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Abstract: Variable rate application (VRA) is a crucial tool in precision agriculture, utilizing platforms
such as Google Earth Engine (GEE) to access vast satellite image datasets and employ machine
learning (ML) techniques for data processing. This research investigates the feasibility of imple-
menting supervised ML models (random forest (RF), the support vector machine (SVM), gradient
boosting trees (GBT), classification and regression trees (CART)) and unsupervised k-means clus-
tering in GEE to generate accurate management zones (MZs). By leveraging Sentinel-2 satellite
imagery and yielding monitor data, these models calculate vegetation indices to monitor crop health
and reveal hidden patterns. The achieved classification accuracy values (0.67 to 0.99) highlight the
potential of GEE and ML models for creating precise MZs, enabling subsequent VRA implementa-
tion. This leads to enhanced farm profitability, improved natural resource efficiency, and reduced
environmental impact.

Keywords: variable rate application (VRA); Google Earth Engine (GEE); Sentinel-2; vegetative indices
(VI); machine learning (ML); agricultural management zones

1. Introduction

The primary production sector, especially agriculture, is pivotal in driving the global
economy, mitigating rural depopulation, and fostering economic development. Therefore,
European sustainability strategies emphasize the importance of digital environments and
advanced technologies in the agricultural sector, particularly those aimed at reducing
inputs through variable applications, ensuring production efficiency, optimizing processes,
and enhancing overall sustainability [1].

Management zones (MZs) have emerged by applying specific management strategies
using the right amount of input at the right time and place [2], being a promising solution
to address significant challenges in agriculture, including minimizing inputs via variable
application rates, optimizing production efficiency, streamlining processes, and bolster-
ing overall sustainability [1]. By establishing these zones, farmers can customize their
management strategies to cater to the unique requirements of each zone, factoring in the
spatial variability present within their fields. As a result, this targeted approach promotes
more efficient resource utilization, ultimately supporting farming operations’ long-term
sustainability and profitability. However, the delimitation of MZs in crop plots remains
challenging due to the multiple factors contributing to spatial and temporal variability in
the field. Factors such as soil variability (texture, structure, and water content), terrain
topography (slope, orientation, and altitude), climatic conditions, crop genetic variability,
or biotic influences contribute to remarkable and temporal variability in the field [3,4].
Despite the considerable amount of literature supporting the effectiveness of these tech-
niques [5–7], precision agriculture techniques can present challenges and limitations for
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farmers for reasons such as cultural perception, access to technology, a lack of technical
knowledge on the part of farmers themselves, or the high costs of implementing this type
of technology [8].

The modernization of the agricultural sector encompasses many cutting-edge technolo-
gies beyond installing sensors in the field. These technologies are transforming agriculture
by improving the efficiency and precision of farming practices. Within this wide range
of technologies, we can highlight the use of remote sensors such as satellites and aerial
imagery, artificial intelligence (AI), and big data to analyze large amounts of data, identify
patterns, and predict variables. Cloud computing services allow the storage and processing
of large volumes of data, providing greater computing capacity. In addition, nanotech-
nology is applied to developing new and improved chemical products. Robotics is used
to automate tasks. Blockchain is used to track and verify the food supply chain. The
crucial role of drones equipped with cameras and sensors for crop data collection, or the
Internet of Things (IoT), is to establish a wireless connection between agricultural devices
and sensors [9–15]. These technologies aim to enhance agricultural efficiency and improve
sustainability [16,17]. This is where precision agriculture (PA) comes into play [18], with
vegetation indices [19] being a significant contribution to agriculture since the 1970s, as
they have provided an efficient and accurate way to assess vegetation health and vigor at
different spatial and temporal scales [20].

In recent decades, remote sensing [21] has experienced significant advancements in sen-
sor quality [22,23], leading to increased image resolution and enhanced dataset availability.
This progress can be attributed to various satellite sources such as Landsat 8, Sentinel 2, or
RapidEye, proximity remote sensing using RGB, multispectral and hyperspectral cameras,
and terrestrial laser scanners (LIDAR), among many other devices. In addition, the great
relevance of unmanned aerial vehicles (UAV) and other aerial platforms such as airplanes
or helicopters should be highlighted. Developing new sensors, AI, big data techniques, and
cloud computing platforms [24] will propel this trend further. Cloud computing platforms,
such as Google Colab, Amazon Web Services (AWS), and Google Earth Engine (GEE) [25],
offer efficient means for storing, accessing, and analyzing datasets on powerful servers [26].
On the other hand, machine learning (ML), which is a branch of AI [27], has demonstrated
its potential for revolutionizing the agriculture sector [28]. ML algorithms can be broadly
categorized into two main types: supervised learning (SL) and unsupervised learning (UL).
SL focuses on predicting dependent variable values from independent variables [29], while
UL aims to discover information, structures, or patterns in the data [30]. However, many
agricultural plots lack crop monitoring due to factors such as limited resources, connectivity
issues, a shortage of experts, or a lack of time and knowledge on the part of the farmer.
This often results in missing data necessary for precision agriculture, such as yield monitor
data and soil and crop moisture data. ML can address the limitations of agricultural plots
by employing knowledge transfer models. These models are trained in accessible areas and
then applied to hard-to-reach areas, enabling the application of ML in areas with limited
resources or data availability. Another way to implement ML models in this type of plot
would be by accessing and analyzing historical data, which could be used as input for
model training. In addition, there would be the possibility to select a representative set
of nearby plots with similar characteristics to the plot(s) with access limitations, train the
models with these data, and ensure that the results and models apply to the rest of the
plots. Consequently, VRAs on seeding or fertilization could be performed.

The objective of this research is to implement ML models, such as random forest
(RF), support vector machine (SVM), gradient tree boosting (GTB), and classification and
regression trees (CART), in conjunction with satellite data and yield monitors to identify
management zones in study plots. By training these models, we aim to estimate the
yield of other plots for which yield data are unavailable and automatically identify their
zones. In addition, ground truth data and field yield data-based maps will validate the
generated zones.
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2. Materials and Methods

In this research, two data sources were employed to understand the spatio-temporal
variability of agricultural plots and delineate management zones. Firstly, the GEE platform
was utilized, providing access to a wide collection of high-resolution satellite images
from different satellites. Then, using Sentinel-2 images, various vegetation indices were
calculated, which provide relevant information about crops, such as the presence of stress,
pests or diseases, or nutrient deficiencies, thereby evaluating the vegetative state of the
crops. Additionally, yield data from multiple agricultural plots were collected using
yield monitors installed in the harvesters. This allowed us to record detailed information
regarding the production of the agricultural plots under study. The research flowchart,
depicted in Figure 1, encompasses five distinct steps that were executed in this study.
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2.1. Experimental Sites

The study was conducted in ten commercial fields cultivated with maize (Zea Mays L.)
during the 2022 season. Fields were located in the Spanish provinces of Huesca, León,
Salamanca and Zamora, as described in Table 1.

In addition to the above table showing the location of each of the study plots, Table 2
shows the agronomic data of these plots to facilitate the interpretation of the data obtained
in the research.

Fields used as training and validation sets were planted between the 15th and 20th
June 2022, and the harvesting dates were between the 4th and 28th December 2022, whereas
the fields from Leon and Zamora used as a set of testing were planted on the 28th and
30th April 2022, respectively, and they were harvested on the 11th and 29th of November
2022. Yield data for each one of the fields were collected using a Claas Lexion 750 Montana
combine harvester, equipped with a self-leveling system to compensate for uneven ground,
an electro-mechanical guidance system, and a yield sensor to determine the quantity and
quality of the harvested grain.
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Table 1. The study plots’ characteristics, including location, coordinates, area, and their utilization in
training the model.

Location Coordinates: EPSG 4326
(Longitude, Latitude) Area (Ha) Use Zoning

Model

Monzón, Huesca 0.144, 41.930 28.29 Train-validation
Estiche de Cinca, Huesca 0.045, 41.804 13.16 Train-validation

Santalecina, Huesca 0.078, 41.805 8.08 Train-validation
Babilafuente, Salamanca −5.439, 40.993 1.95 Train-validation

Santalecina, Huesca 0.109, 41.763 6.17 Train-validation
Belver de Cinca, Huesca 0.183, 41.697 4.36 Train-validation
Osso de Cinca, Huesca 0.212, 41.688 4.32 Train-validation

Castejón del Puente, Huesca 0.133, 41.979 8.16 Train-validation
Cabreros del Río, León −5.523, 42.401 24.70 Test

Coreses, Zamora −5.643, 41.518 3.36 Test

Table 2. Experimental fields encompass agronomic practices, soil properties, cultivar details, and
weather conditions.

Location Hybrid of Corn Type of Soil Slope (%) Altitude (m) Irrigation Techniques Average Rainfall (mm) *

Monzón, Huesca DKC5032YG Loam 0.50 293 Sprinkler 234.1
Estiche de Cinca, Huesca P0937 Clay-loam 3.00 271 Sprinkler 234.1

Santalecina, Huesca P0937 Loam 0.25 241 Sprinkler 234.1
Babilafuente, Salamanca P0937 Sandy-loam 3.00 814 Sprinkler 232.9

Santalecina, Huesca DKC6980 Loam 0.25 222 Sprinkler 234.1
Belver de Cinca, Huesca DKC6980 Clay- loam 3.00 206 Sprinkler 178.6
Osso de Cinca, Huesca P0937 Loam 1.00 240 Sprinkler 178.6

Castejón del Puente, Huesca DKC6980 Sandy-loam 2.00 392 Sprinkler 234.1
Cabreros del Río, León P0710 Loam 0.50 764 Sprinkler 265.6

Coreses, Zamora P0937 Loam 0.00 630 Sprinkler 224.4

* Average rainfall during the trial period. Sometimes this value is the same because the nearest weather station is
the same.

2.2. Analysis of Yield Data

The field-collected yield data from each plot, obtained using a yield sensor, necessitate two
types of analysis. First, a numerical analysis must be performed to remove data that generate
noise, such as null values, zeros, or other out-of-range values exhibiting significant variability
compared to the mean. Second, a geospatial analysis is essential to examine the spatial behavior
of the data and evaluate the influence of each data point on its neighboring values.

The raw performance data underwent two primary processes. The first process, nu-
merical analysis, was conducted using an open-source geographic information system,
QGIS v3.12 [31]. The second process involved a geospatial analysis carried out on the
same QGIS platform. Then, using the Smart-Map plug-in [32], semivariograms, which
provide information on the spatial variability of the data as a function of distances, and
interpolations were generated using the ordinary Kriging method in conjunction with ML
techniques [33], which use information from nearby sampling points to predict values
at unsampled locations. These techniques were applied to create maps of management
zones from the yield data, representing the reality on the ground. The maps obtained
allow the spatial variations captured to be compared with the area maps generated by GEE
from yield data and satellite images. After processing the data, it is essential to designate
appropriate output labels for use in ML models used for zoning. In this case, yield values
were categorized into three classes, as previous studies have shown no significant improve-
ment in results using more than three classes. Therefore, it is generally recommended to
delineate between three and five types [34–38]. Considering the yield data available after
the elimination of outliers, it was decided to establish the following three classes. The
first class consisted of yield values ranging from 1.00 to 7.99 tons per hectare (t/ha), the
second class fell between 8.00 and 11.99 t/ha, and the third class was between 12.00 and
30.00 t/ha. This decision is based on the previous study of the data since it was carried out
to obtain a dataset of classes with a certain degree of balance, containing several similar
samples, to avoid biases in the ML models, improve generalization and robustness, and
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avoid overfitting problems [39]. In addition, agronomic reasons are taken into account
so that the range of the third class (12.00–30.00 t/ha) is set taking into account that the
average maximum yields at plot level in the northern areas of Spain, provided by the large
seed companies with distribution in Spain, are placed in values of up to 22.4 t/ha in 2020,
up to 20.6 t/ha in 2019, or up to 23.6 t/ha in 2018 [40]. Once the output labels have been
designated, all maps are exported as a single shapefile, which can be imported into the
GEE platform. Along with the vegetation index data obtained, this shapefile constituted
the training-validation dataset for zoning. Following this approach, we can ensure that the
ML models were trained on a high-quality dataset that accurately represents the different
yield levels observed in the study area. This can lead to more accurate and reliable zon-
ing results, which can ultimately help optimize agricultural management practices and
improve crop yields.

2.3. Vegetation Indices

The GEE platform’s application program interface (API) [41] was used to calculate var-
ious vegetation indices and delineate MZs. This interface can be accessed through the web
browser using the GEE code editor. The code editor provides an interactive interface where
JavaScript code is developed and executed. Implementation in GEE involves following a
series of steps, among which are data loading and manipulation, including the loading
of geospatial data from the extensive library of datasets available in GEE and their ma-
nipulation through filtering, trimming, etc., operations using the JavaScript language; the
analysis and processing of the data using a wide range of functions such as the generation
of vegetation indices; the creation of predictive models using ML models; or the calculation
of statistics and the visualization of the results in the form of interactive maps that allow
the use of legends, colors, and selection of regions. A maximum cloudiness threshold of
20% was set for image selection and a cloud mask. The QA60 cloud mask refers to a quality
band that is included in MSK_CLASSI and contains both opaque clouds (band 11) and
cirrus clouds (band 10), with an indicator specifying the type of cloud (cirrus or opaque
clouds). This mask contains information about the pixel quality in terms of cloud presence,
cloud shadows, snow, water, or band saturation, among others. The mask determination
method is composed of a series of steps such as atmospheric correction, the definition of a
blue reflectance threshold for opaque clouds, the calculation of the snow index, and mask
refinement [42].

The images collected from 5th July to 5th November 2022, for the training plots and
from 5th June to 5th October 2022, for the test plots, covered approximately 36–38 days
after sowing (DaS) and a BBCH 19 [43] growth stage, where the crop had approximately
20% ground cover, reducing soil reflectance. The start of the period was chosen to avoid
problems with crop reflectance or obtaining low and unrepresentative values of the veg-
etative indices. The end date corresponded to a BBCH 87 growth stage, where the crop
had approximately 80% ground cover and occurred before the onset of crop senescence.
We highlight that the BBCH scale is a system for uniformly coding phonologically similar
growth stages of all monocotyledonous and dicotyledonous plant species. The BBCH scale
is a system for the uniform coding of phenologically similar growth stages in monocotyle-
donous and dicotyledonous plant species. This scale uses the base structures described by
Zadoks in 1974 [44].

A total of 52 and 54 images were analyzed for the training and test plots, respectively.
Ten published vegetation indices (Table 3) were calculated to assess the vegetative state of
the crops. The objective was to select the index(es) that would provide the best classification
accuracy, realism, and field implementability (Table 4).

At the GEE (Google Earth Engine) level, the most efficient approach to working with
large datasets is to utilize time series that encompass the entire required period. However,
handling such extensive datasets becomes challenging without applying reduction func-
tions provided by GEE. These reduction functions offer three options: ee.Reducer.min(),
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ee.Reducer.median(), and ee.Reducer.max(). In this study, the reduction function that
calculates the mean was implemented, as depicted in Figure 2.

Table 3. Description of several vegetation indices extracted from Sentinel-2 data can be obtained
through a literature review.

Index Description Formula

ARVI [45] Atmosphere Resistant Vegetation Index (nir − (2 × red) + blue)/(nir + (2 × red) + blue)
EVI [46] Soil-adjusted vegetation index 2.5 × (nir − red)/(nir + 6.0 × red − 7.5 × blue + 1.0)
GCI [47] Chlorophyll Green Index (nir)/(green) − 1

GNDVI [48] Normalized Difference Vegetation Green (nir − green)/(nir + green)
MCARI [49] Modified Chlorophyll absorption ratio Index ((red edge − red) − ((0.2 × (red edge − green)) × (red edge/red)))
MSAVI2 [50] Modified Soil Adjusted Vegetation Index ((2 × nir + 1) − (((2 × nir + 1)2) − (8 × (nir − red)))0.5)/2
NDRE [51] Normalized Difference Red Edge Index ((nir − red edge)/(nir + red edge))
NDVI [52] Normalized Difference Vegetation Index (nir − red)/(nir + red)
SAVI [53] Normalized green difference vegetation index 1.5 × [(nir − red)/(nir + red + 0.5)]
SIPI [54] Structure Insensitive Pigmentation Index ((nir − blue)/(nir + blue))

Table 4. Description of the spectral and spatial resolution of the Sentinel-2 bands utilized in this
study are considered.

Name Sentinel-2 Band Spatial Resolution (m) Bandwidth (nm)

Blue Band 2 10 65
green Band 3 10 35

red Band 4 10 30
red edge * Band 5 20 15

nir Band 8 10 115
* When the red-edge band has a spatial resolution of 20 m, GEE automatically represents the index results with a
spatial resolution of 20 m × 20 m. A reprojection function is used to represent the generated map with the same
exact resolution as the other indices. This function (Equation (1)) allows us to define the resolution as 10 m.
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resizedImage = original Image.reproject({crs : original Image.projection()scale : newScale}) (1)

where originalImage is the original image to be resized; reproject () is the GEE function
used to change the image projection; crs: originalImage.projection specifies the output
projection for the resized image. In the case under study, the same projection of the original
image is used; scale defines the new scale for the resized image, where newScale is the
desired scale value in meters.

2.4. Machine Learning Models

In addition to offering functions for calculating spatial and spectral operations, the
GEE platform provides other mathematical functions and advanced ML algorithms, both
supervised and unsupervised [55]. The dataset was partitioned into a 70–30% split for
training and validation, resulting in 8670 data points for training and 3717 data points for
validation. A series of steps were taken to combine the data from the different sources. Once
the yield data, the satellite images corresponding to the defined period and the vegetation
indices have been imported, the training and validation datasets are prepared. For this
purpose, many feature collections based on the yield data are defined as zones to be used,
in this case, three zones. In these zones, the filter.lt and filter.gte functions are used to split
the data into 70–30%. The merge function is then used on both the training and validation
data to merge the defined zones into a single variable. Next, the sampleRegions function is
used, which takes as input the vegetation indices calculated for the image collection and the
previously defined training variable containing the performance-based zone labels. Finally,
the ML models are implemented, which take as their training dataset the training variable
with the performance data and the calculated vegetation indices. The general equation to
implement the indices would be as follows:

Classi f ication = ee.Classi f ier.MLmodel().train(trainingvariable, ‘column
′
zones, vegetationindex) (2)

where training variable refers to the performance data file, “column zone” is the name
of the column of the performance data file containing the classes that have been defined
before loading the dataset into GEE, and vegetative index is the band originating from the
calculation of the index to be used.

Four supervised ML algorithms, including classification and regression tree (CART),
random forest (RF), gradient boosting trees (GBT), and support vector machine (SVM),
were implemented. The CART algorithm is a statistical procedure that identifies mutually
exclusive and exhaustive subgroups of a population based on common characteristics [56].
During the investigation, only the parameter minLeafPopulation = 1 was considered, so
that the generated nodes contained at least one point. RF is a set of decision trees that
reduces overfitting and improves prediction accuracy using different subsets of data and
features [57,58]. In the case study, 100 trees were used to perform training and subsequent
classification. GBT is another ensemble method that trains trees sequentially, fitting each
new tree based on the residuals of the previous trees, resulting in a weighted combination
of all previous models [59,60]. As in RF, 100 trees are used. The rest of the parameters
employed use the default values defined in the function itself. SVM, on the other hand, finds
the optimal hyperplane to separate the observations into classes based on the features [61].
In this case, the implementation of this algorithm is carried out with the default values
of each of the parameters that compose it. The k-means clustering algorithm was also
implemented to compare its performance with the supervised classification models based
on yield values and vegetation indices. K-means is an unsupervised clustering method
that groups data points into clusters based on feature similarity [62]. It starts with a
set of random centroids and performs repetitive calculations to optimize the position of
the centroids.
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2.5. Evaluation Metrics and Delineation of Homogeneous Management Zones

ML models must be evaluated using specific metrics to test their robustness [63]. This
research used two popular accuracy indicators, namely the overall accuracy (Equation (3))
and the Kappa coefficient (Equation (4)), to evaluate the supervised classification algorithms
used in the GEE platform.

Accuracy =
True Positives

True positives + False Positives
(3)

where true positives (TP) are the positive cases correctly classified as positive by the model,
and false positives (FP) are the negative cases incorrectly classified as positive by the model.

K =
Po− Pe
1− Pe

(4)

where Po is the observed proportion of agreement between raters or evaluators. It is
calculated by dividing the number of observed agreements by the total number of ratings
performed, and Pe is the expected proportion of agreements due to chance. It is calculated
by multiplying the marginal proportions of the ratings separately and summing up the
results [64].

For the authors of [65] (pp. 111–115), overall accuracy is defined as the proportion of
correct model predictions in the training dataset and is calculated by dividing the number
of accurate predictions by the total number of predictions. However, overall accuracy may
not always be the most useful measure since, if the classes are unbalanced, the accuracy
values may be somewhat misleading. In these cases, the Kappa coefficient may be the
right metric, as it measures the agreement between true labels and predictions, considering
the distribution of classes [66]. However, for the clustering algorithm used, k-means, a
visual interpretation of the results was performed, taking as a reference the performance
maps generated through kriging in QGIS. The calculation of these metrics requires the
prior calculation of the confusion matrix, which is a fundamental tool in the evaluation
of classification models. It generates a table that shows the number of instances classified
correctly and incorrectly by the model. TP indicates the instances that are positive and
were classified correctly; true negative (TN) indicates the instances that are negative and
were classified correctly; FP indicates the instances that are negative and were incorrectly
classified as positive; and false negatives (FNs) indicate the positive instances that were
incorrectly classified as negative [67].

Metrics that have been used to assess the accuracy of maps generated as ground
truth using the Smart-Map plug-in are root mean square error (RMSE), defined as the
difference between predicted and actual values in regression models, and the coefficient of
determination (R2), which measures the variability of the data in the range 0–1, where 0
explains no variability and 1 explains all variability [68].

Finally, after the classification of the data using ML algorithms, an isolated pixel
attenuation method was used, which applies a morphological reducer to each band of
the image using an octagonal kernel of radius 6 m, allowing mapping criteria such as the
minimum mappable area to be met, facilitating its use in agricultural machinery and its
use in the field.

3. Results
3.1. Variability and Geospatial Mapping of Crop Plot Yields

The analysis of the inter-plot variability of the yield data revealed that the most
suitable models were linear and spherical, with two cases showing exponential trends.
Furthermore, the prediction accuracy metrics used to evaluate the fit of these models
showed high accuracy, as evidenced by the R-squared values being very close to 1 and
the RMSE values being close to 0. The lower the RMSE value, the higher the accuracy of
the model (see Table 5). This indicates that the values fit well with the models used for
interpolation, both for the training plots and the test plots.
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Table 5. Description of semivariogram parameters derived from the yield maps that were utilized in
this study.

Plot Model R2 RMSE

Monzón, Huesca Linear to Still 0.994 0.097
Estiche de Cinca, Huesca Exponential 0.994 0.025

Santalecina, Huesca Spherical 0.985 0.38
Babilafuente, Salamanca Linear to Still 0.984 1.96

Santalecina, Huesca Spherical 0.987 0.274
Belver de Cinca, Huesca Spherical 0.992 0.089
Osso de Cinca, Huesca Spherical 0.978 2.007

Castejón del Puente, Huesca Exponential 0.991 0.208
Cabreros del Río, León Linear to Still 0.981 0.220

Coreses, Zamora Linear 0.785 8.957

The geospatial maps of the two plots, generated using the ordinary kriging function
of the QGIS Smart-Map plug-in, revealed five distinct zones (see Figure 3). Based on this
differentiation and the number of zones, management zone maps for both plots were
created using the same plug-in, which showed the same pattern as the maps generated
through interpolation (see Figure 4). In both plots, the low-yield zone was mainly attributed
to areas near the plot’s edges, particularly in the headlands. In the plot in Cabreros del Río,
León, low-yield zone 1 was situated towards the plot’s edges, especially in the headland
area, while the highest-yield zone was located in the middle-lower area of the plot. As for
the plot in Coreses, Zamora, zone 1 of lower yield was also situated at the plot’s edges,
with a more pronounced effect in the headland and lower part of the plot. The high-yield
zones were distributed, intermingled with zone 2 of medium yield throughout the plot.
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3.2. Accuracy of Generated ML Models and Classification Maps

The generation of maps using ML models requires assessing the classification accuracy,
for which the overall accuracy (Table 6) and the Kappa coefficient (Table 7) were used for
each of the proposed indices.

Table 6. Overall accuracy of supervised ML models in classifying training data for map generation.

Accuracy

Plots Model ARVI EVI GCI GNDVI MCARI MSAVI2 NDRE NDVI SAVI SIPI

Training-
validation

RF 0.9501 0.9538 0.9520 0.9492 0.9547 0.9507 0.9493 0.9502 0.9510 0.9505
GBT 0.7848 0.7848 0.7747 0.7811 0.7254 0.7807 0.7772 0.7628 0.7794 0.7807

CART 0.9931 0.9935 0.9937 0.9937 0.9936 0.9933 0.9935 0.9929 0.9929 0.9930
SVM 0.6779 0.6675 0.6831 0.6926 0.4638 0.6662 0.7771 0.6556 0.6628 0.6897

Table 7. Kappa coefficient of the supervised ML models in the classifying data for map generation.

Kappa Coefficient

Plots Model ARVI EVI GCI GNDVI MCARI MSAVI2 NDRE NDVI SAVI SIPI

Training-
validation

RF 0.9227 0.9169 0.9189 0.9232 0.9229 0.9149 0.9162 0.9242 0.9206 0.9194
GBT 0.6330 0.6280 0.6270 0.5360 0.6361 0.6352 0.5789 0.6369 0.6314 0.6331

CART 0.9891 0.9882 0.9889 0.9884 0.9891 0.9882 0.9887 0.9880 0.9891 0.9894
SVM 0.4144 0.4445 0.4319 0.1894 0.4452 0.4608 0.3960 0.4361 0.4281 0.4466

The RF and CART models achieved the highest accuracy and Kappa coefficient values,
exceeding 0.90. The RF model, which is an ensemble model that combines multiple decision
trees trained on random data samples to improve accuracy and reduce overfitting, was
more robust than other models were, leading to its higher accuracy. Similarly, the CART
model’s capacity to divide data into smaller subsets based on crucial characteristics can
improve the interpretation and classification of the data, particularly with categorical
variables [69]. Hence, based on the high accuracy achieved by the CART model, it was
selected for the classification of the two test plots in León (Figure 5) and Zamora (Figure 6).
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Comparing the zone map generated by the Smart-Map plug-in based on yield data
from the León plot (Figure 4) with the maps generated by the CART model for the same
plot (Figure 5), it was observed that all indices exhibited similar patterns related to the
yield map. In addition, all indices had differentiated values around the plot’s perimeter,
with isolated high-value areas in the interior. This is because of the edge effect caused in
agricultural plots. This effect is caused by different factors, such as the excessive passage
of agricultural machinery during operations, competition with weeds, physical damage
caused by the wind, and the presence of roads along the perimeter of the plot, which
leads to sediment runoff from the roads into the plot. Notably, the SIPI index identified a
distinct high-yield zone in the lower-middle area of the plot, which was also apparent in
the yield map.

These results indicate that machine learning algorithms, such as CART and RF, can
provide accurate predictions of crop yield based on remote sensing data. Hence, machine
learning and geospatial analysis techniques provide a valuable tool set for agricultural
researchers and practitioners seeking to enhance crop yield predictions and optimize
management practices. By leveraging these methods, we can gain valuable insights into
the spatial variability of crop yield, identify factors contributing to yield variation, and
develop management strategies to improve overall productivity.
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Factors contributing to variation in final crop yield that could be detected by vegetation
indices include the presence of water or heat stress, nutritional deficiencies, or the presence
of pests and diseases [70–72].

A similar comparison was made between the zone map generated by Smart-Map
using the yield data from the Zamora plot (Figure 4) and the maps obtained using the
CART model (Figure 6). The yield zone map showed the most significant variations in the
perimeter zones of the plot, while zone three predominated in the interior zone, which
was eclipsed by zone two values in the eastern and western parts. The maps generated by
the CART model exhibited the same pattern in the perimeter zones of the plot as the yield
zone map. Still, there were differences in the interior part, likely due to the non-significant
difference in the values of each of the vegetative indices calculated.

Like SL models, the k-means algorithm aims to identify spatial patterns in test plots,
providing valuable information about their distribution. Figure 7 presents the maps
generated based on various vegetation indices for the León test plot. Although all maps
exhibit some similarity to the yield zone map obtained for the 2022 season in this plot
(Figure 4), the modified chlorophyll absorption ratio index (MCARI) map is the most
similar, as it identifies a distinct area in the mid-lower part of the plot that corresponds to a
differentiated area in the yield zone map. Additionally, the MCARI index exhibits a pattern
close to that of the plot’s edges.
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The maps generated using the k-means algorithm for the Zamora field (Figure 8)
revealed an interesting peculiarity. Despite identifying the base pattern observed in the
yield zone map (Figure 4), where the differentiation between the headland and border
zones and the rest of the plot is apparent, several indices, such as ARVI, EVI, MSAVI2,
NDRE, and SIPI, exhibited a two-zone classification when applied to the k-means model.
This was likely due to the similarity in their values, which prevented the k-means model
from establishing a three-zone classification.
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3.3. Management Zone Maps for Variable Application

Maps generated using ML classification algorithms use isolated pixels, which are
unsuitable for having management zones that can be easily integrated into agricultural
machinery and reproduced in the field. Consequently, a morphological filter was applied to
the maps of the two test plots (León and Zamora) generated, which converted the maps in
(Figures 5 and 6) into maps with management zones adaptable to the field without losing
sight of the pattern identified by the classification of the ML models (Figures 9 and 10).
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4. Discussion

The findings presented in this research highlight the immense potential of integrating
machine learning models with satellite data and yield monitors to effectively identify MZs
in the cloud using GEE. Prior to this study, numerous researchers, such as Quebrajo et al. [1],
had employed time-consuming and manual techniques for creating management zones,
which are not ideal from a precision agriculture standpoint. However, with the utilization
of ML models in conjunction with satellite data and yield monitors, the process can be
significantly streamlined and optimized for PA applications.

The GEE platform is one of the most efficient geospatial data analysis and processing
tools. The GEE platform is a very effective geospatial data analysis and processing tool,
providing access to large volumes of satellite data, including Sentinel-2 data. Unlike
studies such as [73,74], where field data are used to perform zonal management in maize
cultivation, the GEE platform allows the obtention of accurate and up-to-date data on crop
vegetative status remotely without the need to take field data [75]. This makes it possible
to monitor plots that are difficult to access. An example of this would be agricultural plots
located in mountainous or hard-to-reach areas due to the terrain’s topography. Plots are
located in protected environments or natural reserves, where access restrictions are often
imposed to protect biodiversity and ecosystems. It is also worth noting those plots of
extensive crops with large surfaces, due to their size, can make it challenging to access
all areas.

GEE’s cloud-based platform does not require internal storage, streamlining work and
the elimination of expensive hardware and software. In addition, GEE enables the imple-
mentation of ML techniques and models. The segmentation and classification of satellite
images using ML techniques, both supervised, such as RF or CART, and unsupervised,
such as k-means, allow the identification of patterns in the data and the understanding
of the spatial and temporal variability of the plot to perform agricultural practices in a
targeted manner [76]. Applying these techniques allows for more sustainable agricultural
management by generating maps of management zones that will enable much more accu-
rate planning of agricultural work and identify areas that require fewer inputs, leading to a
reduction in production costs and a possible improvement in the quality and yield of crops.

These results indicate that machine learning algorithms, such as CART and RF, can
provide accurate predictions of crop yield based on remote sensing data. Furthermore,
using geospatial analysis tools, such as Smart-Map, can help identify and delineate ar-
eas of high and low yield variability, which could help optimize management practices
and improve overall crop yields. These findings have important implications for preci-
sion agriculture. They can help farmers make informed decisions on input applications,
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irrigation management, and crop rotations, leading to more efficient resource use and
increased profitability.

In comparison to previous research such as [77,78], where MZs were established in
corn by downloading satellite images and subsequently processing them, the utilization of
GEE provides the advantage of automatically generating zone maps without the need to
download the images or bands. This significantly streamlines the process and eliminates
the additional steps involved in data acquisition. Furthermore, when compared to other
studies such as [79,80], which reported Kappa coefficient values ranging from 0.32 to 0.79
and 0.63 to 0.73, respectively, the ML models employed in this research demonstrated
significantly higher values. Particularly, the CART and RF models exhibited superior
performance, with Kappa coefficient values ranging from 0.90 to 0.99. These findings
highlight the enhanced accuracy and reliability achieved through the implementation of
these machine learning models in conjunction with GEE, surpassing the results obtained in
earlier studies.

Although there is room for improvement in the results, particularly with respect to
the availability of a more comprehensive dataset that includes a larger number of fields,
it can be summarized that this research showcases the potential of integrating advanced
technologies such as GEE, remote sensing, and ML models with farm management practices.
By combining these techniques, valuable and timely crop information can be obtained,
resulting in enhanced decision making processes and optimized resource allocation through
variable rate application. The study highlights the significance of leveraging these cutting-
edge technologies to improve agricultural practices and achieve more efficient and precise
agricultural outcomes.

5. Conclusions

The findings of this manuscript demonstrate the effectiveness of integrating both
supervised (CART, GBT, RF, and SVM) and unsupervised (k-means) ML models with GEE
and Sentinel-2 imagery for vegetative crop monitoring and the automated generation of
agricultural management area maps based on vegetation indices. This innovative approach
offers a valuable solution that has the potential to replace specific field data collection tasks
that may be challenging to conduct due to economic constraints, agricultural limitations, or
accessibility issues.

Looking ahead, the future holds the promise of free access to multispectral optical
satellite images with lower resolutions than those of the current standards. This anticipated
advancement opens doors for the further development and refinement of agricultural
applications for MZs with even greater precision. By capitalizing on these improved data
sources, future research can expand the scope and accuracy of ML models in precision
agriculture, enabling more informed decision making processes for farmers.
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