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Abstract: The Fourier–Merlin transform method, multi-scale optical flow method, and Weibull
distribution are used to integrate the GRAPES_3 km model and Radar Extrapolation Forecast (REF)
both developed independently by China. Taking GRAPES_3 km, Wuhan Rapid Update Cycle
(WHRUC), and the REF as examples, the prediction performance of the Blending forecast is evaluated
comprehensively by the traditional point-to-point method. A new spatial test method is introduced
to evaluate the applicability and difference of high-resolution model evaluation. The area, position,
shape, and intensity of the precipitation area are matched through the target object test method. The
potential forecast information of the spatial field is obtained and the related results are compared and
analyzed. The results show that: (1) the comprehensive application of various evaluation methods
can evaluate the convective storm forecast more comprehensively. The Blending forecast effect is
obviously better than those of other models by using the point-to-point scoring method, especially in
the heavy precipitation forecast. The shorter the prediction time is, the better the effect is. (2) The
new spatial test method can evaluate the prediction effect of convective storm characteristics, and
the target recognition hit rate of the Blending forecast is highest. The scores of target area, position,
shape, and median intensity of precipitation are better than those of other forecasts. The variation in
the east–west direction is less than that in the north–south direction, which is basically consistent
with the actual observation. The variation range of the forecast grid before and after translation is the
closest to the reality. (3) The Blending forecast method combines the advantages and disadvantages
of the numerical model and REF, which can not only grasp the precipitation area but also improve
the prediction ability of rainfall intensity. The traditional point-to-point scoring method and the new
spatial test method have the same conclusion as the convective storm forecast of the high-resolution
model, which has a certain reference value, and the new spatial test method can provide more detailed
evaluation information.

Keywords: mesoscale numerical prediction; radar extrapolation; blending technology; short-term
and impending forecast of precipitation echo; MODE

1. Introduction

The flood and geological disasters caused by severe convective weather cause great
harm to people’s life and property. It is of great significance to forecast them and provide
early warnings [1,2]. The Radar Extrapolation Forecast (REF) and Meso-scale Numerical
Weather Prediction (NWP) have become the key technical support for the short-term
Quantitative Precipitation Forecast (QPF) at present [3–5]. The problem of “spin-up”
always exists in the model forecast in the first few hours, which leads to poor prediction
results in the first few hours and cannot be directly applied to the short-term approaching
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forecast. REF and NWP have their own advantages, and their combination can improve
the prediction ability of 0~6 h. Therefore, the integrated precipitation forecast based on the
numerical model and radar extrapolation is developing rapidly [6–9].

The spatial inspection methods of the precipitation field can be divided into the
following two categories: traditional point-to-point-based inspection technology and object-
oriented inspection technology [10]. Brownlee classified weather events through a two-
variable forecast test contingency table [11]. He calculated a series of scoring indexes, such
as hit rate and false alarm rate. Doswell found that the real skill score TSS often tended
to the hit rate when calculating the forecast score of small-probability events [12]. So,
he revised the HSS score. Since then, a series of scoring indicators have been developed
and the deterministic prediction of binary events mainly includes: forecast deviation,
probability ratio, accuracy, etc. For the deterministic prediction of classified events, the 2*K
contingency table can be used to classify the probabilities of different levels to calculate
the scoring criteria. In recent years, meteorologists have conducted a lot of work around
the precipitation forecast test. Wang analyzed the predictability of the radar echo by the
decorrelation time method and quantitatively analyzed the error of the extrapolated forecast
by means of the forecasting skill score and relative absolute error [13]. In addition, the
relationship between REF error and scale, and the relative importance of the echo intensity
change and echo motion field change in the prediction error were also analyzed. Although
the traditional lattice comparison method can reflect certain forecasting characteristics, the
test results cannot give specific reasons for the deviation. It still cannot comprehensively test
the prediction ability of NWP and objective methods. On the other hand, the object-oriented
test technology divides the precipitation field into discrete targets and comprehensively
measures the forecasting effect according to the characteristic attributes, which can provide
users with more abundant information [14,15]. Xue studied the objective performance of
precipitation objects and the prediction ability of the Japanese fine grid model to cases based
on the MODE of object-oriented model diagnosis and analysis [16]. The methods adopted
involved more advanced spatial testing [17,18], which reflect the spatial structure and scale
changes of the precipitation forecast and play a leading role in the inspection industry.

Since 2016, the national self-developed GRAPES_3 km high-resolution numerical
model has been widely used in severe convective weather forecast and early warning. More
scientific and technical personnel have carried out a variety of inspection and evaluation
work for the GRAPES_3 km model. The test results show that the GRAPES_3 km model has
a good ability to predict high-threshold and small-scale convective events. Xu evaluated the
precipitation forecast of the model and pointed out that the variation in the daily frequency
in summer was similar to the observation [19]. The heavy-precipitation frequency and
regional distribution are in good agreement with the observation and can reflect the diurnal
variation characteristics of the precipitation process. Tang compared and evaluated the
prediction ability of GRAPES_3 km in several typical severe convective weather processes
in North China by using the fractional technique score (FSS) and discussed the good
prediction performance of this model in severe convective weather [20]. The test results
show that the GRAPES_3 km model has a good ability to predict high-threshold and
small-scale convective events, which are difficult to forecast. However, it has not been
comprehensively evaluated by a variety of test methods [21]. Therefore, this paper combines
GRAPES_3 km and REF, and compares and analyzes the prediction ability of mesoscale
models with different resolutions in severe convective weather by taking the Blending
results as the evaluation object, to provide a reference basis for the further development of
intelligent grid forecasting technology and products of severe convective weather.

2. Materials and Methods
2.1. Materials

The observation data are based on the national radar combination reflectivity data,
with a spatial resolution of 0.01◦ and a time resolution of 6 min. The regional range
is 12.2◦~54.2◦N and 70◦~135◦E. The NWP data are based on the GRAPES_3 km model
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prediction and Fast Update Cyclic Assimilation model (WHRUC) in Table 1. The Blending
data are based on GRAPES_3 km and REF, and the bilinear interpolation method is adopted.
Due to the difference in temporal and spatial resolution between GRAPES_3 km and actual
observation data, which are sparse when the spatial resolution is unified, it was necessary to
take the maximum value of the area around the sparse mesh so the strong echo information
of convective weather could be preserved.

Table 1. NWP model systems.

WHRUC GRAPES_3 km

Forecast area 28◦~34◦N, 108◦~116.5◦E 20◦~50◦N, 73◦~139◦E
Spatial resolution 0.01◦ 0.03◦

Time resolution 08/20:00 1 h 08/20:00 1 h
Forecast time limit 12 h 36 h
Background field WHRAP/NCEP GFS T639

Initial value of model 3D-VAR Downscaling cloud analysis

2.2. Methods

The REF aimed to calculate the moving speed and direction of precipitation based
on the images observed by the radar at the previous time and the current time, and to
speculate the position of the future time [22–24]. In view of the severe convective weather,
the improved variational optical flow method was used to retrieve the wind field from
the radar data and the change in the echo optical flow field was used to obtain the motion
vector field. The improved variational optical flow method organically combined the
local optical flow method with the global optical flow method through an energy function
and added a high-order smoothing operator to solve the equation to obtain the flow field
structure. Additionally, the 9-point moving average was then used to obtain the motion
vector field. Finally, the semi-Lagrange method was used for extrapolation prediction.

In order to improve the ability of the short-term forecast of disastrous weather, the
Institute of Heavy Rain, China Meteorological Administration established a kilometer-scale
high-resolution fast updating cyclic assimilation forecast system WHRUC in 2019 [25]. The
horizontal resolution of the system is 1.5 km. The update frequency of analysis is 15 min.
The update frequency of prediction is 1 h and the time effectiveness of prediction is 12 h.
The center of the simulation area is 113.0◦E, 30.5◦N. The number of horizontal grid points
is 801 × 701. The vertical direction is 51 layers and the integration time step is 10 s.

GRAPES_3 km is a high-resolution numerical model developed and operated by
the numerical Forecast Center of the China Meteorological Administration. In order to
improve the prediction accuracy and stability of the numerical model throughout the
country, the numerical Forecast Center integrates national weather radar data, formulates a
quality control scheme, and assimilates SC/CD radar data. The prediction accuracy and
stability of the model are improved by introducing the monotone high-order horizontal
diffusion scheme, adopting the automatic modulation time step scheme, and optimizing
the initial reference profile. The stability of the model is evaluated to solve the problem
of instability. The physical process parameterization scheme and the prediction ability
are improved under weak dynamic forcing by using in-depth analysis of the sources of
prediction deviation. The spatial resolution of the model is 3 km and the current coverage
is 10◦~60◦N. It runs four times a day. The reporting time is 02, 08, 14, and 20:00 (BT).

3. Key Technologies of Blending Forecast

The radar extrapolation prediction and intensity correction method are developed
based on the RAPIDS technology of the Hong Kong Observatory, Fourier–Merlin trans-
form, and Weibull distribution. Combined with the radar extrapolation prediction of the
multi-scale optical flow variational method (multi-scale optical flow by variational analysis,
MOVA), the hyperbolic tangent function is used to integrate the radar extrapolation predic-
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tion and the corrected model prediction. The Blending method is preliminarily realized
and the technical flow is shown in Figure 1.
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extrapolation prediction of radar echo.

3.1. Phase Correction of Precipitation Forecast by Model

The Fourier–Merlin transform is the global phase correlation between the fast Fourier
transform and logarithmic polar transformation. Suppose f 1(x, y) is the template image and
f 2(x, y) is the image to be matched. There are rotations, translations, and scaling between
them, which are set to ∆θ, (∆x, ∆y), and λ, respectively, that is:

f2(x, y) = f1[λ(xcos∆θ + ysin∆θ)− ∆x, λ(−xsin∆θ + ycos∆θ)− ∆y] (1)

By the Fourier transform, the following results can be obtained:

F2(u, v) =
1

λ2 e−2πi(u∆x+v∆y)F1[
1
λ
(u cos ∆θ + v sin ∆θ),

1
λ
(−u sin ∆θ + v cos ∆θ)] (2)

In the formula: f 1(u, v) and f 2(u, v) are the Fourier transform results of f 1(x, y) and
f 2(x, y), respectively. It can be seen from Formula (2) that the relative translation between
them is only in the phase spectrum. The amplitude spectra on both sides of Formula (2) are
calculated, respectively, and the following results are obtained:

M2(u, v) =
1

λ2 M1[
1
λ
(u cos ∆θ + v sin ∆θ),

1
λ
(−u sin ∆θ + v cos ∆θ)] (3)

In the formula: M1(u, v) and M2(u, v) are the amplitude spectra of F1(u, v) and F2(u, v),
respectively. By converting the amplitude spectrum to the logarithmic–polar coordinate
space, we can obtain:

M2(lgρ, θ) =
1

λ2 M1(lgρ− lgλ, θ − ∆θ) (4)

In the formula: M1(lgρ, θ) and M2(lgρ, θ) are logarithmic polar transformations of
M1(u, v) and M2(u, v), respectively. Because 1/λ2 only affects the value, it has no effect
on the calculation results of rotation, translation, and scaling parameters. So, it can be
ignored. It can be seen from Formula (4) that the rotation and scaling between f 1(x, y) and
f 2(x, y) are converted into translation in logarithmic polar coordinates, namely (lgλ, θ). By
using the phase correlation algorithm for the amplitude spectrum in logarithmic–polar
coordinates, the translation can be calculated and then the rotation and scaling parameters
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can be obtained. The rotation and scaling parameters are applied to the template image
f 1(x, y) to obtain the image with only translation. Then, the translation can be obtained by
using the phase correlation algorithm. Formula (4) is called the Fourier–Merlin transform.
Figure 2 shows the flow chart of the algorithm.
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3.2. Correction of Precipitation Intensity Forecast by Model

The difference between the precipitation intensity predicted by the numerical model
and the actual precipitation may be caused by the physical processes such as model res-
olution, convective parameterization, and cloud microphysical schemes. The intensity
adjustment is adjusted by gradually moving the model forecast precipitation field toward
the quantitative estimation precipitation field. Statistics show that both the model fore-
cast precipitation and the actual precipitation satisfy the Weibull distribution, and their
probability density distribution functions are the same. The model forecast precipitation
intensity correction If-mod model is as follows:

I f−mod = F−1
e (x0)Ff (x0) (5)

In the formula: Ff(x0) and Fe(x0) are the cumulative distribution functions of model
forecast precipitation and radar extrapolation forecast precipitation at the initial time,
respectively.

3.3. Blending of Radar Extrapolation Prediction and Model Correction Prediction

Both kinds of forecast results are fused by combining with the optimization of the
radar extrapolation forecast method after the precipitation forecast by the numerical model
is corrected and adjusted according to the time series. The weight change of the model
prediction is expressed by the hyperbolic tangent function and its empirical equation is
as follows:

W(t) = a +
1
2
(b− a)× {1 + tanh[k(t− 3)]} (1 ≤ t ≤ 6) (6)

In the formula: t is time; a and b are the Blending weights of 1 h and 6 h model
forecasts, respectively. The weights can be determined according to the historical statistical
results of precipitation types and precipitation evolution characteristics or dynamically
specified in combination with the position error and intensity error. k is the slope of W(t) in
the middle part of the Blending period and its value can be determined according to the
weather type. The spectral spatial correlation of radar reflectivity and the change speed of
the weight curve are determined by adjusting the k value. The calculation formula of the
Blending forecast is as follows:

Rblending(t) = W(t)× RGRAPES_3km(t) + [1−W(t)]× RRFST(t) (1 ≤ t ≤ 6) (7)

In the formula: RGRAPES_3km(t), RRFST(t), and Rblenging(t) represent t time GRAPES_3
km, REF, and Blending forecast, respectively.
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4. Test Methods
4.1. Point-to-Point Comprehensive Test

The evaluation process aims to compare the regional average value of each grid point
of the precipitation forecast field (resolution is 0.01◦ × 0.01◦, about 1 km × 1 km) and
the adjacent 3 × 3 grid point with the observed precipitation of this grid point. The TS
(equitable threat score) and bias forecasting skills scoring methods commonly used in the
world are used to test the forecasting effect of the above four precipitation cases. The
prediction accuracy cannot be directly given by the prediction skill score, so the average
absolute error (mean absolute error, MAE) and hit rate (probability of detection, POD) are
selected to describe the prediction accuracy.

In order to quantitatively describe the correlation between forecast precipitation and
the radar quantitative estimation of precipitation, the correlation coefficient between the
observed area forecast precipitation and radar quantitative precipitation estimation at the
same time is calculated as follows:

r = ∑N
i=1 (Fi − F)(Oi −O)√

∑N
i=1 (Fi − F)2

√
∑N

i=1 (Oi −O)
2

(8)

where Fi is the predicted value, F is the average value of the predicted value, Oi is the
observed value, and O is the average value of the observed value.

4.2. Spatial Comprehensive Test

Although the above lattice-based analysis can reflect certain forecast characteristics—it
can deal with all the causes of forecast errors in the same way—it cannot distinguish the
sources of forecast errors nor can it give the overall properties of the precipitation field. For
this reason, the spatial diagnosis evaluation method is used to further test the results of the
precipitation forecast.

4.2.1. MODE Test

MODE is a test technique based on “object”. The weight coefficients of different
attributes are set on the basis of defining and calculating different attributes of the pre-
cipitation object. The characteristics of the target are calculated and compared once the
“target area” is correctly identified. The fuzzy logic algorithm is used to calculate the total
return function of the forecast performance to judge the overall performance of the forecast.
Finally, the spatial position, strength, and shape of the prediction field and the observation
field are given to provide more detailed inspection information. The target-based precipi-
tation detection method includes three basic steps: target recognition, target pairing, and
target detection. First, the Unicom targets are identified according to the input observation
and forecast grid data. The multiple Unicom regions are merged according to the proximity
degree and these Unicom targets are marked with serial numbers in turn. Then, the target
in the forecast field is matched to the observed target. The number of forecast targets in the
matching will be the same as the number of observation targets. There is a many-to-many
situation between the observation field and the forecast field target. In the process of
matching, the forecast targets will be further merged according to the position distribution
to improve the coincidence between the observation targets and the observation targets.
Finally, the axis attribute, face attribute and area, center of gravity position, and shape and
strength parameters of each target object are calculated. Through the target attributes of
the observation field and forecast field, the similarity matrix of observation and prediction
is calculated.

(1) Area score:

SA= (2 ·
∣∣∣∣Amod − Aobs

Aobs

∣∣∣∣+1)−1 (9)

where SA is the area score, Amod is the forecast target area, and Aobs is the actual target area.
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(2) The score of the center of gravity:

SGC =


0 L ≥ Lmax

1− L − Lmin
Lmax − Lmin

Lmin < L < Lmax

1 L ≤ Lmin

(10)

where SGC is the center of gravity, Lmax is the maximum tolerance distance, Lmin is the
best distance, the range of the east–west direction is about 940 km, and the range of the
north–south direction is about 660 km. For short-term prediction, the tolerance maximum
deviation Lmax is 470 km, the corresponding minimum deviation Lmin is 47 km, the corre-
sponding minimum deviation Lmax is 330 km, and the corresponding minimum deviation
Lmin is 33 km.

(3) Shape score:

SAxial =


0 DAxA ≥ 90◦
90 − DAxA

90 − 10 10◦ ≤ DAxA < 90◦

1 DAxA < 10◦
(11)

where SAxial is the axial angle score and DAxA is the axial angle difference between the
predicted and the real object.

SEllip =


0 DEllip ≥ 0.5
0.5 − DEllip

0.5 − 0.1 0.1 ≤ DEllip < 0.5
1 DEllip < 0.1

(12)

where SEllip is the ellipticity difference score and DEliip is the difference between the elliptic-
ity of the predicted object and the actual object.

(4) Intensity score of precipitation center:
The intensity score of the precipitation center is defined as follows: based on the

actual precipitation level, the grade of the model is consistent with that of the real heavy
precipitation center, or the absolute value of the difference between the model and the real
heavy precipitation center is less than 10 mm. The score of the above two cases is 1; when
the difference between the model and the actual heavy precipitation center is one grade,
the score is 0.5; if the difference is more than one grade, the score is 0.

4.2.2. SAL Test

The SAL (structure, intensity, scale) method is based on the MODE algorithm, which
counts the uniformity, average intensity, and centroid distribution of precipitation from the
marked grid. It verifies the deviation attributes such as uniformity, average intensity, and
distance between prediction and observation. During the calculation, the mesh points that
are not marked as targets are first set to 0, and then the intensity error (A), distance error
(L), and structure error (S) are calculated.

5. A Case of Inspection and Evaluation
5.1. Case Introductions

Since 8 August 2021, heavy rainfall occurred in the north, east, and southwest of Hubei
Province, in which torrential rainfall occurred at 16 stations in Xiangyang from 20:00 on
11 August to 20:00 on 12 August 2021. The maximum daily rainfall was 519 mm in the
willow forest, followed by 495 mm in Yinghe. From 8 August to 12 August 2021, there were
7 stations with an accumulated rainfall exceeding 400 mm and those with a heavier hourly
rainfall had 118 mm, 105 mm, and 104 mm. From 3:00 a.m. on 12 August 2021, there was
a sudden heavy rainfall at night in Liulin Town. From 11 to 12 August, the accumulated
rainfall was 503 mm, the rainfall reached 373.7 mm from 4:00 to 7:00 on 12 August 2021,
and the rainfall exceeded 100 mm for two consecutive hours from 5:00 to 6:00, all of which
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were the historical extremes since meteorological records began. The average depth of
stagnant water in the rainfall center was 3.5 m and the deepest depth was 5 m.

Figure 3 shows the comparison between the extrapolation forecast, WHRUC model
forecast, GRAPES_3 km forecast, and Blending forecast of 0~3 h precipitation from 04:00
(BT) on 12 August 2021. On the whole, the main areas of precipitation are basically concen-
trated in Jingzhou, Xianning, and Wuhan, and the location remains relatively unchanged,
indicating that the predicted precipitation location is consistent with the actual situation. It
is found that the Blending forecast results improve the deviation in the heavy precipitation
area and precipitation intensity predicted by radar extrapolation, and the overall effect is
better than that of the single numerical model forecast and radar extrapolation forecast.
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5.2. Forecast Effect Test
5.2.1. Point-to-Point Comprehensive Test

Zawadzki defined the “de-correlation time” L when studying the predictability of
11 precipitation cases [26], that is L =

∫ ∞
0 C(t)dt. It is no longer predictable when the corre-

lation value between prediction and observation is less than 0.5. It is found that L is equal
to the time constant in the index if C(t) conforms to the exponential law and corresponds to
the time when the correlation coefficient decreases to 1/e = 0.37. The decorrelation time
defined in the formula can be used to measure the predictability of precipitation.

The correlation coefficients calculated by the formula for each precipitation process
are averaged in order to better evaluate the prediction results of 0~3 h (Figure 4). Figure 5
shows the variation in the correlation coefficients of the four methods with the prediction
time. For the four methods with the forecast precipitation process, the variation in the
correlation coefficient with the forecast time effect is basically decreasing exponentially. It
can be seen from the straight line of stroke 1/e in Figure 5 that the decorrelation time of the
QPF and Blending forecast precipitation process is much more than 3 h. The decorrelation
time of the GRAPES_3 km forecast precipitation process is about 3 h and the decorrelation
time of the WHRUC forecast precipitation process is less than 3 h. It can also be seen from
Figure 5 that large-scale precipitation systems correspond to longer persistence, while for
storms with a faster evolution and smaller scale, their persistence is shorter.
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Figure 4. Comparison of 0–3 h radar-extrapolated precipitation forecast (a,e,i), WHRUC model
forecast (b,f,j), GRAPES_3 km model forecast (c,g,k), and Blending forecast (d,h,l) with real time
from 04:00 (BT) on 12 August 2021.
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Figure 5. The variation in the correlation coefficient of the four methods with the prediction time.

Figure 6a,c,e show the comprehensive performance of the threshold values of 1 mm,
5 mm, 10 mm, 20 mm, and 50 mm for the four prediction methods. The abscissa is the
success rate and the ordinate is the hit rate. The auxiliary lines of equal bias and equal
TS curves are drawn. The test results are displayed in the chart in the form of dots so
that you can directly browse the test indexes such as success rate, HIT rate, BIAS, and TS.
It can be seen that the accuracy of WHRUC prediction is obviously lower than those of
other forecasts and the overall BIAS value is smaller. The prediction effect of QPF and
Blending is the best. The BIAS value of the 1 mm precipitation threshold is too large.
Additionally, the prediction accuracy is close to 0.6, which is slightly lower than that of QPF.
With the increase in threshold, the prediction accuracy of the Blending forecast is obviously
improved. The prediction deviation is similar to that of QPF. There is little difference
between the prediction deviation of 10 mm and 20 mm and that of 5 mm. The prediction
accuracy is obviously improved. As can be seen from the chart, when the threshold of
WHRUC and GRAPES_3 km exceeds 50 mm, the sample of the heavy precipitation forecast
is almost zero. BIAS and TS scores are the lowest. While the TS score of the QPF and
Blending forecast is close to 0.3, the BIAS value is close to 1. The accuracy of each forecast
shows a downward trend with the increase in time. The WHRUC forecast BIAS value
gradually increases and the overall predicted value is close to the actual value. The other
predicted BIAS value gradually decreases and the overall forecast value shows a trend
from high to low. It can be seen from the chart that the effect of the Blending forecast with
different thresholds in 1~2 h is better than those of other forecasts. The effect of the 2~3 h
forecast is similar to that of QPF, which is better than those of the other forecasts especially
in the heavy precipitation forecast.

Figure 6b,d,f show Taylor diagrams. They show the standard deviation, rmse, and
correlation coefficient of both observed and predicted data, respectively. The graph is
a polar coordinate system where the radius r represents the standard deviation of the
observation or forecast data itself. The value of the correlation between prediction and
observation can be determined according to the blue ray (dotted line) in the graph and the
scale value on the outermost circle arc. The green arc (dashed line) represents the concentric
circle around the observation data and its radius represents the rmse of the forecast data.
The standard deviation reflects the discrete degree of the precipitation data set and rmse
indicates the degree to which the predicted precipitation deviates from the observed value.
It can be seen that the standard deviation of the Blending forecast is closest to the actual
situation in the forecast of 0~1 h. With the increase in the forecast time, the standard
deviation of the Blending forecast increases at first and then decreases. The discretization
degree of the precipitation data set is closer to reality than those of other models. The
correlation coefficient of the Blending forecast decreases with the increase in prediction
time, which is higher than those of other models. The rmse value of the Blending forecast
in 0~1 h is smallest compared to those of other models and the deviation in the predicted
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precipitation from the observed value is smallest. With the increase in failure, the rmse
value is basically the same.
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The statistical observation and forecast represent the number of samples of various
categories. The frequency statistics in Figure 7a–c are drawn in the form of a histogram.
The abscissa is the value category of the precipitation sample and the ordinate is the sample
proportion. The observed and predicted values are sorted from small to large, respectively,
and the two groups of data after sorting are drawn into a frequency matching relation in
Figure 7d–f, with the abscissa as the predicted value and the ordinate as the observed value.
From the frequency matching mapping diagram, it can be seen that the prediction results
of WHRUC and GRAPES_3 km are smaller than the actual observations. The observed
values of 0~1 h prediction results are lower than 100 mm. GRAPES_3 km is closer to the
reality than WHRUC is. The QPF and Blending forecast 0–1 h are larger than the actual
observation, the Blending forecast result is closer to reality, 1~2 h and 2~3 h are smaller
than the actual observation, and the QPF prediction effect is closer to reality. Generally, the
prediction effect of the QPF and Blending is better than that of WHRUC and GRAPES_3 km.
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5.2.2. Spatial Contrast Test

Figure 8 shows the spatial distribution of errors of the four forecasting methods. The
point-to-point errors between the predicted results and the actual results of all grid points
are calculated. For a grid point, the samples with different starting times and prediction
times are tested together. The size of the error on the site is represented by the color of the
site and the absolute value of the error is represented by the area of scattered dots. The
larger the area, the greater the error. The site with large errors is highlighted by setting the
site size. It can be seen that the precipitation intensity predicted by WHRUC is obviously
smaller than those of other methods and the precipitation error is obviously larger.

Grid data are used for target recognition and the recognition steps include the fol-
lowing: (1) select a disk convolution kernel with a radius of smooth = 5, and convolution-
smooth the observation field and the prediction field; (2) set threshold to 5 and set the
grid value of the smoothed value to less than threshold, 0; (3) identify the targets in the
observation and prediction field by the connected domain extraction algorithm; (4) set
minsize = 100 and delete targets whose area (number of grid points) in the forecast or
observation field is less than minsize; (5) judge the closeness between two targets and take
the maximum value of multiple closeness. Merge the corresponding two targets if it is
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greater than near_rate; (6) repeat step 5 until the closeness between all pairwise targets is
less than the termination of the near_rate algorithm.
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Figure 8. From 04:00 (Beijing time) on 12 August 2021, the error spatial distribution maps of the 0–3 h
radar-extrapolated precipitation forecast (a–c), WHRUC model forecast (d–f), GRAPES_3 km model
forecast (g–i), and Blending forecast (j–l).

Figure 9 shows the hourly target recognition results of different prediction methods for
0~3 h. It can be seen that the ellipses identified and matched by MODE can basically reflect
the scale and shape of convective storms. It can be used as a basis for model evaluation.
Three target objects, which are completely consistent with the actual precipitation area, are
identified by the target object method. Table 2 shows the number of targets matched (hit),
missed, and empty.
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Figure 9. From 04:00 (BT) on 12 August 2021, the live observation (a,c,e,g,i,k,m,o,q,s,u,w), the 0~3 h
radar-extrapolated precipitation forecast (b,j,r), the WHRUC model forecast (f,n,v), the GRAPES_3 km
model forecast (d,l,t), and the Blending forecast (h,p,x) target recognition results.
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Table 2. Statistics of target matching results.

Hits Misses Fales Correct Negatives

0–1 h
WHRUC 2 3 2 96

GRAPES_3 km 3 2 2 90
BLEND 3 1 1 52

1–2 h
WHRUC 1 3 3 98

GRAPES_3 km 2 3 2 91
BLEND 3 1 2 70

2–3 h
WHRUC 2 3 3 105

GRAPES_3 km 2 4 2 109
BLEND 5 1 1 89

Two classification test indexes are calculated for inspection, scoring, and evaluation
(Figure 10a) based on the attribute information of the identified target, and the specific
prediction of the model is obtained. Figure 10b shows the intensity error (A), distance
error (L), and structure error (S) of the SAL test. It can be seen that the prediction ability of
GRAPES_3 km for the intensity of the 0~1 h rain areas is better than those of location and
shape. The prediction ability of rainfall intensity is larger with the passage of time. The
prediction ability of the WHRUC model is worse compared to those of other models and the
prediction of precipitation intensity is obviously smaller. The rain area and rainfall intensity
forecast of the Blending forecast are close to the actual situation. The rain intensity error also
fluctuates due to the influence of the GRAPES_3 km model. On the whole, the Blending
forecast integrates the advantages and disadvantages of the model and extrapolation
forecast. It can grasp the precipitation area forecast of the system and the forecast ability of
rainfall intensity improves.
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Figure 10. Target matching evaluation (a) and SAL test of different forecasting methods (b).

According to the scoring results in Table 3, the Blending forecast has the highest score
for the actual goal of 1 and the area scores of 0~3 h are 0.88, 0.79, and 0.88, respectively,
which are higher than those of the GRAPES_3 km model. The Blending forecast is obviously
superior in the area score of identifying targets in terms of area ratio and overlap area ratio.
The position score of the two models in 0~3 h is 1 and there is basically no deviation from
the predicted center of gravity of target 1. The centroid distance of the 1~2 h Blending
forecast is 0.1, which is less than the centroid distance predicted by GRAPES_3 km at the
same time. The hourly axial angle differences of the two prediction methods are 1.2, 7.5, and
0, respectively, while those of the Blending forecasts are 3.1, 6.9, and 1.6, respectively, which
are all less than 10◦. The score of ellipticity is 1, except that predicted by GRAPES_3 km
for 2~3 h and the difference between the ellipticity and real object is less than 0.1. The
intensity score is calculated based on the precipitation intensity of the 50% quantile and the
values are both 1. The precipitation intensity predicted by the two methods is consistent
with the actual precipitation grade. From the intensity difference, it can be seen that
GRAPES_3 km is small and the Blending forecast is larger. However, the deviation is
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obviously less than that of GRAPES_3 km. Generally, the score of the Blending forecast is
significantly higher than that of GRAPES_3 km for the forecast of goal 1. The target object
test method not only gives the evaluation of area, location, shape, and the extreme value of
the precipitation center, but also analyzes the forecast performance of heavy precipitation
in terms of precipitation area and precipitation intensity, which provides the scientific
calculation and test results for forecasters and can mine more valuable information from
failed forecast cases.

Table 3. Comprehensive test of target attributes.

0–1 h 1–2 h 2–3 h
GRAPES

_3 km BLEND GRAPES
_3 km BLEND GRAPES

_3 km BLEND

Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre

Spindle length 2.8 2.6 2.6 2.8 2.4 2.4 3.0 3.1 1.9 2.7 1.9 2.1
Spindle inclination angle 1.6 1.3 2.0 2.0 1.6 1.5 1.6 1.6 1.4 1.3 1.4 1.4
Rectangular window(x0) 17.8 18.9 9.9 6.9 17.7 25.2 19.6 12.7 16.1 16.1 16.1 17.7
Rectangular window(y0) 111.1 111.4 110.1 109.4 111.5 112.0 111.1 111.0 111.8 111.8 111.8 112.0
Rectangular window(x1) 29.9 29.8 30.1 30.0 30.0 29.8 29.0 29.9 29.9 30.0 30.0 30.0
Rectangular window(y1) 114.4 114.5 115.6 117.2 114.3 114.5 109.9 114.2 115.2 115.1 114.7 114.6

Centroid(x) 30.9 30.9 31.0 30.9 30.9 31.0 30.9 30.8 30.9 30.9 30.9 30.8
Centroid(y) 112.9 112.9 112.7 112.8 112.9 113.1 112.9 113.0 113.1 113.2 113.1 113.2

Area 30.2 30.3 30.2 30.2 30.3 30.4 30.3 30.3 30.4 30.3 30.4 30.4
Median intensity 1.5 1.3 1.4 1.5 1.4 1.0 1.5 1.7 1.4 1.2 1.4 1.5

Strength difference 28.2 23.1 24.7 26.1 28.8 20.2 28.0 29.8 26.9 25.0 26.9 28.3
Centroid distance −5.1 1.4 −8.6 1.8 −1.9 1.4
Angle difference 0.1 0.1 0.2 0.1 0.1 0.1

Area ratio 1.2 3.1 7.5 6.9 0 1.6
Overlap area ratio 0.9 0.9 0.7 0.9 0.9 1.0

Area score 0.7 0.8 0.4 0.8 0.7 0.8
Location score 0.79 0.88 0.64 0.79 0.78 0.88

Median intensity 1 1 1 1 1 1
Axial Angle score 1 1 1 1 1 1
Ellipticity score 1 1 1 1 0.61 1
Intensity score 1 1 1 1 1 1
Total goal score 0.94 0.96 0.89 0.94 0.90 0.96

In a plane field, the values of two points in different positions are different and the
difference between them usually increases with the increase in distance. The variogram is
used to detect whether the above increasing trend in the prediction field is consistent with
that in the observation field. Figure 11 shows the variation chart with a grid number of
10 in east–west and south–north trends. It can be seen from the above variation diagram
that the larger the number of translation grids, the lower the coincidence of grid field before
and after translation. The variation predicted by QPF and BLEND is smaller than that in
the south–north direction, which is basically consistent with the actual observation. This is
consistent with the fact that the north–south gradient of the temperature field is greater
than that of the east–west gradient. WHRUC and GRAPES_3 km predict that the variation
in the east–west direction is similar to that in the north–south direction. In addition, it
is impossible to directly identify the slight deviation between the forecast and the actual
situation when the observation and prediction are close. It is necessary to further test the
variation range of the variation with distance.

Figure 12 shows the amplitude of change before and after the grid translation of
different prediction methods. The maximum number of grid points of horizontal and
vertical translation is the upper half of the graph, which is the average value (thick real
line) of the variation value of elements in a certain interval. Further statistics are made of
the standard deviation of the variation value in the same distance interval and the average
value is added (minus) to the standard deviation in two dotted lines on the top (bottom) of
the graph, which is used to represent the approximate range of the variation value. The
lower part is the statistics sample number, which is used to calculate the variation. The
result corresponding to a moving mode is recorded as one. In the above example, the
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maximum distance of the horizontal and vertical translation is set to 100. The translation
step is set to 5 and the types of horizontal and vertical movement are both 41. The total
movement mode is 41 × 41 = 1681. It can be seen from the figure that the change range of
the BLEND forecast grid before and after translation is closer to reality.
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6. Conclusions and Prospects

In this paper, the prediction abilities of the Radar Extrapolation Forecast (REF),
WHRUC, GRAPES_3 km, and Blending are compared and analyzed by using traditional
point-to-point evaluation and the new spatial test method. The conclusions are as follows:

(1) The comprehensive application of various evaluation methods can evaluate the
convective storm forecast more comprehensively. By using the point-to-point scoring
method, for the forecasts with different time limits, the shorter the time effect is, the better
the prediction effect is. The Blending forecast effect of 1~2 h is obviously better than that of
other models, and that of 2~3 h is similar to that of QPF and better than those of the others,
especially in the heavy precipitation forecast.

(2) The new spatial test method can evaluate the prediction effect of convective storm
features. The precipitation intensity of Blending is larger than those of other models. The error
is smallest and the target recognition hit rate is highest. The scores of target area, position,
shape, and median intensity of precipitation are better than those of other forecasts.

(3) The variation in the Blending-identified target in the east–west direction is less than
that in the north–south direction, which is basically consistent with the actual observation, and
the variation range of the forecast grid before and after translation is the closest to the reality.

It can be seen that Blending is obviously better than the single forecast, especially in
the heavy precipitation echo forecast, and plays a positive role in the convective forecast.
Blending technically has an important operational reference value for the 0~3 h quantitative
precipitation forecast. The Blending method combines the advantages and disadvantages
of NWP and EP, which can not only grasp the precipitation area forecast of the system
but also improve the prediction ability of rainfall intensity. The traditional point-to-point
scoring method and the new spatial test method have the same conclusion to the convective
storm forecast of the high-resolution model, which has a certain reference value, and the
new spatial test method can provide more detailed evaluation information.
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