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Abstract: The outstanding performance of deep neural networks (DNNs) in multiple computer
vision in recent years has promoted its widespread use in aerial image semantic segmentation.
Nonetheless, prior research has demonstrated the high susceptibility of DNNs to adversarial attacks.
This poses significant security risks when applying DNNs to safety-critical earth observation missions.
As an essential means of attacking DNNs, data poisoning attacks destroy model performance by
contaminating model training data, allowing attackers to control prediction results by carefully
crafting poisoning samples. Toward building a more robust DNNs-based aerial image semantic
segmentation model, in this study, we proposed a robust invariant feature enhancement network
(RIFENet) that can resist data poisoning attacks and has superior semantic segmentation performance.
The constructed RIFENet improves the resistance to poisoning attacks by extracting and enhancing
robust invariant features. Specifically, RIFENet uses a texture feature enhancement module (T-FEM),
structural feature enhancement module (S-FEM), global feature enhancement module (G-FEM),
and multi-resolution feature fusion module (MR-FFM) to enhance the representation of different
robust features in the feature extraction process to suppress the interference of poisoning samples.
Experiments on several benchmark aerial image datasets demonstrate that the proposed method is
more robust and exhibits better generalization than other state-of-the-art methods.

Keywords: aerial images; semantic segmentation; deep neural networks (DNNs); robust invariant
features; poisoning attack; adversarial defense

1. Introduction

With the rapid development of airborne sensors, unmanned aerial vehicle (UAV) aerial
imagery has become an important data source for many fields, such as remote sensing [1],
disaster management [2], and urban planning [3]. However, the rich information in aerial
imagery poses significant challenges for extracting valuable data. The application of
semantic segmentation has become an effective technique for addressing this problem, as it
enables fine-grained pixel-level classification of ground objects [4]. In this context, aerial
image semantic segmentation has received extensive attention [5]. In recent years, owing
to the powerful fitting ability of deep neural networks (DNNs), it has been widely used in
various aerial image processing tasks, such as scene classification [6], object detection [7],
and semantic segmentation [8]. DNNs can automatically learn complex features and
abstract concepts [9] from data to improve the accuracy of semantic segmentation.

Because many aerial image processing tasks involve safe-critical applications, such
as military [10] and defense [11], they require high precision, reliability, and security.
Unfortunately, the vulnerability of DNNs leads to serious security risks when applied
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to aerial image processing. For example, a noteworthy concern is that DNNs are highly
vulnerable to adversarial example attacks [12]. Attackers can alter the prediction results
of DNNs by adding intentionally designed but imperceptible adversarial perturbations
to the image. For the aerial remote sensing community, adversarial attacks and defenses
against DNNs have received attention. Czaja et al. [13] revealed the problem of adversarial
examples in satellite remote sensing image (RSI) classification tasks, where a classifier can
be fooled into making incorrect predictions by embedding adversarial noise into remote
sensing images. Chen et al. [14] analyzed the impact of adversarial noise on multiple RSI
recognition models and demonstrated the transferability of adversarial attacks. Xu et al. [15]
demonstrated the threats posed by both targeted and untargeted attacks on RSI scene
classification models and proposed an adversarial training strategy to train a more robust
classifier. Chen et al. [16] employed the fast gradient sign method (FGSM) and basic
iterative method (BIM) to attack RSI classification models. Ai et al. [17] explored the
feasibility of black-box attacks on RSI scene classification models. Bai et al. [18] constructed
a universal adversarial example generation method based on domain adaptation theory to
attack an RSI classifier. Chen et al. [19] proposed a soft-threshold defense framework to
enhance the robustness of RSI classification models. For RSI object detection, Wei et al. [20]
proposed an adversarial pan-sharpening attack to destroy the performance of an object
detector. Lian et al. [21] proposed a physically realizable adversarial patch generation
method to attack the RSI object detector. Wang et al. [22] first systematically evaluated the
adversarial example threat faced by RSI semantic segmentation models and proposed a
global feature attention network to defend against various types of adversarial attacks.

The aforementioned studies mainly focus on adversarial attacks against DNNs in the
inference stage. However, recent research has explored the possibility of conducting attacks
in the model training process, with the most typical form being data poisoning attacks [23].
Different from adversarial example attacks, data poisoning attacks influence the training of
DNNs by contaminating training data [24], so that the model outputs incorrect prediction
results. In Figure 1, we provide an example of performing data poisoning attacks on the
aerial image semantic segmentation network. Here, we use HFGNet [25] as the target
model for the attack. As shown in Figure 1, although the difference between the original
aerial image and the crafted poisoning sample is invisible to the human visual system,
the poisoning sample severely misleads the model prediction results. HFGNet achieved a
PA of 92.86% trained on the original clean samples, while its PA decreases to only 12.58%
on the poisoning samples. This phenomenon undoubtedly increases the security risk level
of DNN-based aerial image semantic segmentation models.

Figure 1. An illustration of poisoning attacks on aerial image semantic segmentation networks.
Although the difference between the poisoning sample and the original clean image is imperceptible
to the human visual system, the semantic segmentation model HFGNet [25] can be fooled by the
poisoning sample to make wrong predictions.

The current widely used defense method against poisoning attacks is adversarial
training [26], which generates poisoning samples under known attack methods and trains
the model by mixing them with original clean samples, thereby improving the adversarial
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robustness. However, there are significant drawbacks to using adversarial training for
defense: (1) adversarial training requires additional training samples, which increases
the model computational complexity, and (2) the trained model may be unable to resist
unknown poisoning attacks, leading to poor generalization performance. Robust invariant
features have a strong defense performance against adversarial attacks [27–29], such as
solving adversarial examples and backdoor attacks by extracting robust invariant features.
Inspired by the robust representation learning theory, we propose a robust invariant
feature enhancement network (RIFENet) for defending against poisoning attacks in aerial
image semantic segmentation. The network resists poisoning attacks by extracting and
enhancing the robust invariant features in aerial images. RIFENet consists of a texture
feature enhancement module (T-FEM), structural feature enhancement module (S-FEM),
global feature enhancement module (G-FEM), and multi-resolution feature fusion module
(MR-FFM). Specifically, T-FEM obtains robust invariant texture features by combining
convolutional neural networks (CNNs) and the Transformer model. S-FEM obtains robust
invariant structural features of ground objects by using the constructed coordinate attention
mechanism. Inspired by the feature pyramid network [30], G-FEM extracts robust invariant
global feature information in a bottom-up manner. MR-FFM selectively fuses and filters the
obtained robust invariant features to further enhance the representation of robust features.
In addition, we construct a hierarchical loss function to improve the training efficiency and
generalization. The main contributions of this study can be summarized as follows.

• To the best of our knowledge, we introduce the concept of a poisoning attack into
aerial image semantic segmentation for the first time and propose an effective defense
framework against both targeted and untargeted poisoning attacks. Our research
highlights the importance of enhancing the robustness of deep learning models in
handling safety-critical aerial image processing tasks.

• To effectively defend against poisoning attacks, we propose a novel robust invariant
feature enhancement framework based on the theory of robust feature representation.
By obtaining robust invariant texture features, structural features, and global features,
the proposed defense framework can effectively suppress the influence of poisoning
samples on feature extraction and representation.

• To demonstrate the effectiveness of the proposed defense framework, we conducted
extensive experiments to evaluate the adversarial defense performance against poison-
ing attacks. The experiments on the aerial image benchmark dataset in urban scenes
show that the proposed framework can effectively defend against poisoning attacks
and maintain better semantic segmentation performance.

The remainder of this article is organized as follows. Section 2 briefly reviews some
related work. Section 3 describes the proposed defense framework. Section 4 presents the
information on the datasets used in this study and the experimental results. The discussion
and conclusion are summarized in Sections 5 and 6.

2. Related Works

In this section, we review the existing poisoning attacks, poisoning defense, and robust
feature representation methods.

2.1. Poisoning Attacks

Poisoning attack refers to malicious tampering of training data or model parameters
to mislead the model to produce incorrect prediction results [31]. The existing poisoning
attack methods can be divided into white-box attacks [32] and black-box attacks [33]. The
white-box attack defines that the attacker can access and modify the parameters and struc-
ture of the model arbitrarily, while the black-box attack sets that the attacker cannot access
the internal structure information and parameter settings of the model. Pang et al. [34] used
the influence function to select the training samples that significantly impact the model for
label flipping and realized the data poisoning attack against the DNNs for the first time.
Shafahi et al. [35] constructed the clean-label poisoning data by feature collision and care-
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fully designed poisoning samples with high similarity to benign samples in the feature
space. Zhao et al. [36] proposed a poisoning attack method with high stealthiness against
image classification models based on generative adversarial networks. Kurita et al. [37]
proposed a poisoning sample generation method for pre-trained models, which can cause
destroy models dealing with different computer vision tasks. Muñoz-González et al. [38]
used the back-propagation algorithm to generate poisoning samples, significantly degrad-
ing the performance of multiple DNNs models. As a novel data poisoning attack method,
a backdoor attack [39] damages the model performance by embedding hidden triggers in
test samples. Based on meta-learning theory, Huang et al. [40] proposed an approximate
solution to the second-order optimization problem of data poisoning attacks to improve the
attack efficiency. Aghakhani et al. [41] proposed a transferable clean-label poisoning attack,
which achieved high attack success rates in multiple image classification tasks. In general,
the poisoning attacks currently widely studied include adversarial noise, label flipping,
and image tampering. These attacks pose significant security threats to DNNs models.

2.2. Poisoning Defense

The existence of poisoning attacks in DNNs has shown that ensuring the security and
robustness of models is a significant challenge. To defend against poisoning attacks, many
methods have been proposed and achieved better results. Currently, the most commonly
used defense methods include adversarial training, data augmentation, detection-based
methods, and ensemble defense strategies. Adversarial training [42] uses adversarial sam-
ples to train the model, which can improve the model robustness against poisoning attacks.
Geiping et al. [43] constructed an adversarial training framework based on batch normal-
ization, which can resist both targeted and untargeted poisoning attacks. Gao et al. [44]
proposed a hybrid adversarial training strategy that can effectively enhance the model
robustness against poisoning attacks with high stealthiness. Hallaji et al. [45] proposed a
cascaded defense framework combining adversarial training and label noise analysis to
defend against poisoning attacks. For the data augmentation-based defense methods, it
expands the training set samples by image rotation, shearing, translation, and scaling to
improve model robustness against poisoning attacks. Chen et al. [46] proposed a boundary
feature augmentation method to suppress the impact of poisoning attacks on the model
feature extraction process. Liu et al. [47] proposed a benign noise injection method to
augment the original dataset to enhance the model robustness. Yang et al. [48] obtained
more robust feature information by randomly erasing the training dataset images and using
adversarial training to improve generalization ability. The detection-based method [49]
is another effective strategy to defend against poisoning attacks, which reduces the suc-
cess rate of poisoning attacks by detecting anomalous samples in the training and testing
data. Additionally, ensemble defense methods [50] usually combine data augmentation,
adversarial training, and detection-based methods to defend against poisoning attacks.
Although these methods have provided possible solutions for poisoning attacks in aerial
image semantic segmentation, they have not defended against attacks from the perspective
of model architecture design, resulting in poor generalization performance.

2.3. Robust Feature Representation

For safety-critical aerial image semantic segmentation tasks, it is essential to achieve
better semantic segmentation performance and ensure that the model can resist the neg-
ative impact of poisoning attacks. Different from adversarial training, the robust feature
representation theory employs carefully designed robust feature extractors to obtain feature
information that can improve model performance and enhance robustness. The current
approach of defending against adversarial attacks by extracting robust features has received
some attention. Zhang et al. [27] proposed an adversarial defense method based on feature
scattering, which makes the model obtain more robust feature information by suppressing
the representation of adversarial samples. Xu et al. [29] constructed the self-attention
encoder for obtaining robust features to solve adversarial attacks in hyperspectral image
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classification tasks. These existing studies have shown that carefully designed feature
extractors can obtain robust invariant features with defensive effects. Zhang et al. [51] used
the domain adaptation method to improve the similarity of features between adversarial
and original domains and constructed the adversarial loss to obtain robust invariant feature
information. Li et al. [52] first demonstrated that adversarial training is ineffective in
defending against black-box attacks and proposed a robust feature-guided adversarial
training method to enhance the model generalization. Kim et al. [53] filtered different
feature information obtained by the model using knowledge distillation and information
bottleneck to suppress the impact of adversarial features and enhance robust feature repre-
sentation. Xie et al. [54] used denoising auto-encoders to filter adversarial features in the
hidden space of feature extraction to enhance robust feature representation. Song et al. [55]
demonstrated that local features can effectively enhance model robustness and guided the
model to obtain robust local features by adversarial training. However, these methods
ignore the improvement in the model defense capability by robust feature enhancement, so
transferring them to semantic segmentation tasks cannot achieve the desired effect.

3. Methodology

Inspired by the encoder–decoder architecture constructed by U-Net [56], i.e., the
encoder extracts multi-scale feature information from the input image, the decoder restores
feature map resolution, and skip connections are used for feature transfer between encoder
and decoder. By using the encoder–decoder architecture, valuable feature information can
be extracted and fused layer-by-layer to improve semantic segmentation accuracy. Similarly,
the proposed robust invariant feature enhancement network (RIFENet) uses the encoder–
decoder as basic framework and integrates texture feature enhancement module (T-FEM),
structural feature enhancement module (S-FEM), global feature enhancement module (G-
FEM), and multi-resolution feature fusion module (MR-FFM) for resisting poisoning attacks
and improving semantic segmentation accuracy. As shown in Figure 2, in the encoder
structure, we use VGG16 as the backbone network to extract multi-scale feature information
of aerial images. Then, the constructed T-FEM and S-FEM are used to enhance the texture
and structure features of each layer output feature of the backbone network to improve the
robust feature information representation and suppress the hidden triggers in the poisoning
samples. For the decoder structure, we introduce the MR-FFM for fine-grained fusion of
different scale feature maps, restore the original size of feature map resolution, and retain
the detailed feature information contained in the aerial image. Between the encoder and
decoder, we use the G-FEM to perform global correlation modeling and interaction of
different features to enhance the perception of pixel position information and improve the
semantic segmentation model robustness to poisoning attacks. In addition, to improve the
model training process robustness and accelerate convergence, we use the deep supervision
strategy for the decoder structure, i.e., add 1× 1 convolution and sigmoid function to
calculate the loss of each layer in the decoder.

3.1. Texture Feature Enhancement Module

Texture features reflect the spatial distribution properties of pixels, which have the
characteristics of local irregularity but global regularity [57]. In addition, texture features
have rotational invariant properties that can produce strong resistance to adversarial
noise. Therefore, enhancing the representation of texture features can effectively resist the
destroying of poisoning attacks. To obtain the texture features contained in the poisoning
aerial image, we construct the texture feature enhancement module (T-FEM), which consists
of CNNs-based hybrid attention block, Swin Transformer block [58], and feature fusion unit.

As shown in Figure 3, for the input feature Xi ∈ RH×W×C, T-FEM first splits it into
Xi

S1
∈ RH×W×C1 and Xi

S2
∈ RH×W×C2 , where C1 and C2 represent the number of channels

of feature Xi
S1

and Xi
S2

. The splitting rule is based on spatial information and aims to
capture different aspects of the input feature. Specifically, Xi

S1
is obtained by applying

a spatial convolutional operation with a small receptive field, while Xi
S2

is obtained by
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applying a global pooling operation to aggregate the feature information across the entire
spatial domain. Then, feature Xi

S1
∈ RH×W×C1 is input into the hybrid attention block

composed of spatial attention and channel attention for feature extraction and interaction.

X̃i
S1

= Fsigmoid

(
FBN

(
K1×1

(
Xi

S1

)))
⊗ Xi

S1
(1)

X̂i
S1

=
(
Fmean

(
X̃i

S1

)
⊕Fmax

(
X̃i

S1

))
⊗ X̃i

S1
(2)

where K1×1(·) denotes 1 × 1 convolution, FBN(·) indicates the batch normalization func-
tion, Fsigmoid(·) is the nonlinear activation function. Fmean(·) and Fmax(·) denote average
pooling and max pooling operations on the feature map channel dimension. X̃i

S1
and

X̂i
S1

represent the output feature maps of spatial attention and channel attention, respec-
tively. For feature map Xi

S2
∈ RH×W×C2 , Swin Transformer is used to establish the global

correlation of texture features, which can be defined as follows.

X̂i
S2

= Fdim_recover

(
Fswin_attention

(
Fdim_slice

(
Xi

S2

)))
(3)

where Fdim_recover(·) and Fdim_slice(·) denote the slice and recover on feature channel
dimension, and Fswin_attention(·) indicates the use of Swin Transformer block to obtain
global attention feature information. The constructed T-FEM uses the global texture fea-
ture correlation modeling unit that consists of Swin Transformer blocks, each of which
includes regular window multi-head self-attention (RW-MSA), shifted window multi-head
self-attention (SW-MSA), residual connection, multi-layer perception (MLP), and layer
normalization. The specific calculation process of Swin Transformer block is as follows.

ẑl = FRW_MSA

(
FLN

(
zl−1

))
+ zl−1; zl = FMLP

(
FLN

(
ẑl
))

+ ẑl (4)

ẑl+1 = FSW_MSA

(
FLN

(
zl
))

+ zl ; zl+1 = FMLP

(
FLN

(
ẑl+1

))
+ ẑl+1 (5)

where ẑl and zl are the output of RW-MSA and MLP for the lth Swin Transformer block,
and ẑl+1 and zl+1 indicate the output of SW-MSA and MLP for the l + 1th Swin Transformer
block. FRW_MSA(·) denotes the function of RW-MSA, FSW_MSA(·) indicates the function of
SW-MSA,FLN(·) is the layer normalization operation. The multi-head attention mechanism
of Swin Transformer is defined as follows.

FAtten(Q, K, V) = soft max
(

QKT/
√

d + B
)

V (6)

where Q, K, and V ∈ RM2×d denote query, key, and value matrices. M and d indicate the
number of patches in the window and the dimension of Q and K, respectively. The values
of matrix B are obtained by calculating the bias matrix B̂ ∈ R(2M−1)×(2M+1). To fuse the
texture features obtained by hybrid attention and Swin Transformer blocks, we construct
the feature fusion unit. As shown in Figure 3, the feature fusion unit first uses the feature
concatenation function to splice features X̂i

S1
and X̂i

S2
on the channel dimension to ensure

that the spliced features have the same dimension as the original features, and then uses
the residual unit to fuse spliced features to obtain the fusion texture features. The specific
calculation is as follows.

Yi
C = FResConv

(
Fcat

(
X̂i

S1
, X̂i

S2

))
(7)

where Fcat(·) denotes the feature concatenation function for splice features X̂i
S1

and X̂i
S2

,
and FResConv(·) indicates the residual unit for feature fusion.
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Figure 2. Overall framework of the proposed robust invariant feature enhancement network
(RIFENet). The VGG16 is used as the backbone network to extract multi-scale features. Then, we
use texture feature enhancement module (T-FEM), structural feature enhancement module (S-FEM),
and global feature enhancement module (G-FEM) to enhance the representation of robust invariant
features. Finally, the multi-resolution feature fusion module is adopted to perform fine-grained fusion
of different scale feature maps and output the aerial image semantic segmentation results.

Figure 3. The detailed structure of texture feature enhancement module (T-FEM).

3.2. Structural Feature Enhancement Module

The structural features contained in the image consist of contour and region features.
The contour features can describe the boundary information of the ground object [59], while
the region features can represent the complete object information [60].

The tampering of structural features requires reversing the gradient information of
the original image, so the poisoning samples constructed by the poisoning attackers have
difficulty destroying the extraction and representation of structural features by the semantic
segmentation model. In addition, the enhanced representation of structural features can be
regarded as adversarial noise suppression, which strengthens valuable feature information
and invalidates hidden backdoor triggers. Inspired by the coordinate attention mechanism,
we construct the structural feature enhancement module (S-FEM) to extract and enhance
structural features. Different from the coordinate attention mechanism that calculates
spatial information in the X and Y directions of the feature map, S-FEM introduces channel
information in the Z direction of the feature map; the structure of S-FEM is shown in
Figure 4. The constructed S-FEM uses different convolution blocks to learn the structural
feature information in X, Y, and Z directions, and then uses the weighted fusion to obtain
the feature weights and achieve the structural feature interaction. Formally, for the input
feature map I ∈ RC×H×W , the structural feature information in the X, Y, and X directions
is calculated as follows.

SX
C (I) = F 1×1×W

Avg (FResConv(I)) (8)
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SY
C(I) = F 1×H×1

Avg (FResConv(I)) (9)

SZ
C(I) = Fsigmoid

(
K1×1

(
F 1×H×W

GAP (FResConv(I))
))

(10)

where SX
C (I) ∈ RC×H×1, SY

C(I) ∈ RC×1×W , and SZ
C(I) ∈ RC×1×1 correspond to the ex-

tracted structural feature information in X, Y, and Z directions, respectively. FResConv(·)
denotes residual unit function, F 1×1×W

Avg (·) denotes average pooling with size of 1× 1×W,

F 1×H×1
Avg (·) denotes average pooling with size of 1× H× 1, and F 1×H×W

GAP (·) denotes global
average pooling with size of 1× H ×W. K1×1(·) indicates 1× 1 convolution with batch
normalization and ReLU layer. After the extraction of structural features in different direc-
tions, the Z direction features are fused with the X and Y direction features. The specific
calculation is as follows.

ZX = SX
C (I)× SZ

C(I) (11)

ZY = SY
C(I)× SZ

C(I) (12)

Z = K3×3

(
Fcat

(
ZT

X , ZY

))
(13)

where ZX ∈ RC×H×1 and ZY ∈ RC×H×1 denote the channel weight feature maps in X and
Y directions. Z ∈ RC/r×1×(W+H) indicates the fusion feature map of ZX and ZY, where r
is the reduction coefficient used to reduce the number of channels. K3×3(·) denotes 3× 3
convolution with batch normalization and Silu activation function. Then, the fusion feature
Z is split into Z

′
X and Z

′
Y, and the convolution and sigmoid function are used to further

enhance the structural feature representation. The specific calculation is as follows.

Z
′′
X = Fsigmoid

(
K1×1

(
Z
′
X

))
(14)

Z
′′
Y = Fsigmoid

(
K1×1

(
Z
′
Y

))
(15)

where Z
′′
X and Z

′′
Y denote the activation features in X and Y directions, andK1×1(·) indicates

the 1× 1 convolution used to restore the number of channels in the feature map. Then, the
dot multiplication is used to calibrate and fuse the feature I and the direction features Z

′′
X

and Z
′′
Y. The specific calculation is as follows.

SFEM = I · Z′′X · Z
′′
Y (16)

where SFEM denotes the structural enhancement feature. The constructed S-FEM can
capture the structural feature information of the ground object in X, Y, and Z directions and
achieves feature interaction to enhance the representation of structural feature information.

Figure 4. The detailed structure of structural feature enhancement module (S-FEM).
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3.3. Global Feature Enhancement Module

Because global features can establish a fixed relationship between the given pixel and
all related pixels in the image, it is difficult for malicious attackers to construct poisoning
samples that affect global feature extraction and representation. In addition, if an incorrect
label is assigned to a certain class of pixels by the attacker, the incorrect loss at this pixel can
be passed to all other related pixels through back propagation. In this case, anomalies can
be easily found in the model training process, so that the attacked can detect the poisoning
samples. Therefore, enhancing the representation of global feature information can effec-
tively suppress the influence of poisoning samples on the semantic segmentation model
training process. In the use of CNNs for feature extraction, shallow features contain rich
spatial detail information, while deep features contain semantic information. The fusion
of spatial and semantic information can effectively enhance the representation of global
features. Inspired by the feature pyramid network (FPN) structure [30], we construct
the global feature enhancement module (G-FEM) for fusing spatial and semantic feature
information, and the structure is shown in Figure 5.

Figure 5. The detailed structure of global feature enhancement module (G-FEM).

G-FEM uses a bottom-up fusion strategy, which uses the shallow feature P1 as the
initial fusion layer. First, feature P1 is fused with P2, and then global average pooling and
sigmoid functions are used to obtain attention weight maps of the fusion feature, which
contains semantic information that can guide shallow features to obtain global correlation.
Similar to the fusion process of P1 and P2, features P2, P3, and P4 are fused, and the
obtained attention weight map is used to guide the shallow feature reconstruction and
maintain the same size as the original feature map resolution. In addition, to prevent the
problem of feature loss, G-FEM maintains a consistent number of channels in the feature
fusion process. The hierarchical fusion strategy in G-FEM is to calculate the pixel (x, y) of
the feature map, which is defined as follows.

H(x,y)
i = Fconv

(
G(x,y), λ(x,y)

)
+ G(x,y) (17)

where H(x,y)
i denotes the ith-layer fusion feature, G(x,y) denotes the initial shallow feature,

Fconv(·) indicates the convolution operation, and λ(x,y) indicates the attention feature map.
For each pixel in the feature map, it has the corresponding mapping position with the pixel
in the input image. Given s denotes the stride value of the feature map, the pixel mapping
method is defined as follows.

f (x) = Fb s
2
c+ xs; f (y) = Fb s

2
c+ ys (18)

where Fb·c denotes the floor function. After hierarchical feature fusion, G-FEM uses the
context modeling module to further extract global information and fuse with hierarchical
features. The context modeling module consists of global modeling and transform block,
as shown in Figure 5. For the global modeling part, 1× 1 convolution is used to convert
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the hierarchical feature Hi into the size of HW × 1 × 1, and softmax function is used
to obtain the global weight attention feature map that can represent the importance of
each pixel position. Then, the global attention feature is multiplied by the input feature
reconstructed to C× HW size to obtain the context feature information. The calculation of
global modeling is defined as follows.

A(x) = ∑HW
j=1

exp
(
wkxi,j

)
∑HW

m=1 exp(wkxi,m)
× xj (19)

where xi denotes the current layer feature, wk denotes the linear transformation matrix
obtained by 1× 1 convolution, and A(x) indicates the context feature obtained by global
modeling. For the transform block in G-FEM, it is defined as follows.

C(xi) = xi + wv ⊗ A(xi) (20)

where C(xi) denotes the output feature of the context modeling module. The 1× 1 con-
volution and ReLU activation function in the transform block can increase the number of
network layers and obtain the linear transformation matrix wv. The inner product operation
of matrix wv and feature A(x) can further enhance the global feature representation.

3.4. Multi-Resolution Feature Fusion Module

To enhance the representation of robust features (texture feature, structural feature,
and global feature) and achieve fine-grained feature information fusion, we construct the
multi-resolution feature fusion module (MR-FFM). The use of MR-FFM can effectively
enhance the robust feature representation to suppress the interference of adversarial noise
in the poisoning samples.

As shown in Figure 6, MR-FFM interacts and fuses low-resolution and high-resolution
features of different scales in parallel. In the feature fusion process, MR-FFM maintains the
original size of the low-resolution features, reduces the high-resolution features to 1/2 of
the original size to expand the receptive field range, and adaptively aggregates the feature
information of different receptive fields by using multi-resolution selection fusion (MRSF)
strategy. Formally, given the input feature map as X ∈ RH×W×C, the feature map X is pre-
processed by upsampling and downsampling operations with residual structure to obtain
the reconstructed feature maps FUp(X) ∈ R2H×2W×1/2C and FDown(X) ∈ R1/2H×1/2W×2C.
In the sampling process, we use bilinear interpolation upsampling and anti-aliasing down-
sampling operations, and we use Gaussian error linear units (GELU) as activation functions
to prevent feature information loss caused by sampling operations. The specific calculation
process is as follows.

FUp(X) = FCGRF=3

(
FCTRF=3

(
FCGRF=3

(
FCGRF=1(X)

)))
+FCGRF=1(FBilinear(X)) (21)

FDown(X) = FCGRF=1

(
FAD

(
FCGRF=3

(
FCGRF=1(X)

)))
+FCGRF=1(FAD(X)) (22)

where FCG(·) is composed of convolution and GELU activation function. FCT(·) denotes
deconvolution function, RF denotes the convolution kernel size, FBilinear(·) denotes bilinear
interpolation upsampling function, and FAD(·) indicates anti-aliasing downsampling
function. For the multi-resolution selection fusion strategy in MR-FFM, it first fuses parallel
convolution feature information of different resolution, and then uses global average
pooling to obtain global feature information. The specific calculation is as follows.

X f = Xh + Xl (23)

XG = FGAP

(
X f

)
=

1
H ×W ∑H

i=1 ∑W
j=1 X f (i, j) (24)
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where Xh and Xl represent high-resolution and low-resolution features. Then, the obtained
global feature XG is used as the input of fully connected layer to fuse different feature
information. The specific calculation is as follows.

Xz = FC(XG) = FSigmoid(ConvRF=1(XG)) (25)

where Xz ∈ R1×1×C denotes the inter-layer fusion feature. The parallel 1× 1 convolution
is used to restore the number of inter-layer fusion feature Xz and generate feature vectors
v1 ∈ R1×1×1/2C and v2 ∈ R1×1×1/2C. Then, the weight matrices A and B with different
receptive fields are calculated by the softmax function, and the feature maps with different
resolutions are calibrated by the weight matrix. The calibrated feature map is weighted
fusion to obtain the fusion feature map X̄. The specific calculation is defined as follows.

X̄ = Ac · Xl + Bc · Xh (26)

where Ac and Bc denote the weight matrix for channel calibration of different resolution
feature maps. Through selective fusion of different resolution features, MR-FFM can
enhance the representation of robust features, suppress the interference of backdoor triggers
in poisoning samples, and improve the accuracy of aerial image semantic segmentation.

Figure 6. The detailed structure of multi-resolution feature fusion module (MR-FFM), where the blue
arrow represents the information flow of high-resolution features, and the yellow arrow represents
the information flow of low-resolution features.

3.5. Hierarchical Loss Function

In the proposed RIFENet, it consists of the symmetric encoder–decoder architecture.
The first set of encoder–decoder structure is defined as shallow unit Zs, the last set of
encoder–decoder structure is defined as deep unit Zd, and the rest is the middle unit Zm.
To better train and optimize the model parameters, we set different weight information
for the encoder–decoder units of different layers. Formally, W is defined as the model
weight, and Ws, Wd, and Wd indicate the weight information of encoder–decoder units of
different layers. The cross entropy loss [61] is used to calculate the encoder–decoder units
of different layers, and the specific definition is as follows.

L(X; W) = ∑xi∈X − log p(ti|xi; W, wc) (27)

where X denotes the number of train samples, and p(yi = t(xi)|xi; W, wc) indicates the
probability that category xi is correctly classified as the corresponding label t(xi); c ∈
{s, m, d} denotes the index of different encoder–decoder units, and the loss function for
introducing hierarchical structures is defined as follows.

L
(

X; W, ws, wm, wd
)
= ∑c∈{s,m,d} αcL(X; W, wc) (28)
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where αc denotes the weight coefficient used to adjust the optimization process of different
layer encoder–decoder units. In addition, in the feature extraction process of RIFENet,
we first fuse the shallow and middle-layer units, and then splice them with the deep unit.
The splice loss is calculated using the cross entropy function, which is defined as follows.

Ls = −
1
N ∑N

n=1 [gn,i log pn,i + (1− gn,i) log(1− pn,i)] (29)

where N denotes the number of ground object categories, pn,i denotes the prediction
probability that pixel i belongs to the nth class object, and gn,i indicates the annotation
information corresponding to pixel i. The total loss function for RIFENet is defined as

Ltotal = λLs + (1− λ)∑c∈{s,m,d} αcL(X; W, wc) (30)

where λ denotes the weight coefficient. In addition, inspired by the deep supervision
strategy [62], we use the sigmoid function to calculate the loss for each layer of encoder–
decoder structure to improve the training efficiency and generalization performance of the
semantic segmentation network.

4. Experiments and Analysis

In this section, we first present the dataset and specific parameter settings used in the
experiments, and then demonstrate the effectiveness of the proposed defense framework
by conducting various poisoning attacks on the aerial image dataset against different
aerial image semantic segmentation networks. Finally, we perform ablation studies to
demonstrate the effectiveness of each component in the proposed method.

4.1. Data Descriptions

To verify the effectiveness and feasibility of the proposed method, we conduct ex-
perimental verification on the aerial image semantic segmentation benchmark datasets
UDD [63] (https://github.com/MarcWong/UDD, accessed on 11 November 2020) and
UAVid [64] (https://uavid.nl/, accessed on 15 July 2020) collected in urban scenes. The de-
tails of the dataset used are elaborated as follow.

UDD Dataset: The dataset is collected by the professional-grade drone DJI-Phantom4
equipped with a 4K high-resolution camera at an altitude between 60 and 100 m. In the
process of data collection, the camera shoot mode is set as interval shoot, and the panoramic
image is obtained at the interval of 120 s. The original image resolution in this dataset is
4096 × 2160 or 4000 × 3000 and provides manual annotation information for semantic
segmentation. Because the image is mainly collected in the urban region, the dataset
contains common ground objects such as facade, road, vegetation, vehicle, and roof in
the urban scene. In Figure 7, we provide the number of instances for each category and
some sample examples. The dataset provides 205 high-resolution aerial images. We use
145 images as training set, 20 images as validation set, and the remaining 40 images as
testing set. Limited by the computing resources of the hardware device, we scale the
training set image to 1024 × 512, maintaining the original image size for the validation and
testing sets.

UAVid Dataset: The dataset uses the 10 m/s stable flying drone DJI-Phantom3 as the
data collection device, flying at the altitude of around 50 m and using a camera with
4k resolution for continuous shoot. The original resolution of the collected images is
4096 × 2160 or 3840 × 2160, and each image contains urban objects in different scenes.
The dataset provides fine-grained manual annotation information, and the labeled object
categories include building, road, tree, vegetation, moving-car, static-car, and human.
Because the dataset is mainly collected in the urban center region, the image scene is more
complex. The number of instances for each category and some sample images are shown in
Figure 7. For the semantic segmentation task, the dataset provides 300 high-resolution aerial
images. We use 210 images as training set, 30 images as validation set, and the remaining

https://github.com/MarcWong/UDD
https://uavid.nl/
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60 images as testing set. In addition, we scale the original image size to 2048 × 1024 to
reduce the computational burden of hardware devices and accelerate model training.

(a) The number of instances for each category

(b) Sample images and corresponding ground truth

Figure 7. Detailed analysis of the UDD [63] dataset and Semantic Drone [64] dataset.

4.2. Experimental Setup and Implementation Details

Poisoning Attack Settings: To demonstrate the effectiveness of the proposed defense
framework against poisoning attacks, we use different poisoning sample generation strate-
gies, including clean-label attack [35], back-gradient attack [38], generative attack [65],
feature selection attack [66], transferable clean-label attack [67], and concealed poisoning
attack [68]. For different attack methods, we only consider the untargeted attack scenario,
which destroys the prediction results of the target model for all categories of pixels. We
assume that the attacker has sufficient knowledge of the target model, including model
structure and training samples.

In the process of conducting attacks, we set the attack ratio of all poisoning attacks
algorithms to 30% of the number of training set samples to maximize the attack efficiency.
To systematically verify the performance of different semantic segmentation models in
poisoning attack scenario, we conduct clean-label, back-gradient, and generative attacks on
the UDD dataset and feature selection, transferable clean-label, and concealed poisoning
attacks on the UAVid dataset. Algorithm 1 provides detailed steps to attack the proposed
RIFENet by poisoning samples. The purpose of poisoning attack on aerial image semantic
segmentation network is to use poisoning samples to maximize destroying the prediction
results of semantic segmentation model.
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Algorithm 1: Poisoning Attack on Aerial Image Semantic Segmentation
Input:

Aerial image x and corresponding ground truth y.
Semantic segmentation model f with parameters θ.
Poisoning sample xp, training epochs τ, and learning rate η.

Output:
The prediction on the poisoning sample xp.

1 Initial model parameters θ with uniform distribution.
2 for t in range(0, τ) do
3 Compute the texture enhancement features XT via Equations (1)–(7).
4 Compute the structural enhancement features XS via Equations (8)–(16).
5 Compute the global enhancement features XG via Equations (17)–(20).
6 Compute the multi-resolution fusion features X M via Equations (21)–(26).
7 Compute the hierarchical loss function LS via Equations (27)–(30).
8 Update θ by descending its stochastic gradients.
9 end

10 Generate the poisoning sample dataset Dpoison via Ref. [35,38,65–68].
11 Feed the poisoning sample xp to the model f to achieve the segmentation.

Application Details: In the experiment, we use Pytorch 1.11.0 and Python 3.8.0 to construct
the proposed defense framework. All experiments are run on Dell workstations with Intel
i9-12900T CPU, 64GB RAM, NVIDIA GTX Geforce 3090 GPU, Ubuntu 18.04 operation
system. For model parameter optimization, we set the initial learning rate as 0.001, use
the stochastic gradient descent (SGD) with momentum of 0.9 as the optimizer, and use the
poly learning strategy to automatically adjust the model learning rate. The training epoch
of the model is set as 2000, and the batch size is set as 16. To ensure the credibility of the
experimental results, we randomly selected samples in the dataset used as training set,
validation set, and testing set and repeated the experimental process 20 times. In addition,
limited by the number of training set samples, we use data augmentation methods including
size clipping, random inversion, brightness transformation, and random erasure to increase
the number of samples to improve the model generalization capability. To assure the
fairness of the comparison results, for all the compared aerial image semantic segmentation
methods, we use the source code provided by the author to conduct experiments, consistent
with the original hyper-parameters setting and optimization strategy.

Evaluation Metrics: To quantitatively evaluate the experimental results, we use PA, mPA,
F1_score, and mIoU typically used in semantic segmentation as evaluation metrics. Specif-
ically, we first define tp, f p, f n, and tn as true positives, false positives, false nega-
tives, and true negatives, respectively. The definitions of different evaluation metrics
are as follows.

• Pixel Accuracy (PA): This metric is defined as the proportion of correctly classified
pixels to the total number of pixels, that is, PA = (tp + tn)/(tp + tn + f p + f n).

• Mean Pixel Accuracy (mPA): This metric is the weighted average of pixel accuracy,
which calculates the pixel accuracy for each category, and then averages the pixel
accuracy of all categories.

• F1 Measure (F1_score): This metric is the harmonic mean of precision (P) and recall (R)
of each class. Formally, F1_score = 2× (P× R)/(P + R), where P = tp/(tp + f p)
and R = tp/(tp + f n).

• Mean Intersection over Union (mIoU): This metric is the mean of IoU, and the IoU is
calculated as IoU = |Pi ∩ Gi|/|Pi ∪ Gi|, where Pi and Gi denote the set of prediction
pixels and ground truth for the ith class.

These evaluation metrics can effectively analyze the performance of different aerial image
semantic segmentation networks in poisoning attacks.
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4.3. Comparison with State-of-the-Art Methods

To demonstrate the advantages of the proposed method in defending against poison-
ing attacks and completing accurate semantic segmentation, we compare the proposed
method with several state-of-the-art methods, including the CNNs-based methods and the
Transformer-based methods. For the CNNs-based methods, the proposed RIFENet is com-
pared with AFNet [69], SBANet [70], MANet [71], SSAtNet [72], and HFGNet [25]. For the
Transformer-based methods, RIFENet is compared with STUFormer [73], EMRFormer [74],
CONFormer [75], ATTFormer [76], and DSegFormer [77]. For the generation of poisoning
samples, as described in Section 4.2, we conduct clean-label attack [35], back-gradient
attack [38], and generative attack [65] on the UDD dataset and perform feature selection
attack [66], transferable clean-label attack [67], and concealed poisoning attack [68] on the
UAVid dataset. The details of different compared methods are as follows.

1. AFNet [69]: This network uses the hierarchical cascade structure to enhance different
scale features and uses the scale-feature attention mechanism to establish the context
correlation of multi-scale feature information.

2. SBANet [70]: This network uses the boundary attention module to enhance the feature
representation of the boundary region and uses the multi-task learning strategy to
guide the model to mine valuable feature information.

3. MANet [71]: This network uses discriminative feature learning to obtain fine-grained
feature information and uses the multi-scale feature calibration module to filter re-
dundant features to enhance feature representation.

4. SSAtNet [72]: This network uses the pyramid attention pooling module to adaptively
enhance multi-scale feature representation and uses the pooling index correlation
module to restore the loss of detailed feature information.

5. HFGNet [25]: This network enhances the representation of different feature informa-
tion by mining hidden attention feature maps and uses the local channel attention
mechanism to establish feature correlation.

6. STUFormer [73]: This model uses the spatial interaction module to establish the
pixel-level correlation and uses the feature compression module to reduce the loss of
detail feature and restore the feature map resolution.

7. EMRFormer [74]: This model uses multi-layer Transformer structure to extract local
feature information, uses spatial attention mechanism to obtain global information,
and uses feature alignment module to achieve feature fusion.

8. CONFormer [75]: This model uses context Transformer to adaptively fuse local feature
information and uses the two-branch semantic correlation module to establish the
correlation between local features and global features.

9. ATTFormer [76]: This model uses atrous Transformer to enhance multi-scale feature
representation and uses channel and spatial attention mechanism to enhance the
fine-grained representation of global feature information.

10. DSegFormer [77]: This model uses position-encoder attention mechanism to extract
valuable feature information from different categories of pixel regions and uses skip
connections for feature interaction and fine-grained fusion.

These methods include multi-scale feature extraction, fine-grained feature fusion, feature
enhancement, and feature correlation modeling techniques commonly used in aerial image
semantic segmentation. Therefore, comparing the proposed methods with existing methods
can demonstrate the effectiveness and advantages of the proposed methods.

4.3.1. Experimental Results on UDD Dataset

The quantitative and qualitative results of the proposed method and all the CNNs-
based methods on the UDD dataset are shown in Figure 8a, Figure 9, and Table 1. From
Figure 8a, it can be observed that all compared methods, including the proposed RIFENet,
achieved satisfactory performance on the benign sample dataset that are not interfered with
by poisoning attacks. Nevertheless, on different poisoning sample test sets, the performance
of all the compared CNNs-based methods is significantly reduced, while only our method
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can maintain relatively better segmentation accuracy. The quantitative comparison results
in Table 1 further show that the poisoning samples significantly reduce the accuracy of all
the CNNs-based methods that perform well on the benign sample test sets. For instance,
HFGNet [25] (with the best performance on the benign sample test set of the UDD dataset)
decreased the mPA to 31.35% and the mIoU to 24.81% on the clean-label [10] poisoning
sample test set. In addition, for some ground object categories such as facade, road,
and vehicle, the PA values obtained by some CNNs-based methods are only close to 20%,
indicating that many of the state-of-the-art aerial image semantic segmentation networks
are highly vulnerable to poisoning attacks. SSAtNet [72] and HFGNet [25] achieved
relatively better results on the poisoning sample test sets, indicating that enhancing the
multi-scale features extracted by CNNs can suppress the negative impact of poisoning
attacks. Compared with all the CNNs-based methods, the proposed RIFENet achieves the
best performance on different poisoning sample test sets. For instance, on the poisoning
sample test set generated by generative attack [65], the mPA value is 57.18% higher than that
of the second-best method SSAtNet [72], demonstrating that extracting and enhancing the
robust invariant features contained in aerial images can effectively improve the robustness
against poisoning attacks. The semantic segmentation visualization results shown in
Figure 9 reveal that all the CNNs-based methods fail to accurately predict the pixel-wise
segmentation of different ground object regions under the influence of poisoning attacks.
For instance, under the back-gradient attack [38], AFNet [69] suffers from severe pixel
classification mistakes. The performance of the proposed method on different poisoning
sample test sets is consistent with the ground-truth information provided by the UDD
dataset. This further indicates that the proposed RIFENet can effectively defend against
poisoning attacks and maintain better semantic segmentation performance.

(a) Quantitative results on UDD dataset (b) Quantitative results on UAVid dataset

Figure 8. Quantitative comparison results of benign samples and different poisoning attacks on UDD
and UAVid datasets.
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Figure 9. Semantic segmentation visualization results of different CNNs-based aerial image semantic
segmentation methods encountering clean-label attack [35], back-gradient attack [38], and generative
attack [65]. The color scheme used in the visualization is consistent with the color mapping provided
in Figure 7b, where each color represents a specific category.

Table 1. Quantitative results of poisoning sample (Clean-Label [35]/Back-Gradient [38]/Generative [65]
Attacks) test sets of the UDD dataset [63]. The best results are shown in bold, and the accuracy of each
data sample category is reported by PA value.

Category AFNet SBANet MANet SSAtNet HFGNet RIFENet
facade 15.73/13.52/10.87 12.82/9.53/7.65 19.58/16.31/13.82 26.35/21.97/19.85 24.43/22.56/18.64 82.75/79.62/78.43
road 18.52/16.37/14.75 14.87/11.34/9.46 22.38/18.75/12.53 32.67/28.64/25.41 25.17/27.85/23.71 85.97/84.31/82.45

vegetation 22.58/20.86/18.42 19.63/16.35/12.02 25.86/22.13/15.64 35.25/31.46/28.52 36.87/28.14/25.42 86.53/85.26/84.17
vehicle 11.24/9.75/5.62 8.52/6.34/4.21 11.28/8.37/6.98 22.45/18.64/16.35 24.91/17.24/15.84 83.62/82.46/82.05

roof 23.71/18.34/16.57 21.62/17.58/14.35 24.56/20.62/18.95 39.41/32.52/29.78 36.54/28.92/24.83 87.26/86.31/85.42
background 32.64/28.73/26.45 26.38/20.35/18.73 33.84/30.98/28.34 42.56/38.23/35.64 40.15/35.06/33.27 88.15/87.12/86.07

mPA (%) 20.74/17.93/15.45 17.31/13.58/11.07 22.91/19.53/16.04 33.12/28.57/25.92 31.35/26.63/23.62 85.71/84.18/83.10
F1_score (%) 18.51/15.32/13.41 15.12/11.24/9.65 19.13/17.12/13.89 29.38/26.52/24.39 27.58/22.46/20.54 82.46/81.52/79.38

mIoU (%) 16.72/14.58/13.24 13.89/10.41/8.36 17.42/15.21/11.35 27.04/24.75/22.84 24.81/20.24/18.37 81.63/80.75/78.24
Runtime (s) 19.42/21.65/22.36 17.28/18.52/19.35 24.38/26.75/28.97 21.57/22.86/24.15 18.24/19.85/21.36 16.52/17.58/18.46
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4.3.2. Experimental Results on UAVid Dataset

Different from the UDD dataset, the UAVid dataset contains more complex scenes
and ground object categories, which increase the difficulty of semantic segmentation. On
the UAVid dataset, we compared the proposed method with several existing Transformer-
based aerial image semantic segmentation methods. From Figure 8b, it can be seen that
the Transformer-based methods achieved better semantic segmentation performance on
the benign sample test set, while the performance on the poisoning sample test set is
significantly decreased. This indicates that the Transformer-based methods are also more
vulnerable to poisoning attacks. The quantitative results of the different methods on the
UAVid dataset are shown in Table 2. It can be seen that ATTFormer [76] (with excellent
performance on the benign sample test set) has an mPA of 17.69% in the poisoning sample
test set generated by feature selection attack [21], while the mPA only reaches 15.68% and
14.69% under the transferable clean-label attack [35] and concealed poisoning attack [68],
respectively. For STUFormer [73], which obtained relatively better performance on the
poisoning sample test set, its mPA reached 21.35% on the test set generated by the concealed
poisoning attack [68], indicating that enhancing the representation of local and global
features can suppress the impact of poisoning samples on the feature extraction process.
Compared with all the Transformer-based methods, the proposed RIFENet has significant
advantage on the poisoning sample test set. For instance, under the feature selection
attack [66], EMRFormer [74] only achieved an mPA of 16.42%, while the proposed RIFENet
achieved an mPA of 77.86%, further illustrating the superiority of the proposed method
in defending against poisoning attacks. In addition, it can be seen from Table 2 that the
transferable clean-label attack [67] has a greater negative impact on semantic segmentation
networks. The reason is that the attack method can destroy the model feature extraction
process, causing irreparable impact on the extraction of shallow and deep features, while the
proposed RIFENet only achieved an mPA of 76.62% under this attack. Figure 10 presents the
visualization results of different semantic segmentation models on the poisoning sample test
set of the UAVid dataset. It can be seen that all the compared Transformer-based methods
have significant discrepancies with the ground-truth information provided by the UAVid
dataset. In contrast, our proposed method achieves better performance for different ground
object categories, which further demonstrates that the proposed method can suppress the
negative impact of poisoning samples by enhancing robust feature representation.

Table 2. Quantitative results of poisoning sample (Feature Selection [66]/Transferable Clean-
Label [67]/Concealed Poisoning [68] Attacks) test sets of the UAVid dataset [64]. The best results are
shown in bold, and the accuracy of each data sample category is reported by PA value.

Category STUFormer EMRFormer CONFormer ATTFormer DsegFormer RIFENet
building 21.46/18.24/19.52 15.72/17.85/13.34 18.95/15.32/16.97 17.62/16.24/14.78 13.47/15.86/11.24 78.96/75.32/77.65

road 25.87/21.52/22.87 19.23/22.14/16.25 22.63/20.57/18.65 20.43/21.06/17.93 16.75/18.64/13.65 81.37/79.58/80.42
tree 31.85/27.64/29.51 24.95/21.62/18.37 25.84/17.83/21.45 26.71/18.46/19.65 20.35/17.68/19.73 83.75/84.21/83.97

vegetation 23.45/19.26/22.93 17.87/15.91/15.32 20.63/13.48/16.83 18.52/14.15/14.77 15.14/13.21/12.86 79.54/77.26/76.83
moving-car 11.38/9.57/10.46 9.24/10.58/7.22 12.45/8.42/6.52 11.37/9.54/8.15 8.45/9.58/6.84 74.35/75.42/73.06

static-car 13.26/12.75/14.82 8.24/11.96/10.63 10.65/9.37/8.14 9.24/10.68/9.21 7.13/5.74/8.36 71.92/70.87/72.35
human 7.54/8.65/6.32 4.26/5.48/3.62 5.41/3.97/4.54 4.85/6.02/5.63 5.06/6.42/5.67 72.53/71.62/70.59

background 35.97/32.84/33.64 31.85/28.42/26.97 32.85/27.46/28.25 32.76/29.31/27.42 28.72/32.17/27.41 80.45/78.67/81.42
mPA (%) 21.35/18.81/20.01 16.42/16.75/13.97 18.68/14.55/15.17 17.69/15.68/14.69 14.38/14.91/13.22 77.86/76.62/77.04

F1_score (%) 19.24/16.73/17.85 14.58/13.96/12.24 16.56/12.24/13.81 14.32/13.75/12.37 12.54/13.05/11.96 75.35/74.17/75.24
mIoU (%) 16.52/13.74/14.27 11.25/10.97/9.65 13.15/10.83/11.26 12.05/11.52/10.65 10.68/11.73/9.54 73.85/72.64/72.51

Runtime (s) 22.86/21.59/23.74 28.65/27.32/29.43 32.54/33.87/34.95 21.75/23.46/22.34 23.85/24.32/25.76 17.35/16.51/18.25
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Figure 10. Semantic segmentation visualization results of different Transformer-based aerial image
semantic segmentation methods encountering feature selection attack [66], transferable clean-label at-
tack [67], and concealed poisoning attack [68]. The color scheme used in the visualization is consistent
with the color mapping provided in Figure 7b, where each color represents a specific category.

4.4. Ablation Study

In this section, we evaluate the contribution of different robust feature enhancement
components in the proposed RIFENet to defend against poisoning attacks and improve
semantic segmentation accuracy, including the T-FEM, S-FEM, G-FEM, and MR-FFM
modules. For the ablation study, we use SegNet [78] with the encoder–decoder structure as
the baseline, UAVid as the test dataset, and clean-label attack [35] to generate poisoning
samples. The quantitative results of the ablation experiment are shown in Table 3. It
can be seen that with the introduction of different robust feature enhancement modules,
the defense ability of the baseline against a poisoning attack is significantly improved.
For instance, the use of T-FEM in the baseline can increase the mPA from 11.45% to 25.86%
and the mIoU from 6.12% to 20.95%. The use of S-FEM enables the baseline to yield an mPA
of 46.37%, G-FEM enables the baseline to yield an mPA of 75.42%, and MR-FFM enables
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the baseline to yield an mPA of 83.65%. In addition, the most significant improvement in
model performance is achieved by using G-FEM, as the poisoning sample has difficulty
destroying the representation of global features. Therefore, enhancing the global feature
can effectively improve the model robustness against poisoning attacks. We provide visual
results of the impact of different robust feature enhancement components on the model
feature extraction process in Figure 11. It can be seen that the poisoning attack significantly
interferes with the feature extraction process of the baseline, which makes it difficult to
accurately obtain the valuable feature information of the ground object region. With the
introduction of different robust feature enhancement components, the baseline gradually
enhances the attention to the ground object region in aerial images, so that the model can
effectively obtain discriminative feature information to improve the semantic segmentation
accuracy under poisoning attacks. It is worth noting that with the introduction of robust
feature enhancement components, the prediction time of the semantic segmentation model
for a single time is increased. The results of the ablation study further demonstrate that
the combination of different robust feature enhancement components can effectively resist
the interference of poisoning attacks on the model feature extraction process and semantic
segmentation results.

Table 3. Performance analysis of different robust feature enhancement components on UAVid dataset,
where the best results are shown in bold.

Baseline T-FEM S-FEM G-FEM MR-FFM mAP (%) F1_Score (%) mIoU (%) Runtime (s)

! 11.45 8.47 6.12 15.97
! ! 25.86 (14.41 ↑) 22.58 (14.11 ↑) 20.95 (14.83 ↑) 17.65 (1.68 ↑)
! ! ! 46.37 (20.51 ↑) 41.23 (18.65 ↑) 38.53 (17.58 ↑) 18.74 (1.09 ↑)
! ! ! ! 75.42 (29.05 ↑) 73.89 (32.66 ↑) 70.64 (32.11 ↑) 21.83 (3.09 ↑)
! ! ! ! ! 83.65 (8.23 ↑) 80.14 (6.25 ↑) 78.26 (7.62 ↑) 23.17 (1.34 ↑)

Figure 11. Feature maps and corresponding semantic segmentation results of different components
in RIFENet under poisoning attack.

5. Discussion

In this section, we first verify the impact of setting different poisoning rates ρ on
the model performance, and then systematically evaluate and discuss the vulnerability of
existing aerial image semantic segmentation models to poisoning attacks. To analyze the
impact of the poisoning rate on the model performance, we use clean-label attack [35] to
generate poisoning samples on the UDD dataset and feature selection attack [66] to generate
poisoning samples on the UAVid dataset. In the experiment process, the poisoning rate
ρ takes the value from {5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}. The semantic
segmentation accuracy of CNNs-based and Transformer-based aerial image semantic
segmentation models on the poisoning sample dataset with different poisoning rates is
shown in Figure 12. It can be seen that as the poisoning rate increases, the mPA values of
all compared semantic segmentation models gradually decrease, indicating that setting
the higher poisoning rate can effectively destroy model performance and reduce semantic
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segmentation accuracy. However, compared with the existing semantic segmentation
models, the proposed RIFENet achieved the best performance. For instance, on the UDD
dataset, the poisoning rate is set as 90%, all the compared methods obtained an mPA value
of only 15%, while the proposed RIFENet obtains over 70%, indicating the effectiveness of
the proposed method in defending against poisoning attacks, and further demonstrating
that robust feature enhancement can significantly improve the generalization capability of
the model against poisoning attacks.

To systematically evaluate the impact of poisoning attacks on the performance of
aerial image semantic segmentation models, we conducted various poisoning attack pat-
terns, including clean-label attack [35], back-gradient attack [38], generative attack [65],
feature selection attack [66], transferable clean-label attack [67], and concealed poisoning
attack [68], on the UAVid dataset. For different poisoning attack methods, we uniformly set
the poisoning rate as 30%. As shown in Table 4, the transferable clean-label attack [67] has
the greatest impact on the performance of semantic segmentation models, as it can cause
irreparable damage to the model feature extraction process. For instance, using feature
selection attack reduces the mPA of SBANet to 10.67%, while the transferable clean-label
attack reduces it to only 8.73%. Similar phenomena can be observed in other compared
methods. In addition, from Table 4, we can conclude that all CNNs-based and Transformer-
based aerial image semantic segmentation models are interfered with by poisoning attacks
and unable to achieve segmentation accuracy similar to that on benign sample datasets.
Therefore, these models urgently need to enhance their defense capabilities against poi-
soning attacks. In contrast, the proposed RIFENet can still achieve an mPA value over
70% under the interference of different poisoning attacks, explaining the effectiveness of
the proposed method in defending against poisoning attacks. It is noteworthy that the
proposed method achieves competitive performance on the benign sample dataset. This
phenomenon indicates that the proposed method not only enhances the defense against
poisoning attacks but also performs well in the aerial image semantic segmentation task.
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(b) Poisoning attack on Transformer-based models

Figure 12. The influence of poisoning rate on CNNs-based and Transformer-based aerial image
semantic segmentation models.
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Table 4. Performance comparison of different semantic segmentation networks under poisoning
attacks (report in mPA). Best results are highlighted in bold.

Attacks AFNet [69] SBANet [70] MANet [71] SSAtNet [72] HFGNet [25]

benign dataset 76.23 78.65 82.41 79.42 83.67
clean-label [35] 21.86 (54.37 ↓) 18.42 (65.25 ↓) 21.32 (61.09 ↓) 25.46 (54.26 ↓) 31.75 (51.92 ↓)

back-gradient [38] 18.53 (57.70 ↓) 14.31 (69.36 ↓) 18.21 (62.20 ↓) 22.17 (57.25 ↓) 26.87 (56.80 ↓)
generative [65] 16.24 (59.99 ↓) 12.54 (71.13 ↓) 16.53 (65.88 ↓) 19.52 (59.90 ↓) 21.62 (62.05 ↓)

feature selection [66] 15.72 (60.51 ↓) 10.62 (73.05 ↓) 14.68 (67.73 ↓) 17.35 (62.07 ↓) 18.14 (65.53 ↓)
trans-clean-label [67] 11.37 (64.86 ↓) 8.73 (74.94 ↓) 9.57 (72.84 ↓) 12.82 (66.60 ↓) 14.05 (69.62 ↓)

concealed poisoning [68] 12.48 (63.75 ↓) 11.74 (71.93 ↓) 10.93 (71.48 ↓) 14.13 (65.29 ↓) 16.34 (67.33 ↓)

STUFormer [73] EMRFormer [74] CONFormer [75] ATTFormer [76] DsegFormer [77] RIFENet (Ours)

78.34 75.25 81.57 83.34 85.42 87.59
26.46 (53.88 ↓) 22.53 (52.72 ↓) 24.64 (56.93 ↓) 20.17 (63.17 ↓) 19.68 (65.74 ↓) 81.74 (5.85 ↓)
24.57 (53.77 ↓) 20.92 (54.33 ↓) 21.35 (60.22 ↓) 18.31 (65.03 ↓) 17.52 (67.90 ↓) 79.83 (7.76 ↓)
22.31 (56.03 ↓) 18.75 (56.50 ↓) 19.42 (62.15 ↓) 16.42 (66.92 ↓) 16.65 (68.77 ↓) 78.36 (9.23 ↓)
20.24 (58.10 ↓) 15.68 (59.57 ↓) 17.37 (64.20 ↓) 14.27 (69.07 ↓) 15.14 (70.28 ↓) 77.65 (9.94 ↓)
17.18 (61.16 ↓) 11.14 (64.11 ↓) 12.98 (68.59 ↓) 9.85 (73.49 ↓) 8.23 (77.19 ↓) 75.82 (11.77 ↓)
18.32 (60.02 ↓) 13.57 (61.68 ↓) 15.24 (66.33 ↓) 12.93 (70.41 ↓) 13.98 (71.44 ↓) 76.93 (10.66 ↓)

6. Conclusions

In this article, we investigated the threat of poisoning attacks on aerial image semantic
segmentation and proposed an effective defense framework based on robust invariant
features. We first analyzed the impact of poisoning attacks on several existing aerial image
semantic segmentation models and demonstrated that such attacks can destroy the seman-
tic segmentation performance. Then, we systematically investigated the effectiveness of
robust invariant features in defending against poisoning attacks and demonstrated that
robust invariant features can suppress the negative effects of poisoning samples by enhanc-
ing the intrinsic attribute features contained in aerial images. Based on the advantages
of robust invariant features in defending against poisoning attacks, we proposed a novel
robust invariant feature enhancement network (RIFENet) for aerial image semantic segmen-
tation under poisoning attacks. The proposed RIFENet consists of various robust feature
enhancement components, which are designed to enhance the robust feature representation
to suppress the interference of poisoning attacks on the feature extraction process. The
experimental results on the benchmark datasets of aerial image semantic segmentation in
complex urban scenes demonstrated that the proposed method has significant advantages
over existing CNNs-based and Transformer-based aerial image semantic segmentation
models in defending against poisoning attacks. In addition, the ablation studies further
illustrated and demonstrated the contributions of the proposed different robust feature
enhancement components in resisting data poisoning attacks and improving the semantic
segmentation accuracy. In summary, this article is the first to reveal the threat of poisoning
attacks in aerial image semantic segmentation and provides an effective defense framework.
In future work, we will explore using domain adaptation and transfer learning techniques
to enhance the representation of robust invariant features to further improve the defense
performance of aerial image semantic segmentation models against poisoning attacks.
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