.97 ** 0.04 0.81 ** −0.08 −0.28
VI 0.95 ** 0.19 0.84 ** −0.02 0.09
VII 0.92 ** 0.10 0.74 ** 0.06 −0.06
VIII −0.99 ** −0.11 0.76 ** −0.06 −0.28
IX −0.98 ** 0.70 ** 0.78 ** 0.40 * 0.06

Note: **: p < 0.01; *: p < 0.05.
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3.2. Analysis of Driving Factors of the TWSA across China

Human and natural factors combine to cause changes in TWSA. This study analyzed
the driving mechanism of natural and human factors on TWSA based on the factor detector
and interaction detector of geographic detectors. From the results of the factor detector,
it could be seen that the determining force q value of different factors on TWSA in 2019
was in the order of NDVI > precipitation > ET > temperature > land cover > soil type >
slope > elevation > population density (Figure 4). The q value of NDVI was the largest
(0.213), which indicated that NDVI could explain about 20% of the change in TWSA. The q
value of precipitation, ET, temperature, and land cover was 0.198, 0.162, 0.159, and 0.127,
respectively. The results indicated that these three factors could explain more than 10% of
the change in TWSA, affecting the change in vegetation TWSA. The q value of soil type,
slope, elevation, and population were all less than 0.1, meaning these three factors have
little influence on TWSA.
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Figure 4. The q values of driving factors across China.

Different factor interaction detection results found that the interaction of any two
factors was more significant than the influence of a single factor on TWSA (Figure 5). The
q value of the interaction between NDVI and other factors was greater than that of most
other interactions, implying that the NDVI was the dominant factor influencing TWSA.
The q values of the interaction of precipitation, ET, temperature, and land cover with
other factors were relatively high, which indicated that these three factors were essential
factors influencing TWSA. Additionally, the interaction types of the interaction between
factors were explored based on the definition in Table 4. The interaction types of interaction
between soil type and precipitation and ET were bi-variable enhanced. Meanwhile, the
interaction types between precipitation and ET, NDVI were enhanced bi-variable. In
addition, the interaction types between ET, NDVI, and land cover were improved bi-
variable. The interaction types between NDVI, land cover, and population density were
bi-variable enhanced. The interaction types of interactions between other factors were
nonlinear-enhanced.
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3.3. Response of Vegetation Greenness to TWSA across China

The state of the underlying surface is represented by NDVI, which characterizes the
vegetation growth state. This study analyzed the spatiotemporal variation characteristics
of NDVI across China from 1982 to 2019 (Figure 6). As illustrated in Figure 6a, the spatial
distribution of NDVI manifested a downward trend from southeast to northwest across
China during the period 1982–2019. The range of NDVI was between 0.01 and 0.86, with
an average value of 0.48. In addition, there was spatial heterogeneity in the changing
trend of NDVI across China (Figure 6b). The NDVI displayed a gradually increasing
trend, but the vegetation degraded in some areas. From the calculation, it could be seen
that the percentages of NDVI pixels with a significantly increasing trend, and increasing
trend, were 54.80% and 75.78%, respectively. Overall, the vegetation degradation was more
severe in parts of northwest China, while the vegetation had improved significantly in
eastern China.

The spatial pattern of the relationship between NDVI and TWSA (or precipitation)
across China from 1982 to 2019 was studied (Figure 7). The positive correlation between
NDVI and TWSA was 48.64%, and the significant positive correlation accounted for 30.09%
of the pixels (Figure 7a). Meanwhile, 51.36% of the pixels showed a negative correlation
between the NDVI and TWSA; the significant negative correlation was 30.25%. It was found
that NDVI was significantly negative in contact with TWSA in the Song-Liao River basin,
Haihe River basin, and Yellow River basin. Spatially, the negative correlation between
NDVI and TWSA appeared in arid and semi-arid areas covered mainly by grasslands and
agriculture (Figure 7c). In contrast, the positive correlation between NDVI and TWSA
appeared in relatively humid regions primarily covered by forests and savannas. As for
the precipitation, 61.26% of the pixels exhibited a positive correlation between NDVI and
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precipitation distribution in most areas of China (Figure 7b). In addition, the positive
correlation between NDVI and precipitation was more substantial in areas dominated by
grasslands, while savanna-dominated areas were weaker (Figure 7d).
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Figure 7. The partial correlation coefficient between NDVI and TWSA (a), and precipitation (b) across
China from 1982 to 2019; (c,d) indicate area ratios with land cover types.



Remote Sens. 2023, 15, 3104 14 of 22

To avoid the impact of snow in winter, it is necessary to better reflect the growth of
vegetation [49,50]. This study further analyzed the partial correlation analysis between
NDVI, TWSA, and precipitation in the growing season (April–October). Subsequently,
the growing season was divided into spring (April–May), summer (June–August), and
autumn (September–October). The spatial distribution of the partial correlation between
seasonal NDVI, TWSA, and precipitation from 1982 to 2019 across China is shown in
Figure 8. Table 6 shows the area proportion of the NDVI, TWSA, and precipitation rela-
tionship. Overall, NDVI was positively correlated with TWSA and precipitation. In spring,
52.79% of NDVI in the study area were positively correlated with TWSA, and the signif-
icant positive correlation was mainly distributed in the Yangtze River basin (Figure 8a).
NDVI was positively correlated with TWSA in summer and autumn, accounting for 60.45%
and 57.86%, respectively (Figure 8c,e). As for precipitation, NDVI and precipitation were
positively correlated in spring and autumn, accounting for 65.99% and 73.43%, respec-
tively (Figure 8b,f). In summer, the positive and negative correlations between NDVI and
precipitation accounted for 56.87% and 43.13% of the study area, respectively (Figure 8d).
Among them, the negative correlation was mainly distributed in southern China. Due to
the influence of the Asian monsoon, summer precipitation was concentrated [51]. Most
of the south was humid, and it would negatively impact vegetation activities when the
precipitation increment exceeded its demand [52].
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Table 6. Area ratios with positive/negative seasonal NDVI, TWSA, and precipitation relationship
determined across China from 1982 to 2019 (Unit: %).

Relationship
NDVI and TWSA NDVI and Precipitation

Spring Summer Autumn Spring Summer Autumn

Positive 52.79 60.45 57.86 65.99 56.87 73.43
Significant

positive 18.60 24.22 13.98 25.26 14.42 33.62

Negative 47.21 39.55 42.14 34.01 43.13 26.57
Significant
negative 12.69 17.14 10.58 0.84 3.21 0.34

There was spatial heterogeneity in the lags of NDVI to TWSA and precipitation
counterparts (Figure 9). The 0–1 month lag of NDVI to TWSA was generally distributed
in the southeast and arid areas of China (Figure 9a). NDVI lagged behind TWSA for
5–6 months and was mainly distributed in the Song-Liao, Haihe, and Southwest Rivers.
The region of the most significant lag between the NDVI and TWSA series might be
the reason for the negative correlation between NDVI and TWSA on an annual scale
(Figure 7). The lagged response periods of NDVI to precipitation changes significantly
differed between the north and south of China (Figure 9b). The synchronous response of
NDVI to precipitation was mainly distributed in the Song-Liao, Haihe, and Yellow Rivers.
NDVI lagged in the southern region for 2–4 months in response to precipitation. In addition,
the reaction of NDVI to precipitation changes was more substantial in the north than in the
south of China. Additionally, short-time lags appeared in arid and semi-arid areas covered
mainly by grasslands. In contrast, longer time lags appeared in relatively humid regions
primarily covered by forests and savannas (Figure 9c,d).
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Figure 9. The time lags of the NDVI to TWSA (a) and precipitation (b) correspond to the maximum
coefficient across China from 1982 to 2019; (c,d) indicate area ratios with land cover types.
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3.4. Relationship between Vegetation and TWSA in Typical Ecological Regions

This study selected five distinct ecological regions to understand the relationship
between vegetation and TWSA better. Figure 10 shows the correlation analysis of NDVI
and ET in five areas of China from 1982 to 2019. ET was an essential part of the water and
heat balance of vegetation ecosystems and a key indicator for measuring the moisture status
of vegetation [53]. Except for the Northeast region, the correlation coefficients between
NDVI and ET in the other areas passed the significance test above 95%. Notably, the
correlation coefficients of NDVI and ET were all greater than 0.65. There was a specific
linear relationship between vegetation NDVI and ET. Furthermore, ET could be further
added to the analysis of vegetation greenness to terrestrial water storage.
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Figure 10. Scatterplot of interannual NDVI and ET from 1982 to 2019 in Northwest (a), Northeast (b),
North (c), Southeast (d), and Southwest (e) China.

Figure 11 shows the long-term changes in TWSA, NDVI, and ET across China from
1982 to 2019. Since ET was the primary way that vegetation alters TWSA, it was included.
In the Northwest and North regions, TWSA showed a downward trend, while NDVI
and ET presented an upward trend (Figure 11a,c). Furthermore, the TWSA and ET exhib-
ited similar fluctuation trends, while NDVI showed an increasing trend in the Northeast
(Figure 11b). TWSA showed an increasing trend in humid regions with increasing NDVI
and ET (Figure 11d,e). Notably, precipitation in moisturizing areas was often not a driving
factor for vegetation changes. In general, TWSAs in the Northwest and North regions
decreased as NDVI and ET increased, and in Southeast and Southwest humid regions with
NDVI and ET increased.
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4. Discussion

China experienced substantial changes in vegetation cover, with a 75.78% increase
trend in NDVI from 1982 to 2019. Afforestation largely explains the spatial pattern of
vegetation greening across China. Some studies have shown whether large-scale vegetation
restoration leads to a decrease in regional water storage. Previous studies suggested that
implementing ecological engineering was beneficial in promoting vegetation greening
and related ET [8]. The increase in ET has led to decreased surface water and negatively
impacted TWSA, especially in water-limited areas. For instance, Li et al. [54] showed
that large-scale afforestation in North China led to an enhanced trend in soil drying. Lv
et al. [55] investigated that the increase in ET and precipitation dominated the decrease in
TWS change in the Yellow River basin, and that the increased vegetation coverage could
affect multiple hydrological processes. Li et al. [56] indicated that increased vegetation
productivity promoted increased ET but resulted in decreased TWSA in the Three-North
Region of China and Mongolia. However, it should be noted that high spatial heterogeneity
in the vegetation impacts TWSA variables across China.

The positive correlation between NDVI and TWSA accounts for 48.64% of the total
vegetation area across China. Spatially, the negative correlation between NDVI and TWSA
appeared in arid and semi-arid areas covered mainly by grasslands and agriculture. In
contrast, the positive correlation between NDVI and TWSA appeared in relatively humid
regions primarily covered by forests and savannas. Previous studies have reached similar
conclusions about the interaction between vegetation and TWSA. For instance, Asoka
et al. [57] reported that TWS was strikingly positively contacted with NDVI in most places
in the world, except for the energy-limited environment in northern latitudes. Xie et al. [1]
revealed that TWSA was significantly positively correlated with NDVI in about 43.17% of
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the world’s regions from 2003 to 2015. In addition, the response of vegetation greenness lags
behind the TWSA and precipitation, and short-time lags appeared in arid and semi-arid
areas covered mainly by grasslands. In contrast, longer-time lags appeared in relatively
humid regions primarily covered by forests and savannas. This result was consistent with
some other studies. For example, Wu et al. [58] reported that the time lag in arid and
semiarid areas was approximately 1 month, indicating the demand for water by regional
vegetation in these areas. Anderson et al. [59] suggested that the response of vegetation
greenness lags behind the TWSA, and the length of the time lags seems to depend on the
climate aridity, with more arid climates corresponding to shorter time lags.

In addition, TWSAs in Northwest and North China decreased as NDVI and ET in-
creased, and in Southeast and Southwest China, with NDVI and ET increased. The in-
creasing temperature, ameliorative vegetational coverage, and excessive groundwater
withdrawal jointly led to decreased TWSAs in the Northwest region [60]. Meanwhile,
warming-caused snowmelt and enhanced ET might also be responsible for the TWSA
decrease in the Northwest region [61,62]. Furthermore, the Haihe River was a typical irri-
gation agricultural area, and groundwater pumping led to the rapid decline in TWSA [63].
In the humid regions of Southeast and Southwest China, greening vegetation enhances
the water cycle by increasing ET and precipitation [16]. However, the atmospheric water
circulation caused by ET is relatively reduced in arid regions. Previous studies have also
reached similar conclusions. For instance, Xu et al. [23] showed that ice melting under
human-caused climate change was a driver of decreasing TWS in northwestern China. At
the same time, human water use was responsible mainly for groundwater depletion in
northern China. They also found that precipitation increases likely caused the increasing
TWS in southern China. Xie et al. [1] suggested that the increase in vegetation greenness
was an important reason for the decline of TWSA in Northern and Northwest China,
and vegetation greenness had an optimistic influence on TWSA in Southwest and South
China. Zeng et al. [16] showed that the increase in vegetation did not markedly diminish
runoff and soil moisture in humid regions, but it did strikingly decrease soil moisture in
arid regions.

Global warming and vegetation greening may impact the change in TWSA. However,
anthropogenic activities, such as land use/land cover changes, can also significantly alter
TWSA. Through the quantitative analysis of natural and human factors on TWSA by the
Geodetector model, it could be found that NDVI, precipitation, and ET were some of the
main factors affecting TWSA. Previous research indicated that water conservation was
mainly influenced by climate and vegetation. For instance, Chen et al. [28] suggested that
the water conservation capacity of the entire region, mountains, plateaus, and plains of
Beijing-Tianjin-Hebei was affected mainly by the soil-saturated hydraulic conductivity,
plant-available water content, precipitation, and precipitation, respectively. Zeng and Li [64]
found that the key influencing factors impacting water conservation included precipitation,
ET, and land use from 2005 to 2050 in the Weihe River. They also found that the key state
subset of key variables corresponding to the highest state of water conservation had the
characteristics of high vegetation coverage. From the perspective of water balance, Meng
et al. [65] reported that TWS changes were mainly attributed to changes in precipitation
and evaporation in the Tibetan Plateau from 2003 to 2014.

This study was mainly based on satellite products, so certain limitations and uncer-
tainties existed. Firstly, satellite products would be affected by atmospheric conditions,
sun angle, and other factors; thus, there was a specific deviation in accuracy [66]. Satellite-
observed NDVI often suffer from saturation problems in areas with high vegetation cov-
erage [67]. Secondly, GRACE has monitored the global TWSA since 2002. This study
employed a new global reconstruction of the long-term TWSA from 1982 to 2019. Although
the results verified that the reconstructed TWSA has high reliability, there were also specific
errors [33]. Thirdly, the potential factors affecting TWSA change selected in this study are
not comprehensive. Some other natural and anthropogenic factors (e.g., solar radiation,
soil moisture, geomorphic type, GDP, water conservation projects, and human water usage)
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should be considered in future research [29]. Despite these limitations, this study effec-
tively quantified the relative contribution of the main driving factors and their interactions
with TWSA.

5. Conclusions

Based on the observed and satellite hydro-meteorological data, this study investigated
the effects of climate change and vegetation greening on TWSA across China using the
Geodetector model. The main conclusions are as follows:

(1) The area of TWSA showed a decreasing trend of 61.16%, and only 38.84% of the region
showed an increasing trend across China from 1982 to 2019. Simultaneously, the areas
of significant decline were mainly distributed in North China, southeast Tibet, and
Xinjiang in the northwest, and the areas of significant increase were primarily in the
Qaidam Basin, the Yangtze River, and the Songhua River.

(2) Vegetation showed a significant greening trend, and the increase accounted for 75.78%
across China from 1982 to 2019. The positive correlation between NDVI and TWSA
was 48.64% across China. Considering the lag effect between monthly NDVI and
TWSA, precipitation, the lag time was shorter in arid and semi-arid regions domi-
nated by grasslands, and longer in relatively humid regions dominated by forests
and savannas.

(3) TWSAs decreased with the increase in NDVI and ET in arid and semi-arid regions
and increased with the increase in NDVI and ET in humid regions. The Geodetector
model further discussed the influence of climate and human factors on the variability
of TWSA. The results showed that the three most critical variables affecting TWSA
were NDVI, precipitation, and ET, with 0.213, 0.198, and 0.162 values, respectively.
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