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Abstract: The coastal environment is a natural and economic resource of extraordinary value, but
it is constantly modifying and susceptible to climate change, human activities and natural hazards.
Remote sensing techniques have proved to be excellent for coastal area monitoring, but the main issue
is to detect the borderline between water bodies (ocean, sea, lake or river) and land. This research
aims to define a rapid and accurate methodological approach, based on the k-means algorithm,
to classify the remotely sensed images in an unsupervised way to distinguish water body pixels
and detect coastline. Landsat 8 Operational Land Imager (OLI) multispectral satellite images were
considered. The proposal requires applying the k-means algorithm only to the most appropriate
multispectral bands, rather than using the entire dataset. In fact, by using only suitable bands to
detect the differences between water and no-water (vegetation and bare soil), more accurate results
were obtained. For this scope, a new index based on the optimum index factor (OIF) was applied
to identify the three best-performing bands for the purpose. The direct comparison between the
automatically extracted coastline and the manually digitized one was used to evaluate the product
accuracy. The results were very satisfactory and the combination involving bands B2 (blue), B5 (near
infrared), and B6 (short-wave infrared-1) provided the best performance.

Keywords: coastline detection; Landsat 8 OLI images; k-means algorithm; optimum index factor
(OIF); modified OIF (MOIF); earth observation (EO); remote sensing technique; climate change; GIS

1. Introduction

Defined as the boundary where land meets water [1], coastline can be identified
from satellite images by using spectral information (signature) of the two neighboring
elements [2,3]. However, in situ surveying provides the most precise results but is only
practicable for small regions due to costs; indeed, it may be impossible if a study area
is remote, treacherous or inaccessible [4]. Remote sensing allows us to overcome the
difficulties due to the inaccessibility of the area to be surveyed and the use of satellite
images rather than those captured by aerial vehicles or drones helps to contain costs.
Consequently, in recent years, there has been an increase in the use of remotely sensed data
supplied by optical sensor and synthetic aperture radar (SAR) on-board satellites to extract
and map the coastline automatically or semi-automatically [5–7].

The detection and extraction of coastline data from satellite images are of great im-
portance in several applications such as cartography and the environmental management
of the entire coastal zone [8,9]. Coastline information is the basis for measuring and
calibrating terrestrial and water resources and is the foundation for the excavation and
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management of coastal zone resources [10]. Particularly, information about coastline posi-
tion, orientation and geometric shape is crucial for autonomous navigation, geographical
exploration, coastal erosion monitoring and modeling, and coastal resource inventory
and management [11].

Several techniques are described in the literature to detect coastline from satellite
imagery and at least four different approaches can be distinguished: visual interpretation,
classification techniques, water index and machine learning.

Visual image interpretation involves the human’s ability to examine and evaluate the
content of images. Trained human interpreters combine spectral information viewed from
the image with contextual information concerning the nature of the study environment
to identify, delineate and classify specific features such as land cover, land use and, if the
resolution permits, specific objects [12]. In consequence, the knowledge given by the expert
on the different thematic object classes present in the image supports interpretation of
coastal areas [13] and consequently provides information for coastline visual detection and
manual vectorization [14,15].

As is known, pixel-based classification techniques include supervised and unsuper-
vised approaches: the former provides better results than the latter but are time consuming
and require a greater expenditure of resources due to the identification of training sites [16].
Nevertheless, supervised classification techniques are largely used for coastline extraction,
especially when accurate results are required, such as for high and very high-resolution im-
ages [17]. Rather than on the satellite images, unsupervised techniques are more frequently
applied to the products of their processing based on other algorithms [15,18].

While pixel-based classification uses only the spectral information of each pixel, object-
based classification relies on information from a collection of similar pixels forming objects.
In other words, this approach groups pixels taking into account also the context in which
they are located, i.e., the size, shape and texture of the object, they can form by aggregating.
The advantages of object-based classification over the traditional pixel-based approach are
well known [19–21] and different applications are available for coastline extraction from
satellite images, such as those in [22–24].

The water index approach aims to classify individual pixels in a given image into
two classes: water and no-water. It has advantages of universality, user-friendliness and
low computation cost in coastline data extraction [25]. The first issue is the identification of
the multispectral bands necessary for generating the index [26]; this choice depends on the
peculiarity of the two classes being compared (e.g., sea water/rock; lake water/gravel), so
a careful analysis of the related spectral signatures is necessary [27]. The most largely used
is the Normalized Difference Water Index (NDWI) introduced by McFeeters (1996) [28]:
taking advantage of two bands such as the NIR (near-infrared) and green spectral bands, the
NDWI can enhance the water bodies in a satellite image [29]. To obtain a higher accuracy
from these indexes, a threshold appropriate for separating water and background classes
should be identified [30]. Different solutions are possible for this issue, such as threshold
automated research [31], manual adjustment, supervised classification or unsupervised
classification [32].

The advent of machine learning-based techniques presents an emerging trend in
remote sensing applications and is also capable of supporting coastline data extraction
from satellite images [33]. Machine learning is an important research field of artificial
intelligence [34,35] that allows design and implementation of systems that learn from
data and deduce patterns [36]. Several algorithms of machine learning are available in
the literature for remote sensing applications and have been applied for coastline data
extraction, such as k-nearest neighbor [37,38], support vector machine [39–41] and random
forest [40,42,43].

Some of the abovementioned techniques are based on manual detection of the coastline
or of the training sites, while others allow automatic image processing: the latter are
more useful because automating the process reduces human errors and improves the
standardization and efficiency of the studies [44].
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This article aims to demonstrate that unsupervised approach, based on the k-means
algorithm, allow us to obtain an accurate and automatic coastline detection, but only if it
is applied to an appropriate selection of multispectral bands. The selected bands must be
able to represent in an optimal way the differences among the pixels and, as consequence,
to distinguish the water bodies from the context.

It is well known that multispectral images provide less useful information for clas-
sification the more correlated they are [45]. For this reason, for example, uncorrelated
bands such as infrared and red are the basis of the vegetation indices and facilitate the
identification of the biomass with respect to the bare soil and water bodies. However,
correlation level alone is not enough for a good classification; in fact, a large amount of
information is also required in each image to better distinguish the differences among the
land cover classes included in the investigated areas. In other terms, the acquisition bands
that are uncorrelated and presenting different reflectance values for the detected objects are
to be preferred. Optimum index factor (OIF) [46] identifies the level of correlation among
three selected bands and the amount of information they include: the higher the index
value, the greater the decorrelation between the selected images as well as the total amount
of information they include. To identify bands that not only are uncorrelated but also have
a wide range of reflectance values, we propose in this article a new index named modified
optimum index factor (MOIF). Our study demonstrates that the novel index combines,
in better way than the OIF, the level of correlation between the images constituting each
group, with the possibility of also establishing the amount of information that the same
group contains. The experiments were carried out using Landsat 8 OLI multispectral
images concerning the Tyrrhenian coast of the Calabria region (Italy), and the proposed
method was developed in the GIS environment using the free and open-source Quantum
GIS (QGIS) software (version 3.22) [47].

This paper is organized as follows. In Section 2, the main characteristics of the
Landsat 8 OLI imagery used and the area are described. Section 3 presents the novel
methodological approach based on the application of the k-means algorithm: the MOIF
is introduced, explaining its capability to identify the correlation level of all possible
three-band combinations and, at the same time, to highlight the amount of information
included in each of those band combinations. Section 4 presents and discusses the results,
comparing the levels of accuracy of the extracted coastlines. Section 5 concludes the paper
with the generalization of the results.

2. Study Area and Dataset

The experiments were carried out on Landsat 8 OLI images, acquired on 21 June 2019
and concerning a part of Calabria region (Italy) as shown in Figure 1.

The Landsat 8 satellite is part of the long-running Landsat program, a joint effort of
the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration
(NASA) to monitor Earth from space [48].

The Landsat 8 satellite was launched on 11 February 2013 from Vandenberg Air Force
Base, California; its orbit is polar sun-synchronous at 705 km (438 miles) altitude. Travelling
at approximately 4.7 miles per second, the satellite moves from north to south while it is
over the sunlit portion of the Earth and travels south to north over the dark side of the
Earth [49]. One orbit takes about 99 min, so the satellite makes approximately 15 orbits
in a 24 h period and covers the total globe in 16 days. The swath is 185 km and data are
segmented in 185 × 180 km scenes. The Landsat 8 satellite payload consists of two science
instruments—the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS),
that combine historical features with technological innovations. The OLI is a push-broom
sensor including a four-mirror telescope, which provides seasonal coverage of the global
landmass at a spatial resolution of 30 m (visible, NIR, SWIR) and 15 m (panchromatic).
Two new spectral bands have been added to the traditional Landsat acquisition bands: a
deep-blue band for coastal water and aerosol studies (band 1), and a band for cirrus cloud
detection (band 9) [50]. The TIRS takes data in two long wavelength thermal infrared bands
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at a spatial resolution of 100 m. Data are collected simultaneously in the same area by OLI
and TIR sensors.
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Figure 1. Study area: on the left, the location of the study area in the Tyrrhenian Sea in equirectangular
projection and WGS 84 geographic coordinates (EPSG:4326); on the right, the visualization in RGB
true color composition of Landsat 8 OLI images in UTM/WGS 84 plane coordinates expressed in
meters (EPSG: 32632).

For this application, a clip of Landsat 8 OLI imagery was used. We utilized 8 bands, all
presenting 30 m pixel dimension, i.e., coastal, blue, green, red, NIR, SWIR1, SWIR2 and cirrus
(as reported in Table 1). The clipped scene extended 100,000× 60,000 m (UTM/WGS84 plane
coordinates–33T zone: E1 = 550,000 m, N1 = 4,350,000 m, E2 = 610,000 m, N2 = 4,250,000 m).
Those data were downloaded from USGS official website.

Table 1. Characteristics of Landsat 8 OLI multispectral bands used in this study.

Bands Wavelength
(Micrometers)

Resolution
(Meters)

1–Coastal aerosol 0.43–0.45 30
2–Blue 0.45–0.51 30

3–Green 0.53–0.59 30
4–Red 0.64–0.67 30

5–Near Infrared (NIR) 0.85–0.88 30
6–Short-wave infrared (SWIR 1) 1.57–1.65 30
7–Short-wave infrared (SWIR 2) 2.11–2.29 30

9–Cirrus 1.36–1.38 30

Extending from San Lucido (Cosenza) to Gioia Tauro (Reggio Calabria), in the Tyrrhe-
nian Sea, the study area is indented and varied; it has long beaches interspersed with
high coasts and port areas. In fact, it is characterized by coastal plains, such as Lamezia
Terme to the north and Gioia Tauro to the south [51], while in the center it has a high
promontory, in the Capo Vaticano area. Particularly in the past 40 years, many sea storms
have flooded the waterfront in the Gioia Tauro area, causing damage to houses, bathing
establishments and maritime works [52]. As a consequence, coastline monitoring is crucial,
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also in consideration of climate change events, and the automatic extraction of data from
satellite images is of fundamental importance to reduce effort and work time.

We want to point out that with the proposed method we detected only the instanta-
neous coastline, which is defined as the position of land/sea intersection at one instant in
time, specifically the instant of remotely sensed image acquisition [53]. In fact, we could not
obtain absolutely accurate coastline data from a remote sensing image: what we obtained is
only an approximation [54]. For a correct monitoring, we must consider the dynamic nature
of the coastline, which produces a continuous shift over a day due to tidal fluctuations,
being especially large for steeply sloped beaches located at macro-tidal areas [55]. In conse-
quence, the date and time of acquisition of the satellite image are necessary, together with
the knowledge of the tide level and the availability of a DTM of the study area: in this way,
the horizontal position of the automatically extracted polyline can be corrected to obtain the
real coastline. Since the purpose of our article was to illustrate a method for the automatic
extraction of the coastline and not to show the results of an effective monitoring of coastal
erosion phenomena, the aforementioned elaborations were not considered. In other words,
the object of attention remains the instantaneous coastline and not the real one.

3. Methods

The workflow in Figure 2 shows the activies involved in the proposed method and
the order they should go in. All steps can be developed in the GIS environment and the
whole process may be automated using software tools that establish when one step has
been completed successfully and the next step can begin.
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Figure 2. Workflow of the methodological approach adopted in our study.

Starting from the initial dataset (that includes all bands of Landsat 8 OLI), there is
a pre-processing procedure for converting pixel values to reflectance. Subsequently, the
MOIF values are calculated to establish the three bands to be subjected to the k-means for
automatic classification. Finally, the coastline is extracted, and the accuracy of the results is
evaluated. All these activities are described in detail in the following subsections.
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3.1. Landsat Data OLI Pre-Elaboration

We used the formulas published by the USGS for converting the quantized and
calibrated scaled digital numbers (DN) representing multispectral image data acquired by
Landsat 8 OLI to top of atmosphere (ToA) reflectance [56].

Landsat data were converted from DNs to reflectance using the following formula:

ρλ′ = Mρ Qcal + Aρ (1)

where:
ρλ′ = TOA planetary reflectance, without correction for solar angle (note that ρλ’ does

not contain a correction for sun angle);
Mρ = Band-specific multiplicative rescaling factor from the metadata (REFLECTANCE

MULT BAND x, where x is the band number);
Qcal = Quantized and calibrated standard product pixel values (DNs);
Aρ = Band-specific additive rescaling factor from the metadata (REFLECTANCE ADD

BAND x, where x is the band number).
Then, TOA reflectance with a correction for the sun angle is calculated using the

formula:

Rλ =
ρλ′

sin θSE
(2)

where:
Rλ = TOA planetary reflectance;
θSE = Local sun elevation angle; the scene center sun elevation angle in degrees is

provide in the metadata (SUN_ELEVATION).
Both formulas are applied using Raster Calculator, the QGIS tool that allows per-

formance of multiple tasks of map algebra [57], i.e., mathematical calculations based on
operators and functions, selection queries, or development in map algebra syntax [58].

3.2. Optimum Index Factor

The optimum index factor (OIF) was developed by Chavez et al. (1982) [46] as a
method for determining the three-band combination that maximizes the variability in
a particular multispectral scene [59]. The determination of the optimal combination of
spectral intervals providing the maximum information with the minimum number of
bands is of fundamental importance in remote sensing applications [60]. The OIF aims
to maximize information content and avoid duplication. For this reason, it is based on
the amount of total variance and correlation within and between all possible three-band
combinations in the dataset [61]. OIF is calculated using the following formula:

OIF =
Stdi + Stdj + Stdq∣∣Corri,j
∣∣+ ∣∣Corri,q

∣∣+ ∣∣Corrj,q
∣∣ (3)

where:
Stdi = standard deviation of band I;
Stdj = standard deviation of band j;
Stdq = standard deviation of band q;
Corrij = correlation coefficient of band i and band j;
Corriq = correlation coefficient of band i and band q;
Corrjq = correlation coefficient of band j and band q.
The larger the OIF value, the better the band combination.
Since the beginning OIF has been largely applied to Landsat datasets that include six

multispectral bands with spatial resolution equal to 30 m (Landsat 5 and Landsat 7) or
eight multispectral bands with the same spatial resolution (Landsat 8 and Landsat 9), so
the selection of the most useful combination is crucial. Considering that they are also free
of charge, we decide to use Landsat 8 OLI images for this study.
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In our experiments, OIF was applied to each three-band combination, so 56 values
were obtained, considering the 8 bands of Table 1.

3.3. Modified Optimum Index Factor

However, the OIF method has its limitations and there is no guarantee that the selected
band subset is the optimal combination [62]. In fact, this index uses the correlation coeffi-
cient to identify the possibility of duplication of information and entrusts the variance with
the task of identifying the amount of information. Bands with lots of “information” (high
standard deviation) and a little “duplication” (low correlation between bands) will produce
high OIF values [63]. However, the standard deviation may not be sufficient to underline
the usefulness of an image in differentiating land cover classes. More useful for the purpose
of identifying the amount of information present in an image would be the integration of
the variance with the extension of the range of reflectance values present in the image itself.
Even if they measure both the spread or variability of a dataset, variance and range are not
coincident. In fact, two images with the same (low) variance value can present different
widths of the reflectance range: the widest range carries out more information as it helps to
better distinguish different types of land cover.

For example, Landsat 8 imagery includes the cirrus band, which provides information
on the presence of clouds in the observed scene, effectively expressing a strong non-
correlation with the other bands but characterized by a small amount of information on
the investigated area. In other words, combinations including cirrus usually present a low
level of correlation but also offer a low amount of information that does not contribute to
accurately distinguish different land covers. Nevertheless, the low value of correlation with
the other bands contributes to the high value of OIF while band compositions including
images with limited range of values (like B9) are not optimal.

In this work, we proposed to overcome this drawback by introducing the corrective
factor (CF) supplied by the following formula:

CFijq = Mean
(

Maxi −Mini; Maxj −Minj; Maxq −Minq
)

(4)

where i,j,q are the considered bands, Maxi, Maxj, Maxq are the maximum value of the
respectively i,j,q selected bands, Mini, Minj, Minq are the minimum value of those bands.
The amount of information present in each combination of bands is determined by the
width of the range of values of each band: the wider the ranges, the higher the CF value.

The product between CF and OIF determines the MOIF:

MOIF = CFijq ∗OIFijq (5)

In other terms, MOIF incorporates in a single value the degree of non-correlation
and the amount of information in better way than OIF as it introduces a multiplication
factor which is the average of the extensions of the reflectance ranges of the three bands
considered. The higher the MOIF value, the stronger the contrast between water and
non-water.

Similarly to OIF, MOIF produced 56 values in our study, one for each three-band
combination.

Note that band selection is an effective pre-processing way to reduce the number of
available images and use only those that are useful for a particular perspective [64]. Most
of the existing methods select bands according to a single criterion, such as the extraction
of specific features, e.g., roads, water body, forests, etc. Usually, it is necessary to set up
different band combination schemes according to the spectral characteristics for different
observation objects. In fact, if on the one hand the spectral signature allows recognition of
an object or a type of land cover [65], on the other hand there are definite wavelength values
that better enhance the specificity of the spectral response of this object or land cover, such
as (630–690 nm), and (770–895 nm) for vegetation [66]. Consequently, there are some bands
that are better than others in enhancing the difference of such objects or land covers [65].
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The water indices, such as NDWI, automated water extraction index (AWEI) [67], modified
normalized difference water index (MNDWI) [68], based on the selection of two or more
bands that better highlight the behavior of water bodies with respect to the context, are
also part of this perspective. However, the bands that allow water to be highlighted in a
scene, including bare soil and vegetation, are usually uncorrelated and with a wide range
of different values, as is the case for NIR and/or SWIR bands compared to the visible. We
believe that looking for uncorrelated bands with a high information content can lead to
precise selection of those same bands that are involved in the water indices or help define
new indices.

3.4. Image Classification Using K-Means

Clustering is a process that divides a set of objects into groups (clusters) according
to the predefined criteria such that objects in the same cluster are more similar to each
other than other objects in different groups [69]. K-means clustering is a popular technique
in analysis and pattern recognition [70]. It is an unsupervised classification algorithm, in
particular belonging to family of partitional clustering that decomposes a dataset into a set
of disjoint groups [71].

The k-means algorithm was proposed by J. MacQueen [72] and the main purpose is to
describe a process for partitioning an N-dimensional population in k sets on the basis of a
sample. In other words, the goal is to produce groups of variables with a high degree of
similarity within each group and a low degree of similarity between groups [73]. In the
k-means algorithm, the choice of number of k classes or clusters for classification which is
established a priori is important. For every cluster, the position of centroids in the dataset
is defined, which represents the center of the cluster. K-means is an iterative algorithm that
performs the procedure of iteration until the centroids’ position is stabilized. The k-means
algorithm consists in the following steps:

• Define k cluster and select k centroids from dataset randomly as initial clustering center;
• Calculate the Euclidean distance between k initial centroids and the data points of

dataset and assign each data point to cluster with minimum distance;
• Calculate the average of data points that belongs to each cluster and reposition the

new centroids;
• Repeat the second and third step until the centroids are not changing, which means

the convergence point is reached, in order to obtain unchangeable cluster.

K-means is applied to the whole dataset as well as to all three-band compositions. The
binary maps produced by applying the k-means were submitted to automatic vectorization,
finally producing 57 different coastlines, one for the whole dataset, the others resulting
from three-band compositions.

3.5. Accuracy Tests

Accuracy tests were carried out on a selected subset of the resulting coastlines. In
the literature, quantitative assessments are usually conducted by comparing the detected
coastlines with the reference one, which is manually delineated coastline [17,74]. In this
study, we compared each selected coastline with the reference one, achieved by photoin-
terpretation and manual vectorization on the RGB true color composition. Particularly,
we considered the coastline resulting from the unsupervised classification of all bands as
well as those derived from 14 of the 56 three-band compositions. This selection aimed to
analyze the accuracy of the results related to the variability of MOIF, so subsets presenting
high, middle and low values of the proposed new index were chosen. In addition, we
also selected two band combinations presenting the higher values of OIF (i.e., the first and
the second classified) to better compare the different results provided by the two indices
considered.

Due to the imperfect overlap between each automatic extracted coastline and the
reference coastline, polygons were generated by the layer overlay. In the literature, there
is a methodology that allows deriving the level of accuracy of the shift between these
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two lines, called the distributed ratio index (DRI) [34]. This derives from the ratio index
(RI) which is given by the ratio between the sum of the areas of the polygons (A) and the
length of the coastline chosen as a reference (L):

RI =
A
L

(6)

The difference between these two indices is that the DRI also provides parameters
such as the standard deviation, and the minimum and maximum values of the shift, in
order to supply the degree of accuracy. In fact, this index considers the area of each polygon
generated (Ak), dividing it with the length of effective coastline (Lk) on which it develops.
In this way, the values express more detailed information on the residuals and furthermore
it is possible to provide the statistical parameters. The formula is:

DRI =
Ak
Lk

(7)

where Ak is the area of the k-th element, Lk is the length of the coastline of the k-th stretch. In
consequence, DRI supplies n values, one for each polygon generated between the reference
coastline and the extracted coastline.

In addition, to verify the thematic accuracy of the unsupervised classification, obtained
for each considered band composition, test sites are used. The manual vectorization of the
coastline divides the scene into two macro areas, i.e., sea and land. Since the classification
difficulty is mainly for the pixels near the coastline, we decided to consider a buffer of
300 m around the land–sea separation line. In this way, there were two extensive test sites,
one of water and the other of no-water separated by the coastline.

In this way, it was possible to determine each time how many pixels were correctly
and incorrectly classified. In particular, we proceeded with the construction of the con-
fusion matrix: it is a powerful tool that determines and quantifies the correctness of the
classification. The confusion matrix is nothing more than a table of values where each row
represents the real values, while each column the predicted values. In the diagonal there
are the elements classified correctly, i.e., belonging to the “true” class. From this matrix, it is
possible to calculate three significant accuracy values, called user accuracy (UA), producer
accuracy (PA) and overall accuracy (OA).

The UA is given by the number of accurately classified pixels divided by the pixels
assumed as belonging to that class. PA is the ratio of correctly classified pixels to the total
pixels belonging to that class. Finally, OA is given by the total of correctly classified pixels
of each class divided by the total pixels [75].

4. Results and Discussion
4.1. OIF and MOIF Results

The resulting OIF values for the 56 band combinations are listed in Table 2 in descend-
ing order (the higher the value, the better the ranking).

In the first positions of the ranking provided by the OIF index, there are the band
compositions including B9, as was to be expected. In fact, as mentioned in the previous
section, the cirrus band has characteristics that make it strongly decorrelated from the
others. It generally has brighter pixels for presence of clouds and dark ones in other
areas: the main feature is the visualization of clouds at high altitude, which could not be
visible in other spectral bands. Although B9 has poor information on the land cover of
the investigated scene, our experiments confirmed that in many cases, band compositions
including cirrus presented high values for OIF. Due to this problem, a new ranking was
drawn up given by the new index (MOIF).

The maximum, minimum and difference values of the bands that are necessary for
calculating CF (Equation (4)) are reported below (Table 3).
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Table 2. Ranking using OIF.

Ranking Composition OIF Ranking Composition OIF

1 B2 B5 B9 0.185793 29 B1 B7 B9 0.084795
2 B4 B5 B9 0.179868 30 B2 B3 B6 0.083436
3 B2 B5 B6 0.161869 32 B6 B7 B9 0.081616
4 B2 B5 B7 0.161682 33 B4 B6 B9 0.079554
5 B2 B6 B9 0.160785 31 B1 B2 B5 0.083167
6 B5 B6 B9 0.152709 34 B3 B6 B9 0.068931
7 B5 B7 B9 0.149738 35 B1 B2 B6 0.068889
8 B1 B4 B5 0.145300 36 B1 B3 B7 0.067815
9 B3 B5 B9 0.143396 37 B1 B4 B7 0.066368
10 B2 B4 B5 0.137307 38 B1 B4 B9 0.065971
11 B1 B3 B5 0.137066 39 B1 B3 B9 0.064266
12 B1 B5 B9 0.134586 40 B4 B6 B7 0.059485
13 B2 B7 B9 0.129449 41 B1 B2 B7 0.058933
14 B2 B3 B5 0.128051 42 B2 B4 B7 0.058430
15 B1 B5 B7 0.127501 43 B2 B3 B7 0.058208
16 B4 B5 B6 0.126693 44 B3 B6 B7 0.055408
17 B2 B6 B7 0.119407 45 B4 B7 B9 0.050217
18 B1 B5 B6 0.119198 46 B3 B4 B6 0.049167
19 B5 B6 B7 0.112271 47 B1 B3 B4 0.049148
20 B4 B5 B7 0.111690 48 B2 B4 B9 0.047537
21 B3 B5 B6 0.111136 49 B3 B7 B9 0.044217
22 B3 B4 B5 0.100531 50 B2 B3 B9 0.043139
23 B3 B5 B7 0.100150 51 B1 B2 B3 0.033455
24 B1 B6 B9 0.095998 52 B3 B4 B7 0.032920
25 B1 B4 B6 0.085985 53 B1 B2 B4 0.032286
26 B1 B6 B7 0.085925 54 B2 B3 B4 0.030907
27 B2 B4 B6 0.085484 55 B3 B4 B9 0.028967
28 B1 B3 B6 0.085092 56 B1 B2 B9 0.022450

Table 3. Values for CF calculation.

Bands Min Max Difference

B1 0.097669 0.483244 0.385575376
B2 0.075677 0.521998 0.446321465
B3 0.055101 0.576271 0.521169759
B4 0.034242 0.642815 0.608572632
B5 0.025000 0.818819 0.793818826
B6 0.012838 1.319435 1.306597019
B7 0.008784 1.314435 1.305651118
B9 0.000000 0.069334 0.069333822

The maximum and minimum values provide further confirmation of the poor infor-
mation of B9, when compared to the other bands. The difference obtained between the
maximum and the minimum of each band allowed us to calculate the MOIF index that
substantially changed the ranking of the band combinations (Table 4).

The new ranking obtained overturns the previous one. We can see that the first
classified compositions do not have the cirrus band: since the aim is to identify optimal
subsets that ensure a lot of information to better distinguish the types of land cover, the
classification is more reliable.

4.2. K-Means Application

In this section, three emblematic false color compositions and their k-means classifica-
tion are shown. Particularly, the first (Figure 3), the middle (Figure 4) and the last classified
(Figure 5) based on MOIF values are selected.
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Table 4. Ranking of band compositions using MOIF.

Ranking Composition MOIF Ranking Composition MOIF

1 B2 B5 B6 0.137412 29 B1 B3 B6 0.062779
2 B2 B5 B7 0.137202 30 B3 B6 B7 0.057872
3 B5 B6 B7 0.127468 31 B1 B6 B9 0.056367
4 B2 B6 B7 0.121738 32 B1 B5 B9 0.056020
5 B4 B5 B6 0.114403 33 B4 B6 B9 0.052625
6 B5 B6 B9 0.110446 34 B1 B4 B7 0.050877
7 B5 B7 B9 0.108250 35 B1 B3 B7 0.050011
8 B1 B5 B7 0.105615 36 B1 B7 B9 0.049761
9 B4 B5 B7 0.100820 37 B1 B2 B6 0.049106
10 B2 B6 B9 0.099729 38 B2 B4 B7 0.045975
11 B1 B5 B6 0.098775 39 B1 B2 B5 0.045068
12 B3 B5 B6 0.097117 40 B2 B3 B7 0.044105
13 B4 B5 B9 0.088238 41 B3 B6 B9 0.043589
14 B3 B5 B7 0.087485 42 B1 B2 B7 0.041990
15 B1 B4 B5 0.086597 43 B3 B4 B6 0.039929
16 B1 B6 B7 0.085862 44 B4 B7 B9 0.033202
17 B2 B4 B5 0.084613 45 B3 B7 B9 0.027947
18 B2 B5 B9 0.081097 46 B3 B4 B7 0.026724
19 B2 B7 B9 0.078588 47 B1 B3 B4 0.024824
20 B1 B3 B5 0.077696 48 B1 B4 B9 0.023386
21 B2 B3 B5 0.075179 49 B1 B3 B9 0.020909
22 B6 B7 B9 0.072953 50 B2 B4 B9 0.017814
23 B2 B4 B6 0.067290 51 B2 B3 B4 0.016237
24 B3 B5 B9 0.066168 52 B1 B2 B4 0.015503
25 B1 B4 B6 0.065943 53 B1 B2 B3 0.015088
26 B3 B4 B5 0.064459 54 B2 B3 B9 0.014909
27 B4 B6 B7 0.063863 55 B3 B4 B9 0.011577
28 B2 B3 B6 0.063246 56 B1 B2 B9 0.006744

From a first visual analysis, as the MOIF decreases, the classification worsens, and
therefore the separation between sea and land given by the coastline is less accurate. In
particular, the k-means application to the composition of the bands 1-2-9 returned a great
part of Calabria territory fragmented as many islands surrounded by the sea that penetrates
for many kilometers inside the land. The result was clearly wrong and there was no need
to calculate DRI for certifying the unreliability of the coastline extractable in this case.
Nonetheless, in order to have a numerical type of analytical indicator that allowed ranking
the compositions of bands in relation to the accuracy of the coastline that can be extracted
from them, DRI was calculated in each of the possible cases.

4.3. DRI Evaluation

Table 5 shows the statistics of DRI obtained for 15 of the resulting coastlines. Partic-
ularly, we considered the coastline supplied by the k-means application to the following
band compositions:

• The group including all Landsat OLI multispectral bands (B1, B2, B3, B4, B5, B6, B7, B9);
• The first three classified band composition given by MOIF (B2, B5, B6; B2, B5, B7; B5,

B6, B7);
• Three classified respectively 12th, 21st and 26th given by the MOIF (B3 B5 B6; B2 B3

B5; B3 B4 B5);
• The two middle classified band composition given by MOIF (B2, B3 B6; B1 B3 B6);
• One classified 43rd given by the MOIF (B3 B4 B6)
• The last three classified given by MOIF (B2, B3, B9; B3, B4, B9; B1, B2, B9);
• The first two classified band composition given by OIF (B2, B5, B9; B4, B5, B9).



Remote Sens. 2023, 15, 3181 12 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 28 
 

 

21 B2 B3 B5 0.075179 49 B1 B3 B9 0.020909 
22 B6 B7 B9 0.072953 50 B2 B4 B9 0.017814 
23 B2 B4 B6 0.067290 51 B2 B3 B4 0.016237 
24 B3 B5 B9 0.066168 52 B1 B2 B4 0.015503 
25 B1 B4 B6 0.065943 53 B1 B2 B3 0.015088 
26 B3 B4 B5 0.064459 54 B2 B3 B9 0.014909 
27 B4 B6 B7 0.063863 55 B3 B4 B9 0.011577 
28 B2 B3 B6 0.063246 56 B1 B2 B9 0.006744 

4.2. K-means Application 
In this section, three emblematic false color compositions and their k-means classifi-

cation are shown. Particularly, the first (Figure 3), the middle (Figure 4) and the last clas-
sified (Figure 5) based on MOIF values are selected. 

 
Figure 3. False color visualization (on the left) and result of KM clustering (on the right) applied to 
bands 2-5-6. 

 

Figure 3. False color visualization (on the left) and result of KM clustering (on the right) applied to
bands 2-5-6.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 28 
 

 

21 B2 B3 B5 0.075179 49 B1 B3 B9 0.020909 
22 B6 B7 B9 0.072953 50 B2 B4 B9 0.017814 
23 B2 B4 B6 0.067290 51 B2 B3 B4 0.016237 
24 B3 B5 B9 0.066168 52 B1 B2 B4 0.015503 
25 B1 B4 B6 0.065943 53 B1 B2 B3 0.015088 
26 B3 B4 B5 0.064459 54 B2 B3 B9 0.014909 
27 B4 B6 B7 0.063863 55 B3 B4 B9 0.011577 
28 B2 B3 B6 0.063246 56 B1 B2 B9 0.006744 

4.2. K-means Application 
In this section, three emblematic false color compositions and their k-means classifi-

cation are shown. Particularly, the first (Figure 3), the middle (Figure 4) and the last clas-
sified (Figure 5) based on MOIF values are selected. 

 
Figure 3. False color visualization (on the left) and result of KM clustering (on the right) applied to 
bands 2-5-6. 

 
Figure 4. False color visualization (on the left) and result of KM clustering (on the right) applied to
bands 1-3-6.



Remote Sens. 2023, 15, 3181 13 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 28 
 

 

Figure 4. False color visualization (on the left) and result of KM clustering (on the right) applied to 
bands 1-3-6. 

 
Figure 5. False color visualization (on the left) and result of KM clustering (on the right) applied to 
bands 1-2-9. 

From a first visual analysis, as the MOIF decreases, the classification worsens, and 
therefore the separation between sea and land given by the coastline is less accurate. In 
particular, the k-means application to the composition of the bands 1-2-9 returned a great 
part of Calabria territory fragmented as many islands surrounded by the sea that pene-
trates for many kilometers inside the land. The result was clearly wrong and there was no 
need to calculate DRI for certifying the unreliability of the coastline extractable in this case. 
Nonetheless, in order to have a numerical type of analytical indicator that allowed ranking 
the compositions of bands in relation to the accuracy of the coastline that can be extracted 
from them, DRI was calculated in each of the possible cases.  

4.3. DRI Evaluation  
Table 5 shows the statistics of DRI obtained for 15 of the resulting coastlines. Partic-

ularly, we considered the coastline supplied by the k-means application to the following 
band compositions: 
• The group including all Landsat OLI multispectral bands (B1, B2, B3, B4, B5, B6, B7, 

B9); 
• The first three classified band composition given by MOIF (B2, B5, B6; B2, B5, B7; B5, 

B6, B7); 
• Three classified respectively 12th, 21st and 26th given by the MOIF (B3 B5 B6; B2 B3 

B5; B3 B4 B5);  
• The two middle classified band composition given by MOIF (B2, B3 B6; B1 B3 B6);  
• One classified 43rd given by the MOIF (B3 B4 B6) 
• The last three classified given by MOIF (B2, B3, B9; B3, B4, B9; B1, B2, B9); 
• The first two classified band composition given by OIF (B2, B5, B9; B4, B5, B9). 

For comparison with the pixel size, i.e., 30 m, as well as to establish the accuracy of 
the extracted coastline, the DRI results are given in meters. 

Table 5. Statistical values of DRI for the extracted coastlines. 

Figure 5. False color visualization (on the left) and result of KM clustering (on the right) applied to
bands 1-2-9.

Table 5. Statistical values of DRI for the extracted coastlines.

Composition MOIF
Ranking

OIF
Ranking Min (m) Max (m) Mean (m) Dev. ST. (m) RMSE (m)

B1 B2 B3 B4
B5 B6 B7 B9 - - 0.016 623.013 7.655 13.967 15.927

B2 B5 B6 1 3 0.000 35.940 7.417 5.286 9.108
B2 B5 B7 2 4 0.000 38.313 7.480 5.428 9.242
B5 B6 B7 3 19 0.000 43.118 7.638 5.205 9.243
B3 B5 B6 12 21 0.927 81.696 7.436 5.553 9.281
B2 B3 B5 21 14 0.000 82.084 7.466 5.727 9.410
B3 B4 B5 26 22 0.000 82.153 7.566 5.665 9.452
B2 B3 B6 28 30 0.016 83.120 8.120 5.190 9.637
B1 B3 B6 29 28 0.023 83.120 8.191 5.180 9.692
B3 B4 B6 43 46 0.000 623.013 7.508 12.448 14.537
B2 B3 B9 54 50 0.056 952.779 19.398 69.361 72.022
B3 B4 B9 55 55 0.211 10,288.667 22.029 318.800 319.560
B1 B2 B9 56 56 5.456 11,580.885 4280.705 3341.667 5430.578
B2 B5 B9 18 1 0.000 63.827 7.264 6.309 9.621
B4 B5 B9 13 2 0.000 53.103 7.611 5.814 9.577

For comparison with the pixel size, i.e., 30 m, as well as to establish the accuracy of
the extracted coastline, the DRI results are given in meters.

The DRI values show a better performance as the MOIF index increases. The first
classified composition, including blue, NIR and SWIR1 bands (B2 B5 B6), has the best
RMSE value (9.108 m), while the maximum (35.940 m) is close to pixel dimension. The
two band compositions following in the standings show slightly worse results (RMSE equal
to 9.242 m and 9.243 m, respectively).

The composition of the band classified 12th has a very excellent RMSE value (9.281 m)
if compared to the first three, worsening the maximum value (81.696 m). The other two band
compositions taken into consideration (21st and 26th) stabilize their RMSE value around
the value 9.4 m as well as the maximum shift reached (about 82 m).

Instead, for the 28th and 29th classified compositions we can see RMSE values (re-
spectively 9.637 m and 9.692 m) that still do not differ much from that of the first classified
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composition, but the maximum value so far remains more than double the pixel size
(83.120 m).

Starting from the 43th composition, a deterioration is noted both in terms of RMSE
(14.537 m) and maximum (623.013 m).

The 54th composition according to MOIF values shows that the high correlation
between B2 and B3 as well as the low level of information included in B9 aggravates the
accuracy of the extracted coastline. In fact, in this case, we have bad statistics for DRI
(RMSE equal to 72.022 m and maximum equal to 952.779 m). The situation is becoming
worse for the last classified band compositions (B3, B4, B9 and B1, B2, B9), showing a rapid
increase of the shift between each extracted coastline and the reference one.

In addition, the last two combinations of bands (B2, B5, B9 and B4, B5, B9) slip from
the top positions, given by the OIF, to the 18th position and 13th position, respectively,
according to the MOIF index. The results show that the application of the new index is
consistent with the variation in the results supplied by the accuracy evaluation.

To show on map the different accuracy level of results related to the MOIF values, we
selected three zones respectively in the north (Frame 1), middle (Frame 2) and south part
(Frame 3) of the study area (Figure 6).
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Four scenarios were considered for each frame, the first associated with the best
performing band composition (B2, B5, B6), the second associated with a composition
classified at the 24th position (B3, B4, B5), the third associated with a composition classified
at the 43th position (B3, B4, B6), and the fourth presenting one of the worst performances
associated with a composition classified at the 54th position (B2, B3, B9), as resulting
from the DRI application. The results of the above mentioned band compositions for
the frame 1 are shown in the Figure 7(B2, B5, B6), Figure 8(B3, B4, B5), Figure 9(B3, B4,
B6) and Figure 10(B2, B3, B9). In analogous way, Figures 11–14 concern the frame 2 and
Figures 15–18 the frame 3, repeating the band compositions in the same order.
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Figure 7. Comparison between the reference coastline (in black) and the automatically vectorized
coastline (in red) resulting from B2, B5, B6 band composition in frame 1.

In each case, the automatically extracted coastline (in red) was compared to the
reference coastline (in black).

Due to the raster to vector conversion, the lines are jagged, as they followed the shape
of the pixel (smoothing was not applied in our experiments). In all cases, the coastline
extracted from the band composition associated to the higher value of MOIF was very
close to the reference coastline. Vice versa, maps showed very high deviations between the
reference coastline and the coastline extracted from the band composition associated to a
low value of MOIF.

The images above highlight the effectiveness of the index used, emphasizing how the
decorrelation among the bands and the amount of information in each band influenced
the accuracy of the automatic extracted coastline. In fact, as the value of the MOIF de-
creases, we see a gradually increasing distance between the reference coastline and the one
automatically extracted from the considered band combination.
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4.4. Classification Accuracy Evaluation

Table 6 shows the thematic accuracy values for the 15 band compositions selected for
our tests and classified with the k-means.

The OA accuracy values close to 1 indicate correct classification.
The results of the thematic accuracy are also very satisfactory and in fact confirm in

other terms what the DRI had already anticipated. The first band combination, given by the
MOIF, (B2, B5, B6), also remains the best in this case reaching the highest OA value, as well
as proceeding from the highest to the lowest MOIF value, the OA decreases, synonymous
with a worsening classification. In fact, in the last places we find the band compositions(B3,
B4, B9 and B1, B2, B9) that have a low OA value (0.8).

4.5. Comparison with Other Study Results

Finally, we can evaluate the effectiveness of the proposed approach comparing the
results with those obtained by other researchers, especially in terms of accuracies achievable
using different methods.

Liu et al. [25] in 2017 analyzed the performance of coastline extraction by integrating
downscaling, pan-sharpening and water index approaches in increasing the accuracy of
coastline extraction from Landsat 8 OLI images. They considered a portion of Ningbo
coast (East China Sea) mainly containing bedrock coast, artificial coast and flat sandy coast
and used ZiYuan-3 surveying satellite (ZY-3) MS image to extract the reference coastline.
Applying the traditional water index method to extract coastline directly from original MS
images (resolution: 30 m), they obtained a mean absolute difference (MAD) equal to 18.62
m between the resulting coastline and the reference one, with maximum positive difference
(MPD) equal to 124.19 m and minimum negative difference (MND) equal to 223,89 m.
Better results were achieved using pan-sharpened images (MAD = 13.54 m, MPD = 129.47,
MND = 107.11 m) but those are not comparable with our study, which does not consider
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data fusion. However, the approach we propose based on MOIF and K-means ensures
better accuracies and not only with the first classified band combination (B2, B5, B6), but
also with others, such as B2, B5,B7; B5,B6, B7; B3, B5, B6; B2, B3, B5 and B3, B4, B5.

Table 6. Thematic accuracy values.

Composition MOIF
Ranking

OIF
Ranking Accuracy Water No-Water

B1 B2 B3 B4
B5 B6 B7 B9

- -
UA 0.97832 0.96982
PA 0.96757 0.97984
OA 0.97389

B2 B5 B6 1 3
UA 0.98095 0.98108
PA 0.97986 0.98211
OA 0.98102

B2 B5 B7 2 4
UA 0.98131 0.97949
PA 0.97812 0.98248
OA 0.98037

B5 B6 B7 3 19
UA 0.97938 0.96533
PA 0.96253 0.98094
OA 0.97202

B3 B5 B6 12 21
UA 0.97983 0.96429
PA 0.96135 0.98139
OA 0.97168

B2 B3 B5 21 14
UA 0.98213 0.95876
PA 0.95500 0.98367
OA 0.96977

B3 B4 B5 26 22
UA 0.98019 0.96038
PA 0.95692 0.98182
OA 0.96975

B2 B3 B6 28 30
UA 0.96621 0.96840
PA 0.96639 0.96823
OA 0.96734

B1 B3 B6 29 28
UA 0.96634 0.96853
PA 0.96654 0.96834
OA 0.96747

B3 B4 B6 43 46
UA 0.80091 0.98911
PA 0.99100 0.76838
OA 0.87626

B2 B3 B9 54 50
UA 0.65335 0.99768
PA 0.99876 0.50178
OA 0.74261

B3 B4 B9 55 55
UA 0.75470 0.82372
PA 0.83013 0.74631
OA 0.78693

B1 B2 B9 56 56
UA 0.99286 0.52264
PA 0.02875 0.99981
OA 0.52924

B2 B5 B9 18 1
UA 0.98316 0.95884
PA 0.95504 0.98462
OA 0.97029

B4 B5 B9 13 2
UA 0.98154 0.96100
PA 0.95756 0.98306
OA 0.97071
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In 2017, El Kafrawy et al. [76] examined the performance of six different methods used
to extract shorelines from Landsat 8 images. They compared the output with a shoreline
detected by high-resolution image Pleiades B1 (0.50 m). The experiments showed that
all coastlines extracted were within a pixel shift (30 m), but the thresholding band ratio
method was the most accurate approach with an RMSE of 9.54 m, which is still less accurate
than results we obtained with our approach.

Tuan et al. in 2018 [77] evaluated the accuracy of coastline extraction using three water
indices (NDWI, MNDWI and AWEI) applied to Landsat 8 imagery and compared the
results with a practical shoreline, obtained considering ground-truthing positions identified
during a field survey. This study revealed that the AWEI was a more accurate approach
than NDWI and MNDWI, with an RMSE of 12.4 m.

Alcaras et al. [78] in 2019 applied NDWI to Landsat 8 OLI images to detect the
Tyrrhenian coastline of the Campania region (Italy) presenting, similarly with our study
area, long beaches as well as high coasts and port zones [79]. Alcaras et al. used maximum
likelihood classification (MLC), one of the most common classification methods in remote
sensing based on Bayes’ theorem, to determine a threshold to separate seawater from
land in an NDWI map. They obtained MAD=16.84 m between the resulting coastline and
the reference one, achieved with visual interpretation and manual vectorization of RGB
composition. In this case, the accuracy was also lower than that provided by the method
we propose.

5. Conclusions

The experiments carried out on Landsat 8 OLI images concerning a part of the Calabria
region highlight the effectiveness of the proposed approach for coastline data automatic
extraction based on an unsupervised method, such as the k-means, and the use of a new
index, the MOIF. This index gives as a single value the combination of the degree of
correlation and the amount of information overall provided by the specific three bands
considered. In other words, this index makes it possible to identify the three bands which
simultaneously are highly uncorrelated and exhibit a wide range of values, so as to facilitate
the distinction between water and no-water (i.e., soil and vegetation).

To establish the accuracy of the results, we used the DRI, which provided the deviation
between the reference coastline and the automatically extracted one, as well as thematic
accuracy indices (i.e., PA, UA and OA) extracted from confusion matrix. Both approaches
corroborated the validity of the proposed method. In fact, the results were very encouraging:
the best three-band composition given by the new index, i.e., B2, B5, B6, provided the best
statistics of DRI, with RMSE value lower than the pixel dimensions and with a maximum
value slightly exceeding this dimension. DRI confirmed that the effectiveness of MOIF
seems to be better than that of OIF in selecting the optimal three-band composition for
coastline extraction. Similarly, the thematic accuracy provided by the OA values confirmed
the indications of the MOIF: the best resulting combination was B2, B5, B6.

The experiments carried out show that it is preferable to apply k-means on a three-band
composition rather than on all available bands at the same time: DRI values and thematic
accuracy indices confirm that increasing the data to be processed in the unsupervised
classification can introduce confusion, as in this case, and worsen the results rather than
produce an enhancement of the thematic accuracy.

Regarding the future developments of this work, further studies will be focused on
the possibility of extending the proposed approach to other satellite images, especially
those presenting higher resolution than Landsat 8 OLI, in order to evaluate the correctness
of the suggested index, i.e., MOIF, for the identification of the three uncorrelated bands
including a high level of information. Furthermore, we will mainly focus on the possibility
to find the best method for automatic coastline data extraction comparing the proposed
approach with others available in literature such as water index approaches (e.g., NDWI)
and machine learning approaches.
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