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Abstract: Studying the variation in vegetation types within the source region of the Yellow River
(SRYR) is of great significance for understanding the response of vegetation to climate change
and human activities on the Qinghai-Tibet Plateau (QTP) permafrost. In order to understand the
characteristics of the variation in vegetation associations in the SRYR under the influence of climate
and human activities, two hyperspectral remote sensing images from HJ-1A in 2013 and OHS-3C in
2020 were used to extract the vegetation types located in the area south of Ngoring Lake, covering
437.11 km2 in Maduo County, from the perspective of vegetation associations. Here, the hybrid
spectral CNN (HybridSN) model, which is dependent on both spatial and spectral information, was
used for vegetation association classifications. On this basis, the variations in vegetation associations
from 2013 to 2020 were studied using the transition matrix, and the variation in noxious weeds
across different altitude and slope gradients was analyzed. As an example, Thermopsis lanceolata’s
spatial distribution pattern and diffusion mechanism were analyzed. The results showed that (1) in
addition to noxious weeds, herbage such as Poa poophagorum, Stipa purpurea, Kobresia humilis, and
Carex moorcroftii increased, indicating that the overall ecological environment tended to improve,
which may be attributed mainly to the development of a warm and humid climate. (2) Most of the
noxious weeds were located at low altitudes with an area increase in the 4250–4400 m altitude range
and a decrease in the 4400–4500 m altitude range. More attention should be given to the fact that the
noxious weeds area increased from 2.88 km2 to 9.02 km2 between 2013 and 2020, which was much
faster than that of herbage and may threaten local livestock development. (3) The Thermopsis lanceolate
association characterized by an aggregated distribution tended to spread along roads, herdsmen sites,
and degraded swamps, which were mainly affected by human activities and swamp degradation.

Keywords: SRYR; vegetation type variations; hyperspectral remote sensing; classification; Thermopsis
lanceolata

1. Introduction

The source region of the Yellow River (SRYR) is an important Yellow River Basin (YRB)
water conservation area [1], located in the east of the Qinghai-Tibet Plateau (QTP), covering
an area of 122,000 km2. The SRYR contributes approximately 35% of the runoff to the YRB
and is the main fresh water source for tens of millions of residents and agricultural irrigation
in the YRB, playing an important role in regional social and economic development [2,3].
As part of the Three River Source National Park, known as ‘China’s Water Tower’, the
SRYR is also of great significance to park ecological security [4].

Vegetation is a key biosphere component in supporting Earth’s biodiversity and affects
many important ecosystem services, including biodiversity protection, water conservation,
climate regulation, and carbon storage [5–7]. Vegetation, as an important part of the
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SRYR, can not only respond to climate change in the SRYR, but also reflect the change
in the ecological environment. SRYR vegetation plays an important role in maintaining
ecological environment security and sustainable development in the YRB [8]. The SRYR’s
average altitude is approximately 4300 m above sea level, and the area is covered by
alpine vegetation, which is among the vegetation categories most susceptible to climate
change and human activities, resulting in grassland degradation or changes in vegetation
communities [9–12], transforming vegetation species relationships from coexistence to
competition and changing the interspecific correlation of dominant species from relevant
to uncorrelated [13]. In extreme cases, degraded grasslands even evolve into ‘black soil
land’. As noxious weeds have a strong ability to reproduce and compete, heavily degraded
grassland is gradually dominated by noxious weeds, especially in the northern Bayan Har
Mountain area and the area located near Gyaling Lake and Ngoring Lakes in the SRYR,
posing a great threat to local dominant species and animal husbandry development [14].
Noxious weeds occupy a dominant position, hindering forage growth, which ultimately
lead to the loss of species and ecological diversity [15]. It can also change soil nutrients,
aggravate soil erosion, and eventually cause grassland desertification [16]. The SRYR is
among the most sensitive and fragile ecosystems [17], and large-scale noxious weeds are
bound to cause serious damage to the grasslands and the local ecosystem. Studying the
variations in vegetation types is of great significance for understanding the response of
vegetation to climate variation and human activities in the permafrost regions in the QTP
and for strengthening the SRYR’s ecological management and protection.

Since the 1980s, many scholars have conducted in-depth research on SRYR vegetation
based on multispectral satellite remote sensing data and their derived products. Previ-
ous studies have shown that vegetation activity has increased since 1980 [18]. Using the
Thematic Mapper/Enhanced Thematic Mapper (TM/ETM) data from 1986 to 2000, Wang
et al. believed that alpine meadow vegetation coverage had a significant downward trend
with QTP permafrost active layer thickening [19]. Zhao et al. believed that the alpine
meadow grassland degradation was obvious and the livestock number was significantly
related to the Normalized Difference Vegetation Index (NDVI), and speculated that the
main reason for grassland degradation was long-term grassland overgrazing [20]. Liu and
Yang found that since the 21st century, the overall SRYR NDVI had increased, but there
were obvious spatial distribution differences, mainly characterized by a gradual decrease
from the southeast to northwest. For example, there was an obvious downward trend in
Maduo County from 1998 to 2007 [21,22]. The SRYR NDVI change was related mainly
to precipitation, temperature, and human activities. Precipitation and temperature had a
positive NDVI impact, while human activities had a negative impact [23]. The SRYR vege-
tation was restored as a whole and the ecological protection project played an important
role [23,24]. However, the above research is limited by the multispectral remote sensing
spectral resolution and mainly uses the vegetation index product rather than the vegetation
type succession to describe the SRYR vegetation degradation.

Hyperspectral remote sensing technology development and data accumulation pro-
vide more accurate vegetation classification and variation research possibilities. Compared
to multispectral remote sensing images, hyperspectral remote sensing images have higher
spectral resolution, richer spectral information, and image and spectral integration charac-
teristics, which can identify more detailed differences among complex objects [25]. Using
hyperspectral images as the main data source, An et al. extracted the composition in-
formation of edible grasses, noxious weeds, and bare soil in a typical area of the Three
River Source Region based on the multiple endmember spectral mixture analysis (MESMA)
algorithm and found that grassland degradation was serious in 2012 through the com-
position change [26]. Grassland degradation and the reproduction of noxious weeds are
complementary [27]. The degradation of grassland leads to the sharp reduction in herbage
and the increase in noxious weeds. The increase in noxious weeds is realized through the
mutual transformation of individual assistance and community competition. The type of
association with herbage as the dominant species is changed to that with noxious weeds
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as the dominant species. The formation of the association type with noxious weeds as the
dominant species promotes the gradual consolidation and expansion of noxious weeds
from scattered patches, which eventually lead to the serious degradation of grassland. It
will cause serious economic losses to sustainable grassland ecosystem development when it
reaches a certain scale. Few studies have focused on the noxious weed spatial distribution
pattern changes and expansion mechanisms in the SRYR. It is urgent to analyze the changes
in noxious weed spatial distribution patterns and the diffusion trend in the SRYR to provide
a basis for future grassland protection.

The analyses of the spatial variation in vegetation association are based on the extrac-
tion of accurate vegetation types. Vegetation classifications based on hyperspectral images
have been developed. Machine learning algorithms such as the support vector machine
(SVM) [28] and the random forest (RF) [29] have achieved satisfactory classification accu-
racy, but the selection of the kernel function and optimal parameter combination was still
difficult [30]. At the same time, Convolutional Neural Networks (CNNs) [31] and other
deep learning (DL) algorithms or methods were applied to hyperspectral image classifica-
tion or target mapping. For example, besides super-resolution mapping (SRM) based on
spatial–spectral correlation (SSC) [32] and target-constrained interference-minimized band
selection (TCIMBS) [33], 2D-CNN extracts spatial features of images based on 1D-CNN [34]
and 3D-CNN extracts spatial and spectral features of images simultaneously on the basis of
2D-CNN, which is more suitable for hyperspectral image classification [35]. It also increases
the complexity of the computational processes and the model parameters.

Our study aims to: (1) investigate the variations in vegetation types within the SRYR
from the perspective of vegetation associations, especially the variations in herbage and
noxious weeds that herdsmen are more concerned about; (2) investigate the spatial distri-
bution pattern of noxious weeds, as well as their characteristics of expansion, to provide a
theoretical basis for the further development of animal husbandry. In this paper, two-period
spaceborne hyperspectral remote sensing images separately acquired by HJ-1A in 2013 and
OHS-3C in 2020 were used to extract vegetation types in view of vegetation associations
near southern Ngoring Lake. On this basis, the conversion of vegetation associations was
carried out using the transition matrix, and the variation in noxious weeds was analyzed
across altitude and slope gradients. In particular, the changes in the spatial distribution
pattern and the expansion mechanism of a typical noxious weed, Thermopsis lanceolata, were
further studied to provide decision-making support for the protection of the ecological
environment and the development of animal husbandry in the SRYR.

2. Materials and Methods
2.1. Study Area

Taking into account the availability of hyperspectral remote sensing data, a small
part of the SRYR covering typical alpine vegetation was selected as the study area, located
near the south of Ngoring Lake, Qinghai Province, China (Figure 1). The area is between
36◦15′–38◦20′N and 97◦50′–101◦20′E and covers 437.11 km2. It belongs to the semiarid and
semihumid subtropical zone and is characterized by a typical plateau climate with short,
humid, and rainy summers and long, cold, and dry winters. The annual temperature in
the watershed ranges from 24.3 to −48.1 degrees Celsius, and the annual precipitation is
approximately 332.5 mm, occurring mostly from June to September [36]. The main soil types
are aeolian sandy soil, castanozems, meadow soil, and frigid calcic soil. Vegetation types
are diverse, consisting mainly of alpine grassland vegetation, alpine meadow vegetation,
aquatic vegetation, alpine swamp vegetation, and cushion vegetation [23].
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image sales companies. As the products were subjected to radiative and system geometry 
corrections, the image was then preprocessed with band removal, bad line repair, stripe 
removal, atmospheric correction, and geometric correction [37,38]. All the processing was 
performed using ENVI 5.3 software. 

Field data collection was conducted to explore and verify the vegetation type in July 
and August when the vegetation grew best from 2019 to 2021. In order to determine the 
vegetation types accurately in the study area, we used random sampling. First, we set-up 
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were set at four corners and the central position, and the GPS coordinates of the central 
quadrats were measured by Trimble Geo XH 6000 hand-held GPS(made by Beijing 
Mingtu Technology Co., Ltd., Beijing, China) units with an accuracy of 0.1 m. For each 
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recorded. The five quadrats were averaged to determine the dominant species within the 
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altitudes and low atmospheric pressure, as well as by dangerous animals such as wolves 
and yaks [39]. We were able to investigate most of the north of the main road and a little 
of south and collected a total of 45 points (Figure 1). A typical sample of each vegetation 
type is selected for display (Table 2). 

Figure 1. Schematic diagram of the study area. (a) Qinghai Province, China. (b) OHS-3C image
(study area).

2.2. Data and Preprocessing

There were three hyperspectral remote sensing image scenes available that covered
the study area, as shown in Table 1.

Table 1. Information on hyperspectral remote sensing images.

Number Acquisition Date Sensor Satellite Number of Bands Spatial Resolution (m)

1 16 August 2013 HSI HJ-1A 115 100
2 13 August 2019 AHSI GF-5 330 30
3 24 August 2020 CMOS OHS-3C 32 10

The Hyper-Spectral Imager (HSI) image with a 5 nm spectral resolution was obtained
from the China Resources Satellite Application Center (www.cresda.com (accessed on
20 September 2021)) data sharing platform, while the Advanced Hyper-Spectral Imager
(AHSI) image with a 5 to 10 nm spectral resolution and the Complementary Metal-Oxide-
Semiconductor (CMOS) image with a 2.5 nm spectral resolution were purchased from
image sales companies. As the products were subjected to radiative and system geometry
corrections, the image was then preprocessed with band removal, bad line repair, stripe
removal, atmospheric correction, and geometric correction [37,38]. All the processing was
performed using ENVI 5.3 software.

Field data collection was conducted to explore and verify the vegetation type in July
and August when the vegetation grew best from 2019 to 2021. In order to determine the
vegetation types accurately in the study area, we used random sampling. First, we set-up a
10 m × 10 m plot at each sample site. For each sample plot, a total of 5 1 m × 1 m quadrats
were set at four corners and the central position, and the GPS coordinates of the central
quadrats were measured by Trimble Geo XH 6000 hand-held GPS(made by Beijing Mingtu
Technology Co., Ltd., Beijing, China) units with an accuracy of 0.1 m. For each quadrat, it
was photographed and the vegetation cover of each species was estimated and recorded.
The five quadrats were averaged to determine the dominant species within the plot. The
coverage of the sample sites in the study area is affected by accessibility (wetlands and
lakes could not be entered), by the inadaptation of researchers at high altitudes and low
atmospheric pressure, as well as by dangerous animals such as wolves and yaks [39]. We
were able to investigate most of the north of the main road and a little of south and collected
a total of 45 points (Figure 1). A typical sample of each vegetation type is selected for
display (Table 2).

www.cresda.com
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Table 2. The typical field investigation vegetation types in the study area.

Vegetation Types Longitude and Latitude Photos

Carex moorcroftii, Kobresia tibetica Maxim cluster 34◦48′N, 97◦53′E
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Table 2. Cont.

Vegetation Types Longitude and Latitude Photos

Stipa purpurea,
Leontopodium pusillum association 34◦46′E, 97◦46′N
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In addition, a 1:1,000,000-scale vegetation-type database covering the study area
released by the Chinese QTP Data Center was used to provide a spatial vegetation distribu-
tion overview.

To explore causes of vegetation types variations, 1 km MODIS land surface tempera-
ture data from 2013 to 2020 after processing [40]; precipitation data from four meteorological
observation stations in Dulan, Maduo, Dari, and Qumalai of Qinghai Province from 2013
to 2020 (http://www.ncdc.noaa.gov/ (accessed on 10 October 2022)); land use type classi-
fication data from 2013 and 2020 [41]; and Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) data with a 30 m
spatial resolution per pixel (http://www.gscloud.cn/ (accessed on 30 October 2022)) were
collected. The precipitation distribution map covering the study area was obtained from
the precipitation data of four stations by the inverse distance weighting method. The DEM
was resampled to 100 m and 10 m with the same resolution as the HJ-1A and OHS-3C
images, and the elevation and slope layers of the study area were calculated by the DEM.

2.3. Methods
2.3.1. Hybrid Spectral Convolutional Neural Network (HybridSN)

DL has become very widespread for classification or image feature extraction appli-
cation and has shown a high-performance capability. CNNs are one of the most popular
utilized DL networks [42]. CNN takes the original data as input, reduces the data recon-
struction based on ensuring data integrity, and has the advantage of automatic extraction
of vegetation features [43]. CNN contains mainly 2D-CNN and 3D-CNN. The 2D-CNN can
use a 2D convolution kernel to extract the spatial features of multispectral remote sensing
images to identify complex ground objects. However, the feature extraction mechanism is
insufficient to extract rich spectral information, and there are problems such as multiple
network parameters and high computational cost. As a transformation form of ordinary
2D-CNN, depthwise separable convolution (DSC) improves the problems of a large number
of parameters and a high computational cost and, in practice, improves the practicability of
network classification models [44]. The 3D-CNN uses 3D convolution kernels to extract
hyperspectral images’ spatial and spectral features fully and improves the network model

http://www.ncdc.noaa.gov/
http://www.gscloud.cn/
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vegetation types’ classification accuracy [30]. However, it also improves the complexity and
computational complexity of the network model and puts forward higher requirements
for computer performance in practical applications. The HybridSN model is composed of
2D-CNN and 3D-CNN, which maximizes the extraction accuracy and reduces the model
complexity and computational complexity on the basis of the simultaneous extraction of
spatial–spectral joint information of images [45].

In our study, we applied a HybridSN model that combined 3D-CNN and DSC to
extract vegetation types (Figure 2). The HybridSN model contained a 3D feature extraction
block (black box), a 2D feature extraction block (green box), a flatten layer, three fully
connected (FC) layers, and a softmax classifier. The 3D feature extraction block was
composed of three small units (red box), and each small unit was made up of 3D convolution
(Conv3D), a rectified linear unit (ReLU) as the activation function, and a batch normalization
(BN) layer, which had the characteristics of speeding up the convergence rate, preventing
overfitting, and preventing the vanishing gradient. The 3D feature extraction block was
used to learn the spatial–spectral features of the image. The 2D feature extraction block
(green box) consisted of three separable convolution (SeparableConv2D) layers. Two-
dimensional feature blocks were used to extract more deep spatial features. In the HybridSN
framework, the dimensions of the three-layer 3D convolution kernel were 16 × 3 × 3 ×
3, 32 × 3 × 3 × 3, and 64 × 3 × 3 × 3, in order, where 64 × 3 × 3 × 3 means 64 3D
convolution kernels of dimension 3 × 3 × 3 (one spectral dimension and two spatial
dimensions). Additionally, this was then followed by three separable convolution kernels,
with dimensions of 16 × 3 × 3, 32 × 3 × 3, and 64 × 3 × 3, where 64 × 3 × 3 means 64 2D
convolution kernels of dimension 3 × 3 (two spatial dimension) [45]. Finally, the output
number of softmax was 9, which is the same number of experimental data classes.
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Figure 2. HybridSN model structure diagram.

At the same time, for this paper, Principal Component Analysis White (PCAW) was
chosen to reduce the hyperspectral image dimension before putting it into the network to
prevent the ‘curse of dimensionality’ phenomenon to improve the learning speed of the
network model [46]. In our paper, the HJ-1A, GF-5, and OHS-3C band dimensionalities
were reduced to 60, 55, and 16 by PCAW, respectively.
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2.3.2. Transition Matrix

The transition matrix can represent the mutual conversion relationship effectively
between various types of vegetation in two periods and can better analyze its temporal and
spatial evolution process [47]. The mathematical representation is shown in Equation (1):

K =

 k11 · · · k1j
...

. . .
...

ki1 · · · kij

 (1)

where K is the transition matrix from state ki to state k j.

2.3.3. Linear Regression Trend Model

The linear regression trend method is used for predicting the changing trend of
variables by performing linear regression analysis on time-varying variables [48]. Its
mathematical representation is shown in Equation (2):

Slope =
n

n
∑

i=1
(i× Xi)−

n
∑

i=1
i×

n
∑

i=1
Xi

n
n
∑

i=1
i2 − (

n
∑

i=1
i)2

(2)

where Slope is the slope of the regression equation, Xi is the mean value of the variable in
year i, and j is the length of time. The value of Slope is normally between [−1, 1], although
when Slope is positive, the indicator shows an increasing trend in n years, and vice versa.
When Slope = 0, it does not show a trend change [49].

2.3.4. Ripley’s K Function

Ripley’s K function reflects the point events’ spatial distribution dependence [50]. Its
mathematical model is shown in Equation (3):

K(d) = A
n

∑
i=1

n

∑
j=1

dij(d)
n2 (3)

where A represents the area of the study area, n is the total number of individuals in the
study area, i and j are two individual events, dij is the distance between two points i and j,
and d is the distance scale. Generally, L(d) is used instead of K(d), and the mathematical
model is shown in Equation (4):

L(d) =
√

K(d)− πd2 (4)

where L(d) is a linear transformation of K(d). In the random distribution, the expected
value of L(d) is 0. Ripley’s K function analysis and significance test are performed in
ArcGIS10.2 and five parameters are generated: Observed K (L(d)), Expected K (distance
d), LwCon f Env (discrete confidence intervals for Expected K), HiCon f Env (clustered con-
fidence intervals for Expected K), and Di f f K (the difference between Observed K and
Expected K).

When Observed K > HiCon f Env and Observed K > Expected K, the event shows a
significant aggregated distribution. When Observed K < LwCon f Env and Observed K <
Expected K, the event shows a significant uniform distribution. When Observed K is located
between LwCon f Env and HiCon f Env, the event shows a significant discrete distribution.
When Di f f K is largest, it means that the aggregated distribution is strongest, and when
Di f f K is smallest, it means that the discrete distribution is strongest.
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2.3.5. Nearest Neighbor Hierarchical Spatial Cluster (NNH)

The NNH identifies closed event groups in space. According to the nearest neighbor
index, the multilevel spatial aggregation areas are obtained [19]. By defining the limit
distance or threshold of the ‘cluster unit’, several first-level cluster units are formed. Then,
the second-level cluster units are obtained by gathering the first-level clustering units.
The second-level cluster units are extrapolated to higher-aggregation areas until all points
are grouped into a single cluster or do not meet the cluster conditions. CrimeStat 3.3
software was used to conduct multiple experiments, and the best results were obtained.
The minimum number of points was set to 5 and the standard deviation of the aggregation
area ellipse was set to 1X; that is, approximately 50% of the points were included in the
aggregated ellipse. The threshold is calculated by the random nearest neighbor distance
method, and the mathematical model is shown in Equation (5).

R = 0.5

√
A
N
± 1.645 ∗ 0.26136

√
A

N
(5)

where A represents the area of the region; N represents the number of events; 1.645
represents the abscissa corresponding to the 95% normal distribution range on both sides
of the curve center.

3. Results
3.1. Classification of Vegetation Associations
3.1.1. Definition of Vegetation Association and Sample Selection

Various vegetation types in the study area do not exist independently but cross each
other in different proportions. There are no obvious spatial boundaries in the species
distribution. Furthermore, due to the remote sensing spatial resolution image limitation,
the corresponding ground range represented by each pixel is a rectangular area with spatial
resolution size as the side length, and the species are not a single category within the pixel.
For the above reasons, this paper adopted the associations in the community classification
system and determined the association types based on the type of dominant species in
each association to examine the study area’s vegetation variation. After field investigation,
Carex moorcroftii, Kobresia tibetica Maxim association; Kobresia humilis, Leontopodium pusillum
association; Kobresia humilis, Stipa purpurea association; Poa poophagorum, Stipa purpurea
association; the Stipa purpurea association; Stipa purpurea, Leontopodium pusillum association;
noxious weeds; water; and bare ground were selected. Specific vegetation association
information is shown in Table 3.

Table 3. Study area vegetation association information.

Vegetation
Association

Dominant
Species Subdominant Species Companion Species

Stipa purpurea association Stipa purpurea Elymus dahuricus Turcz, Roegneria
thoroldiana, Kobresia humilis, etc.

Carex moorcroftii, Kobresia
tibetica Maxim association Carex moorcroftii Kobresia tibetica Maxim

Scirpus distigmaticus,
Pteridophyta, Cremanthodium

Benth, etc.

Kobresia humilis, Stipa
purpurea association Kobresia humilis Stipa purpurea

Poa poophagorum,
Kobresia humilis,

Leontopodium pusillum, etc.

Poa poophagorum, Stipa
purpurea association Poa poophagorum Stipa purpurea Elymus dahuricus Turcz,

Kobresia humilis, etc.

Kobresia humilis, Leontopodium
pusillum association Kobresia humilis Leontopodium

pusillum
Oxytropis, Stipa purpurea, Poa

poophagorum, etc.
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Table 3. Cont.

Vegetation
Association

Dominant
Species Subdominant Species Companion Species

Stipa purpurea,
Leontopodium

pusillum association
Stipa purpurea Leontopodium

pusillum
Oxytropis, Ajania khartensis,

Poa poophagorum, etc.

Noxious weeds Thermopsis lanceolate, Ligularia virgaurea, Aconitum pendulum, Oxytropis, Leontopodium pusillum, Saussurea
japonica, Polygonum sibiricum Laxm, Ajania khartensis, Pedicularis kansuensis Maxim, etc.

The selection of training and test samples was based on the principles of typicality,
representativeness, and appropriateness with the help of field survey data and vegetation
type databases at a scale of 1:1,000,000. Based on 1:1,000,000-scale vegetation-type databases,
field survey data, and GF-2 data with 1 m resolution, labels were selected on hyperspectral
images such as OHS-3C, GF-5, and HJ-1A. The proportion of training samples and test
samples was sat at 70% and 30%, respectively. The numbers of training and test samples
are shown in Table 4.

Table 4. Training and test sample numbers in the study area.

Categories

HJ-1A GF-5 OHS-3C

Number of
Training
Samples

Number of
Testing

Samples

Numbersof
Training
Samples

Number of
Testing

Samples

Number of
Training
Samples

Number of
Testing

Samples

Lake 410 176 758 325 816 350
Bare ground 102 44 162 70 729 312

Noxious weeds 13 6 48 20 319 137
Stipa purpurea association 67 29 276 118 509 218
Carex moorcroftii, Kobresia
tibetica Maxim association 87 37 206 88 888 380

Kobresia humilis, Stipa
purpurea association 86 37 223 95 1165 499

Poa poophagorum, Stipa
purpurea association 86 37 269 115 1194 512

Kobresia humilis,
Leontopodium

pusillum association
111 47 134 58 792 340

Stipa purpurea,
Leontopodium

pusillum association
90 38 263 113 869 373

Total 1052 451 2339 1002 7281 3121

3.1.2. Vegetation Association Classification Results

In the HybridSN model, the window size was set to 9, the batch size was set to 128,
the iteration number was set to 150, and the weights were used and initialized to obtain
the best classification results after experimentation. The Kappa coefficients of HJ-1A, GF-
5, and OHS-3C were 0.9911, 0.9904, and 0.9931, respectively, and the overall accuracies
were 99.23%, 99.29%, and 99.70%, respectively. The accuracy obtained by HybridSN was
much higher than that of support vector machine (SVM). The user’s accuracy (UA) and
producer’s accuracy (PA) of each category are shown in Table 5. The classification and the
area statistics results are shown in Figure 3 and Table 6, respectively.
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Table 5. The UA and PA of each category.

Categories
UA (%) PA (%)

HJ-1A GF-5 OHS-3C HJ-1A GF-5 OHS-3C

Noxious weeds 83.33 100.00 97.46 100.00 100.00 99.14
Lake 99.78 99.75 100.00 100.00 100.00 100.00

Bare ground 100.00 100.00 100.00 97.73 100.00 100.00
Carex moorcroftii, Kobresia tibetica

Maxim association 100.00 100.00 98.58 100.00 97.98 99.71

Kobresia humilis, Leontopodium
pusillum association 100.00 100.00 98.04 100.00 98.82 99.34

Kobresia humilis, Stipa purpurea
association 97.71 97.35 100.00 98.46 100.00 99.33

Poa poophagorum, Stipa purpurea
association 98.96 98.79 99.41 99.31 99.19 98.82

Stipa purpurea, Leontopodium
pusillum association 99.42 99.32 98.55 97.16 96.08 96.88

Stipa purpurea association 100.00 96.47 96.44 99.00 98.80 98.19
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Table 6. Area statistics of classification results in the study area.

Categories 2013
(km2) Proportion (%) 2020

(km2) Proportion (%) Growth Rate (%)

Lake 208 47.59% 195.44 44.71% −6.04%
Bare ground 19.23 4.40% 17.24 3.94% −10.35%

Noxious weeds 2.88 0.66% 9.02 2.06% 213.19%
Stipa purpurea association 28.62 6.55% 14.7 3.36% −48.64%
Carex moorcroftii, Kobresia
tibetica Maxim association 20.72 4.74% 24.13 5.52% 16.46%

Poa poophagorum, Stipa
purpurea association 42.56 9.74% 57.42 13.14% 34.92%

Kobresia humilis, Stipa purpurea
association 29.8 6.82% 40.19 9.19% 34.87%

Kobresia humilis, Leontopodium
pusillum association 57.47 13.15% 38.05 8.70% −33.79%

Stipa purpurea, Leontopodium
pusillum association 27.83 6.37% 40.92 9.36% 47.04%

3.2. Classification Accuracy Verification

In addition to Kappa coefficients and overall accuracies, we verified the accuracy of
the extracted vegetation associations in two other ways: data collected from field surveys
and vegetation association comparisons in neighboring years.

Through field investigation in the study area, a total of 34 in situ verification points
were selected to verify the 2020 OHS-3C vegetation association extraction results. Point-by-
point inspection results showed that the vegetation types were fully compatible with the
field vegetation types. The actual verification point distribution is shown in Figure 4.
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Figure 4. Vegetation classification verification results in 2020.

The main vegetation type in the study area was perennial vegetation. Assuming
that there was little spatial vegetation distribution variation between adjacent years, the
2019 GF-5 vegetation extraction results were used as a reference to verify the 2020 OHS-3C
extraction results in the same area (Figure 5). According to the 2019 and 2020 vegetation type
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extraction results (Table 7), the difference between the vegetation association proportions
was less than 5% in the two periods, which could indicate that the vegetation association
spatial distribution had no variation in the two years adjacent to 2019 and 2020.
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Figure 5. GF-5 hyperspectral image classification result in 2019.

Table 7. Comparison statistics of extraction results in 2019 and 2020.

Categories Proportion in 2019 (%) Proportion in 2020 (%) Difference (%)

Lake 27.82% 25.81% 2.01%
Bare ground 4.55% 3.10% 1.45%

Noxious weeds 1.65% 1.41% 0.24%
Stipa purpurea association 7.14% 8.62% −1.48%

Carex moorcroftii, Kobresia tibetica Maxim association 6.82% 3.80% 3.02%
Poa poophagorum, Stipa purpurea

association 20.68% 22.34% −1.66%

Kobresia humilis, Stipa purpurea association 7.37% 9.31% −1.94%
Kobresia humilis, Leontopodium

pusillum association 8.46% 11.17% −2.71%

Stipa purpurea, Leontopodium
pusillum association 15.51% 14.44% 1.07%

3.3. Vegetation Association Variation Analysis

Comparing the 2020 extraction result with that in 2013, the lake; bare ground; the
Stipa purpurea association; and Kobresia humilis, Leontopodium pusillum association areas
decreased (Table 5). The area of high-quality grasses for livestock, such as Carex moorcroftii,
Kobresia tibetica Maxim association; Poa poophagorum, Stipa purpurea association; Kobresia
humilis, Stipa purpurea association; the Stipa purpurea association; and Stipa purpurea, Leon-
topodium pusillum association increased. At the same time, the noxious weeds area also
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significantly increased, among which the growth rate of the decrease in the Stipa purpurea
association area was largest, while the growth rate of the increase in the noxious weeds
area was largest, followed by Poa poophagorum, Stipa purpurea association.

The transition matrix follows for the decreased land cover conversion, the decrease in
lake area was transformed into Poa poophagorum, Stipa purpurea association; Stipa purpurea,
Leontopodium pusillum association; Carex moorcroftii, Kobresia tibetica Maxim association
and some noxious weeds. The decrease in bare ground was transformed into Kobre-
sia humilis, Leontopodium pusillum association and Stipa purpurea, Leontopodium pusillum
association. The decrease in the Stipa purpurea association was transformed into Kobresia
humilis, Leontopodium pusillum association; Stipa purpurea, Leontopodium pusillum association;
and Poa poophagorum, Stipa purpurea association. The decrease in the area of Kobresia humilis,
Leontopodium pusillum association was transformed into Poa poophagorum, Stipa purpurea
association; Stipa purpurea, Leontopodium pusillum association; and some Kobresia humilis,
Stipa purpurea association. The detailed conversions among various vegetation associations
are shown in Table 8 and Figure 6.
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Table 8. Transition matrix for 2013–2020/km2.

2020

2013
NW Lake BG CK KL KS PS SL SC Total

NW 0.37 2.10 1.47 0.45 1.76 0.31 0.85 0.70 1.01 9.02

Lake 0.09 191.74 0.18 0.90 0.91 0.08 0.59 0.55 0.4 195.44

BG 0.14 0.43 4.35 0.28 4.77 0.68 0.84 2.92 2.83 17.24

CK 0.21 2.74 0.53 7.54 2.89 4.07 3.54 1.29 1.32 24.13

KL 0.36 0.96 5.08 0.66 11.99 1.82 3.52 7.01 6.65 38.05

KS 0.62 1.58 1.79 3.83 8.44 13.04 5.40 2.77 2.72 40.19

PS 0.78 4.10 1.92 4.63 11.81 7.00 17.95 4.53 4.70 57.42

SL 0.16 3.66 2.49 2.03 10.55 1.96 7.89 5.88 6.30 40.92

SC 0.15 0.69 1.42 0.40 4.35 0.84 1.98 2.18 2.69 14.70

Total 2.88 208.00 19.23 20.72 57.47 29.80 42.56 27.83 28.62 437.11

Remarks: Noxious weeds—NW; Lake—Lake, Bare Ground—BG; Carex moorcroftii, Kobresia tibetica Maxim
association—CK; Kobresia humilis, Leontopodium pusillum association—KL; Kobresia humilis, Stipa purpurea
association—KS; Poa poophagorum, Stipa purpurea association—PS; Stipa purpurea, Leontopodium pusillum
association—SL; Stipa purpurea association—SC.

3.4. Temperature and Precipitation Trend Analysis

The vegetation variation is influenced by climatic and nonclimatic factors. Based
on the analysis of the surface temperature and annual precipitation change trend in the
study area from 2013 to 2020 (Figure 7), it was found that surface temperature and annual
precipitation increased and continued to increase in the study area, and the climate tended
to increase temperature and humidity.
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3.5. Noxious Weed Variation across Altitude and Slope Gradients

As there were no noxious weeds beyond the 25-degree slope, the grassland slopes
were divided into two levels, 0–7◦ and 7–25◦, which were denoted as the bottomland and
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gentle slope, respectively, considering the SRYR terrain conditions of and the engineering
management needs (Table 9) [51], while the altitude gradient was divided into seven grades
at an interval of 50 m (Table 10), which were 4200–4250 m, 4250–4300 m, 4300–4350 m,
4350–4400 m, 4400–4450 m, 4450–4500 m, and 4500–4550 m, as indicated by I-VII from low
to high.

Table 9. The hierarchical list of slopes.

Scheme 0. 0–7 7–25

Grade Bottomland Gentle slope

Table 10. The hierarchical list of altitudes.

Altitude/m 4200–4250 4250–4300 4300–4350 4350–4400 4400–4450 4450–4500 4500–4550

Grade I II III IV V VI VII

The noxious weed distribution was counted at both different altitudes and slopes
levels in 2020, as shown in Figure 8. More than 80% of the noxious weeds were distributed
in the altitude range of 4250–4350 m, and the proportion in the bottomland was much
higher than that in the gentle slope in this range. The noxious weeds proportion distribution
was less in the area with altitudes over 4350 m and showed a decreasing trend with an
increasing altitude, but the gentle slope distribution proportion was higher than in the
bottomland. The noxious weeds spatial distribution pattern was significantly affected by
altitude and slope.
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The variations in area of noxious weeds with altitude gradient in 2013 and 2020 are
shown in Figure 8. There was little variation in the noxious weeds in the altitude ranges
of 4200–4250 m and 4500–4550 m from 2013 to 2020. Noxious weeds increased to a large
area in the range of 4250–4400 m between 2013 and 2020, with the largest increase between
4250 and 4300 m. The noxious weeds area decreased gradually in the altitude range of
4400–4500 m, with the largest decrease between 4450 and 4500 m.

3.6. Thermopsis Lanceolata Association Spatial Distribution Pattern

As a typical noxious weed, Thermopsis lanceolata is distributed widely in the study area
and is characterized by aggregation. Once occurring, it presents a grassland landscape
with a patchy association dominated by Thermopsis lanceolata. This poses a greater threat
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to animal husbandry development, so the extraction result of Thermopsis lanceolata was
used to analyze the spatial distribution and diffusion characteristics as a typical example
(Figure 9). Its area was 3.18 km2, accounting for 33% of the total noxious weeds area.
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Ripley’s K function result of the Thermopsis lanceolata association is shown in Figure 10.
The points of the Thermopsis lanceolate association showed an aggregated distribution
pattern on the 0–8 km scale. The aggregated degree was high, among which the best
aggregation state was on the 3 km scale.
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3.7. Thermopsis Lanceolata Association Diffusion Mechanism Analysis

The NNH result of the Thermopsis lanceolate association is shown in Figure 11. There
were three spatial cluster levels. The first-level cluster represented the spatial aggregation
of Thermopsis lanceolata pixels. It presented a large number of patches, most of which were
distributed in the northeast and central regions, and the rest were located in the eastern,
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southwestern, and southern regions of the study area. It appears that the overall spatial
distribution was random. The second-level cluster was the local aggregation region of
Thermopsis lanceolata patches, which were concentrated on both sides of the road, around
the herdsmen sites, and in the waterside areas such as the herbaceous swamp. The third-
level cluster represented the second-level cluster spatial concentration area, that is, the
large-scale Thermopsis lanceolata patch area. The third-level cluster showed an obvious zonal
distribution with roads and herdsmen sites, and was diffused around swamps—denoted
as zone A. The third-level cluster had a clear trend of extending along the road to the east
in the northeast and along the road to the southwest in the middle.
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Figure 11. NNH analysis of Thermopsis lanceolata association.

It was found that the Thermopsis lanceolata association gathered on both sides of the
road, around the herdsmen sites, and around the herbaceous swamp primarily according
to the diffusion mechanism. The expansion directions were spread along the road and
around the herdsmen sites near the roads, as well as to the surrounding swamps. There are
three explanations for this phenomenon:

The first is that human transport caused the Thermopsis lanceolata association diffu-
sion [52]. Vehicles could be used as a temporary habitat for biological seeds, bringing
seeds from one place to another. It provided a diffusion opportunity for adaptive and
reproductive Thermopsis lanceolata.

The second is that the Thermopsis lanceolata diffusion was mediated by animals [53].
During grazing, livestock ruminated or defecated the seeds so that seeds spread and grew
around the herdsmen sites and along roads. With its strong production capacity and the
ability of roots to erode water and heat resources [54], Thermopsis lanceolata occupied most
of the grassland resources gradually and replaced forage as the dominant species.

The last is the shrinkage of marshes. Thermopsis lanceolate had an increasing trend of
aggregation in a degraded swamp. According to the land cover extraction in zone A in
2013 and 2020 (Table 11), we found that the area of herbaceous marshes shrank significantly,
with an area reduction of approximately 31% from 2013 to 2020. Permafrost degradation
contributes to swamp degradation [55]. With the aggravation of wetland degradation,
the soil pH increased and showed a salinization trend. The abilities of forage plants to
absorb and utilize soil nutrients were weakened, while Thermopsis lanceolata had a strong
ability to adapt to adverse environments, grew well in alkalized and salinized soils, and
maintained the content of elements in the roots by increasing organic matter [56]. Moreover,
the allelopathic effect of Thermopsis lanceolata inhibited seed germination and growth of the
forage [57]. For the above reasons, it expanded widely in zone A shown in Figure 11.
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Table 11. Zone A land cover change comparison in 2013 and 2020.

Categories Area in 2013 (km2) Area in 2020 (km2) Difference (km2) Growth Rate (%)

Water 1.09 0.94 −0.15 −13.76
Herbaceous swamp 1.00 0.69 −0.31 −31.00

Grass land 29.65 31.42 1.77 6.00
Bare ground 3.25 1.94 −1.31 −40.31

4. Discussion
4.1. Influencing Factors of Vegetation Association Variation

The classification results from 2013 and 2020 showed that the area of vegetation
association increased or decreased, and most of the area increased in the study area.
Temperature and precipitation are one of the factors affecting vegetation variation. Figure 7
showed that the annual precipitation and surface temperature show an increasing trend
in the study area, and the climate gradually becomes warm and humid. This climatic
conditions were conducive to vegetation restoration [58,59], so the area of vegetation
associations increased. However, there were also some associations that had decreased.
Because the study area belonged to alpine permafrost areas, the interaction between climate
and frozen soil might be the reason for the decrease. Human activities also played a role.
For example, although precipitation had increased, the area of the lake still decreased.
Because the hydropower station had been dismantled at the mouth of Ngoring Lake, its
water storage function had failed, resulting in a decrease in the lake area. In the next section,
we discuss the impact of human activities on the variation in noxious weeds along with the
terrain, reflecting the corresponding role of human activities.

4.2. Spatial Distribution and Diffusion of Noxious Weeds

Noxious weeds were among the most obvious variations in vegetation association.
Although the growth area is small, the growth rate is far higher than that of high-quality
grass. It was found that the distribution of noxious weeds was limited by terrain condi-
tions. It is mainly distributed in low altitude areas, and the area gradually decreases with
increasing altitude, which is the same as the conclusion of Xing et al [27]. From 2013 to 2020,
the largest increase in noxious weeds was found at lower altitudes. The study also found
that the distribution of noxious weeds was also associated with human activity region,
mainly on both sides of the road, around the herdsmen sites, and around the herbaceous
swamp. The above areas were located mostly in the low-altitude area, which explained
the phenomenon of the large area increase in noxious weeds at low altitudes. There were
fewer human activity interventions in the high-altitude area, so the area of noxious weeds
decreased and the overall ecological environment improved, which proved from the side
that human activities mainly caused the variation in vegetation associations dominated by
grassland degradation.

4.3. Future Research Direction

At present, most studies focus on vegetation index and lack of vegetation association
in the SRYR. In this paper, with vegetation association as the classification unit, the deep
learning method can achieve good classification results on HJ-1A, GF-5 and OHS-3C.
However, there are few hyperspectral remote sensing images available in the SRYR, which
makes it difficult to study the vegetation types variations at a large scale using time series
data. Moreover, there are few hyperspectral remote sensing images available in the SRYR,
which makes it difficult to study the vegetation types variations at a large scale using
time series data. Moreover, due to the different HJ-1A and OHS-3C images resolutions,
the extraction results may suffer from a scale discrepancy and spectral mixtures [60,61].
Integrating UAV and ground spectrometer measurements with the satellite images would
be a further research topic.
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5. Conclusions

In this paper, two-period spaceborne hyperspectral remote sensing images acquired
by HJ-1A HSI in 2013 and OHS-3C in 2020 were used to extract vegetation types near
southern Ngoring Lake. On this basis, the vegetation type variations and its causes were
explored. We analyzed the noxious weeds distribution characteristics in view of altitude
and slope. As a typical noxious weed, the Thermopsis lanceolata association was selected to
further study the spatial distribution pattern and diffusion mechanism of noxious weeds
by Ripley’s K function and the NNH method. The following conclusions were obtained:

1. The vegetation cover area increased, where the noxious weeds area increased more
rapidly. The surface temperature and annual precipitation increases were conducive
to vegetation restoration, while human activities had the opposite effect on vegetation.

2. The noxious weeds area decreased gradually with increasing altitude. Most of noxious
weeds were located in the bottomland or on the gentle slope of 4250–4350 m. The
noxious weeds area increased in the range of 4250–4400 m from 2013 to 2020, and the
increase was highest at 4250–4300 m. The noxious weeds area decreased mainly at
4400–4500 m, and the decrease was largest in the range of 4450–4500 m.

3. The Thermopsis lanceolata association distribution was characterized by aggregation,
and its diffusion direction was mainly along the road and the herdsmen sites located
near the road and around the swamp. The diffusion was attributed to human activities
such as human transportation, overgrazing, or the degradation of swamp wetlands.
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