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Abstract: This comparative study evaluates the performance of three popular deep learning archi-
tectures, AlexNet, VGG-16, and VGG-19, on a custom-made dataset of GPR C-scans collected from
several archaeological sites. The introduced dataset has 15,000 training images and 3750 test images
assigned to three classes: Anomaly, Noise, and Structure. The aim is to assess the performance of
the selected architectures applied to the custom dataset and examine the potential gains of using
deeper and more complex architectures. Further, this study aims to improve the training dataset
using augmentation techniques. For the comparisons, learning curves, confusion matrices, precision,
recall, and fl-score metrics are employed. The Grad-CAM technique is also used to gain insights
into the models’ learning. The results suggest that using more convolutional layers improves overall
performance. Further, augmentation techniques can also be used to increase the dataset volume
without causing overfitting. In more detail, the best-obtained model was trained using VGG-19
architecture and the modified dataset, where the training samples were raised to 60,000 images
through augmentation techniques. This model reached a classification accuracy of 94.12% on an
evaluation set with 170 unseen data.

Keywords: GPR C-scans; archaeological prospection; ancient buried structures; deep learning;
AlexNet; VGG-16; VGG-19; multiclassification; Grad-CAM; image augmentation

1. Introduction

Ground penetrating radar (GPR) is an electromagnetic geophysical technique widely
used in archaeological prospection, as it can detect detailed buried foundations and other
archaeological remains on the near-surface when proper soil conditions are met [1-3]. The
information obtained from GPR systems can efficiently guide excavation projects, avoiding
unnecessary work. Moreover, it can enrich the insights of an archaeological site in the case
the excavation is not feasible. Further, hardware improvements in GPR systems have led to
faster and more detailed data acquisition, making them applicable in larger-scale surveys,
resulting in larger data volumes per survey. Consequently, data interpretation, which
was already challenging [4,5], has become more demanding. The main reason is that the
archaeological sites’ subsurface is usually disturbed and causes complex patterns and noise
in GPR data that are often difficult to distinguish from the archaeological material. Hence,
GPR practitioners are called to study and cross-correlate hundreds, or even thousands,
of images per site to fully understand the recorded signals. Therefore, developing and
establishing methodologies to assist and guide data interpretation in more automatic
ways, which are currently lacking, is of great importance in the archaeological prospection
using GPR.
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Convolutional neural networks (CNNs) and deep learning (DL) architectures are up-and-
coming in developing such methodologies for GPR data interpretation. They have shown
remarkable performance and capabilities in various domains related to computer vision
tasks such as classification, segmentation, and object detection. A few examples are medical
diagnosis [6], autonomous driving [7], face recognition [8], and plant disease diagnosis [9]. In
recent years, there has been a notable surge in studies involving CNNss in the field of GPR
for automatic target detection. Most of the studies are applicable in civil engineering tasks
such as tunnel lining and rebar detection, showing promising results [10-12]. Regarding
archaeological prospection, CNNs, and DL architectures have not yet been explored to the
same extent. However, the few studies in the literature show great potential for automatic
data interpretation and are encouraging further investigations [13,14]. The limited availability
of annotated datasets suitable for training CNNs has been identified as a primary factor
contributing to the existing literature gap due to the lack of open databases and the rare
GPR data of buried ancient structures. In addressing this, a custom and multiclass dataset
using GPR data collected from several archaeological sites was constructed and presented in
our previous studies [4,15]. In these studies, AlexNet was trained to classify patterns in the
data identified as ancient structures, noise, and patterns from the subsurface unrelated to the
archaeological remains. These provide some initial insights on performing image classification
using a DL architecture. However, despite the good performance, the generalization to unseen
data was under question due to the small dataset used for training.

This study aims to take a few steps further to improve the custom-made dataset
and exploit other popular and well-established DL architectures to evaluate the overall
performance and use the results as a reference to navigate future improvements. In more
detail, the architectures VGG-16 and VGG-19 are trained and compared to AlexNet to
examine whether deeper and more complex architectures, originally designed for large
datasets such as ImageNet, may positively impact the generalization and model’s learning
in the case of a small training dataset. Furthermore, data augmentation techniques are
employed to improve the training dataset and are used in two ways. The first is to produce
more training samples to increase the dataset volume, and the other is to apply the selected
techniques to replace training samples without affecting the dataset volume. Several
classification metrics are used to gain more insights into the comparisons and better assess
the models’ performance. Last, the Gradient-weighted Class Activation Mapping technique
(GradCAM) is also employed to visually explain what each trained model has learned to
make the predictions. More details are given in the Methodology section, and then the
comparative results are presented and discussed.

2. Methodology

This section describes the methods and tools used in this comparative study. These
include details on the raw data and preprocessing used to construct the training dataset, a
general description of the DL architectures under evaluation, the training overview, and a
brief description of the chosen metrics and Grad-CAM technique.

2.1. Dataset Description

In supervised learning, a well-defined annotated dataset is crucial to efficiently train
models that can classify or predict new unseen data [16]. Such a dataset for detecting
ancient buried structures in GPR data is currently missing or is not publicly available. This
constraint has led to a limited exploration and utilization of CNNs in the field of GPR
for archaeological purposes. For this reason, a training dataset was made from scratch
to perform image classification. This dataset underwent initial testing in our previous
studies [4,15]. To better describe the complexity of the GPR C-scans that are collected from
archaeological surveys, three classes were defined that, from experience, are being used the
most when interpreting such data:

e Anomaly: a generic class that represents strong reflections from the subsurface identi-
fied either as stratigraphic layers, bedrock, buried metallic objects, or buried objects
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not related to the archaeological context. Their shape and size vary, from small and
circular (i.e., metallic object) to large and irregular or with some linearity (i.e., strati-
graphic layer)

e  Noise: in linear form, created either by the rough terrain (i.e., plowing lines) or residual
noise when the background noise removal correction is applied.

e  Structure: patterns of identified buried foundations and walls of residential and public
complexes that are linear, forming corners and rectangles. The structural remains
included in this dataset are from the Neolithic, Minoan, Hellenistic, Roman, and
early Byzantine Periods. They were all detected in the range of 0.5-1.5 m deep. The
identified walls in the dataset exhibit a thickness in the range of ~0.3 to ~1.5 m. The
material of most structures is limestone. Further, linear patterns delining ancient roads
of the Hellenistic period were also included.

Gathering samples for the Structure class was challenging as GPR C-scans featuring
structures were limited to a few hundred. Therefore, training a DL architecture such as
AlexNet was not possible due to underfitting. Further, the feature classes mentioned above
usually coexist in the GPR C-scans. Hence, selected C-scans were cropped into sub-images
using an overlapping sliding window corresponding to 10 m x 10 m. This window size
was found adequate to describe the feature of interest well enough and, simultaneously, to
increase the number of images per class to be used for training. In this study, the dataset
is reworked, where some images were replaced while new ones were added, aiming for
performance improvements. Details are given in the following subsections.

2.1.1. C-scans Processing and Preprocessing

As mentioned, the dataset is entirely made from GPR C-scans, the most common data
representation in archaeological investigations. C-scans are extracted when collecting GPR
data using survey grids, which allows producing a pseudo 3D of the subsurface. They are
2D images of the pseudo 3D showing the instantaneous envelope calculated by Hilbert
Transform at different time instances, which can be later converted to depth if the travel
velocity of the E/M waves in the subsurface is estimated. This approach usually reveals
buried objects that exhibit higher reflectivity than the surrounding medium.

All the data used for the training dataset are collected through various geophysical
surveys in different archaeological sites, mainly in Greece. The surveys were guided by the
Laboratory of Geophysical—Satellite Remote Sensing and Archaeo-Environment (GeoSa
ReSeArch), Institute for Mediterranean Studies—Foundation and Research and Technology
Hellas (IMS—FORTH), Rethymno, Greece. All data were collected using NOGGIN GPR
equipped with a 250 MHz antenna, a line spacing of 0.5 m or 0.25 m, and a sampling
interval of 0.05 m or 0.025 m. For this study, GPR data from 6 more archaeological sites
having 17 survey grids in total were included. Hence, the updated version of the dataset
used for training and evaluating the models take into account C-scans from 58 different
archaeological sites that were extracted from 487 survey grids.

The data were processed in MATLAB to extract C-scans using standard methods and
techniques, as it was presented in Figure 2 in our previous study in [4]. C-scans were then
selected, and the sliding crop window was applied to extract patches of the input C-scan
that were saved as 256 x 256 images. Finally, examples that better describe the three feature
classes were selected from those images.

Further, additional augmentation techniques were applied in the images of the training
set to further increase its volume and examine whether the generalization can be improved
in this way. The applied transformations are a random combination of image rotation,
horizontal and vertical flips, zoom, and brightness adjustments. In addition, the parameters
of each transformation were adjusted to achieve realism and avoid distortions. Image
augmentation techniques were applied thrice for each image in the training set.
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2.1.2. Training Datasets

The preprocessing step previously described resulted in two training datasets. The
first, named dataset-1, is the reworked version of the training dataset used in our previous
studies and has 5000 images for training and 1250 for testing per class that were randomly
split using the 80-20% rule. Random 100 samples of the training set are presented in
Figure 1 (top row). Further, to increase the diversity, some images were replaced with less
similar ones while retaining the number of images. Dataset-1 is used to compare different
DL architectures and examine the benefits, if any, of deeper architectures in cases of small
datasets. Further, image augmentation without increasing the volume is also examined
using this dataset.

Anomaly Class Noise Class Structure Class

II e | Bt IIIIIII-I

Anomaly Class with Image Augmentation Noise Class with Image Augmentation Structure Class with Image Augmentation
EREDOECENERE EAREENBREER w282 RREEY
SENNER-NMEN RURNAE IIIHEIH

T e
IIIIIIIEI IIIEIIIIII IIIIH@IIM

Figure 1. Random training set samples for the classes Anomaly, Noise, and Structure. On the top row

are 100 samples from dataset-1 per class, while on the bottom row are 100 samples from dataset-2,
where the volume is increased using data augmentation techniques to produce synthetic data.

In an attempt to further increase the volume and the multiplicity of the training set
without adding new data, the random image transforms were applied thrice for each train-
ing sample. The produced images were added to the training set, resulting in 20,000 images
per class for training. This dataset, named dataset-2, has the same test set as dataset-1. A
small sample of 100 images per class of this modified training set is presented in Figure 1
(bottom row). Similar to dataset-1, dataset-2 is used to compare the performance of different
architectures for a larger training set and to examine whether using image augmentation to
produce synthetic C-scans for training can lead to a better generalization.

2.1.3. Evaluation Set

The preprocessing step of the overlapping sliding crop window to increase the samples
used for the training and the test set was mandatory to overcome underfitting; however, the
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test set is not expected to represent how well a trained model can generalize to new data.
For this reason, in our previous studies, an evaluation set with 100 images entirely excluded
from the training process was defined to make predictions and evaluate the generalization
of the trained models. The evaluation set is also reworked for this study, and data recently
collected were added. The final count is 170 images, where 42 examples are anomalies,
52 are noise, and 76 are structures.

2.2. Deep Learning Architectures

The DL architectures that are the focus of this study are feedforward convolutional
neural networks (CNNs) of multiple layers designed for image classification. These CNN
architectures are characterized by four main layers: the convolutional layer, the pooling
layer, the flattening layer, and the fully connected or dense layer. The convolutional and
pooling layers are primarily responsible for feature detection. The convolutional layer
applies filters to the input image, producing an equivalent number of feature maps high-
lighting certain features. Usually, a pooling layer succeeds the convolutional layer, reducing
the spatial dimensions of the input feature maps while retaining the most important fea-
tures. The flattened output from the convolutional and pooling layers is then passed to the
dense layers, which are fully connected and responsible for classifying the learned features
and making predictions [17]. The main differences lay in the number and sequence of the
convolutional and pooling layers during the feature detection stage.

It is acknowledged in the DL community that increasing the number of layers in a
CNN can enable the network to learn more complex features from the input data. This
concept is often referred to as the “depth” of the network [18]. By adding more layers
to a CNN, the network can capture and represent hierarchical patterns and features at
various levels of abstraction. As the depth increases, the network can progressively learn
more complex combinations of features, enabling it to capture intricate relationships and
representations within the data. This increased depth can be beneficial when dealing
with large, more complex, and diverse datasets (i.e., ImageNet), as it gives the network a
greater capacity to learn and distinguish between subtle patterns and variations. However,
excessively deep networks may encounter challenges such as vanishing gradients and
overfitting [18]. Similar considerations apply when training deep architectures with smaller
datasets, as they may struggle to generalize effectively due to limited training instances.

This study investigates the achievable performance gains of deeper architectures by
implementing and comparing three CNN architectures: AlexNet, VGG-16, and VGG-19.
AlexNet, which has shown promising results in our previous study, serves as a reference
point for evaluating the improvements, if any, achieved by the deeper VGG architectures.
These architectures were selected as a baseline for the classification of GPR-C scans in
archaeological prospection, as no previous comparison has been conducted in this context.
Both AlexNet and VGG architectures have established their performance in image clas-
sification and have been extensively studied in the deep learning community. Moreover,
they are known for their ease of understanding and implementation. The results of this
study are expected to provide valuable insights into the effectiveness of these architectures
with GPR C-scans, allowing for informed decision-making and potential advancements
in future studies. An overview of the three architectures is presented in Figure 2, while a
more detailed description is given in the following paragraphs.

2.2.1. AlexNet

AlexNet, introduced in [19], is a deep CNN architecture and is considered a significant
milestone in the performance improvements of CNNs. The input is a color image of
227 x 227 x 3 and has eight layers. The first five are convolutional (Conv) layers, with
the Convl, Conv2, and Conv5 being succeeded by overlapping max-pooling layers. The
remaining three layers are fully connected (FC), with the last one (FC3) being the output.
Rectified linear unit (ReLU) activation functions are applied after every Conv layer and
after FC1 and FC2 layers. Based on the findings of our previous study, batch normalization
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Feature extraction

Classification

(BN) [20] and dropout [21] enhance the overall performance, with the former having a
greater impact [15]. Therefore, BN is applied after every Conv layer and prior to ReLU,
while dropout is used after FC1 and FC2 and prior to ReLU. Last, the softmax activation
function is applied for the last FC layer, which produces a distribution over the total number
of the class labels defined by the dataset used for training. AlexNet was retrained and used
as a reference for monitoring improvements in overall performance.
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Figure 2. Schematic description of AlexNet, VGG-16, and VGG-19 architectures as they were imple-
mented for the purposes of the study. The filter size, filter number, stride, and pad size are given
on each convolutional layer. Similarly, the kernel size, stride, and pad size are given on the pooling

layers. A pad of 1 indicates no changes in dimension, while a pad of 2 indicates dimensionality
reduction. On the bottom right of each layer, the output dimensions are noted. Last, the feature
extraction and classification stages are pointed out in each architecture.

2.2.2. VGG-16 and VGG-19

VGG-16 and VGG-19 were introduced in [22] as very deep CNN architectures and
were developed by the Visual Geometry Group (VGG) at the University of Oxford. The
input of both architectures is a color image of 224 x 224 x 3, and while they have similar
structures, they differ in the number of layers, with VGG-19 being deeper.
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VGG-16 has a total of 16 layers, including 13 convolutional (Conv) layers and 3 fully
connected (FC) layers. The architecture is divided into convolutional blocks where each
block has a stack of convolutional layers, succeeded by a max-pooling layer. The first two
blocks have two convolutional layers each, while the remaining three blocks have three
convolutional layers each. All convolutional layers use small 3 x 3 filters, increasing their
number as the network goes deeper. ReLU activation functions are applied after every
Conv and FC layer. BN was also used after every convolutional layer and prior to ReLU.
Dropout was not used in this case.

VGG-19 has a total of 19 layers, including 16 Conv layers and 3 FC layers. It has
a similar structure to VGG-16 but with an additional Conv layer in block3, block4, and
block5. Like VGG-16, all the Conv layers use 3 x 3 filters, and ReLU activation functions are
applied after every Conv and FC layer. BN was also used in the same manner as VGG-16,
while dropout was not employed.

Both VGG-16 and VGG-19 have been shown to achieve state-of-the-art performance
on various image classification tasks, particularly in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) competition, and inspired other popular architecture such
as ResNet [23]. However, they are more computationally and memory-demanding.

2.3. Training Overview

The models were implemented and trained in Google Colab using the Tensorflow [24]
and Keras [25] libraries with GPU acceleration. Each architecture was trained for three
different trials using the different versions of the training dataset combined with the image
augmentation techniques as previously described. More precisely:

1. The first trial uses dataset-1, which consists of 15,000 training samples. The resulting
models for each architecture are named AlexNet-1, VGG-16-1, and VGG-19-1.

2. The second trial uses dataset-2, which is produced from image augmentation tech-
niques and has 60,000 training samples. The resulting models for each architecture
were named AlexNet-2, VGG-16-2, and VGG-19-2.

3. The third trial uses dataset-1, and image augmentation techniques are applied to
replace training samples without affecting the volume. The resulting models for each
architecture were named AlexNet-3, VGG-16-3, and VGG-19-3.

Each model was trained for 50 epochs using the stochastic gradient descent (SGD)
optimizer with a momentum of 0.9. The learning rate was set to 0.001. The choice of the
optimizer and the learning rate was based on the findings of our previous study, where
SGD with momentum outperformed Adam optimizer when training AlexNet [15]. During
training, the model weights were saved each time the validation loss was improved. The
weights that exhibited the lower loss were chosen as the best model for each architecture
and were used to evaluate and compare the generalization. These models were later used
to compare the generalization on unseen data.

2.4. Metrics and Performance Evaluation

In this study, several metrics are being employed to better highlight the differences
and benefits that each model exhibits over the other and navigate future improvements.
The metrics used here are divided into those that measure the training performance and
those that measure the classification performance. In addition to the metrics, the gradient-
weighted class activation mapping (Grad-CAM) technique is used to gain better insights
and visualize how each model makes predictions on new data. More details are given in
the following paragraphs.

2.4.1. Training Performance Metrics

For training performance, Keras library metrics such as accuracy, loss, validation accu-
racy, and validation loss were used to assess how well the models were learning during the
training process. These metrics are calculated after a training epoch is completed. Briefly:
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e  The loss represents the error between the predicted output and the true output for
the images of the training set. It is a measure of how well the model is able to fit the
training data.

e  Validation loss measures the error for the images on the test set that were not used
during training.

e Accuracy expresses the fraction of correctly classified images out of the total number
of images. In other words, it measures the percentage of predictions that the model
got right in the training set. A higher accuracy value indicates better performance of
the model.

e  Validation accuracy is the accuracy of the model calculated on the test set.

These metrics are used to plot learning curves, giving valuable insights into the training
process and revealing whether learning problems such as overfitting exist. In terms of loss
and validation loss, the signs of overfitting can be observed when the model’s training loss
decreases while the validation loss increases or remains stagnant. In terms of accuracy and
validation, high accuracy and low validation accuracy may indicate overfitting.

2.4.2. Classification Metrics

To evaluate and compare the classification performance of the trained models, the
following metrics were used and calculated from predictions made in the evaluation and
test set [26,27]:

1.  Confusion matrix: the matrix that is calculated from true positives (TPs), false positives
(FPs), false negatives (FNs), and true negatives (TNs). In other words, it shows the
number of correct and incorrect predictions made by the model in each class and
helps to assess the performance of a classification model.

2. Precision: a metric that measures the proportion of TPs among the predicted positives.
In other words, it measures the model’s ability to identify TPs without including FPs.
A high precision indicates a low FPs rate.

3. Recall: a metric that measures the proportion of TPs among the actual positives. In
other words, it measures the model’s ability to identify all positives. A high recall
indicates a low EN rate.

4. F1 score: the harmonic mean of precision and recall. It delivers a balance between
precision and recall and is a good metric for evaluating the overall performance of a
classification model.

TP refers to the number of samples that are actually positive and correctly predicted
as positive. TN refers to the number of samples that are actually negative and correctly
predicted as negative. FP refers to the number of samples that are actually negative but
incorrectly predicted as positive. FN refers to the number of samples that are actually
positive but incorrectly predicted as negative. These metrics and confusion matrix were
calculated for each class individually using the SciKit-Learn library [28].

2.4.3. Grad-CAM

Grad-CAM is a technique used to highlight important regions of an image that con-
tributed the most to a neural network’s prediction. This is achieved by generating a
heatmap showing each feature map’s contribution to the final prediction. The weights are
calculated by taking the gradient of the predicted class score with respect to the feature
maps of the last convolutional layer of the CNN. The resulting weighted feature maps
are averaged to produce a 2D map, and ReLU activation is applied to highlight only the
positive values. The map is then upsampled to match the input image dimensions, and a
colormap is applied to produce the final heatmap, which is overlaid on the input image for
better visualization.

This study uses Grad-CAM to gain insights into how each of the 9 trained models made
their predictions on the evaluation dataset. To generate heatmaps, the last convolutional
layer of each architecture was utilized, i.e., Conv5 for the models trained with AlexNet,
Conv13 for the models trained with VGG-16, and Conv16 for the models trained with
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VGG-19 (as shown in Figure 2). The softmax layer was removed as the unnormalized scores
were found to produce more representative heatmaps.

The produced heatmaps are also used to compare the trained models and examine
whether deeper architectures can lead to better learning, but also test the quality of learning
when incorporating training set images generated by image augmentation techniques.

3. Results

This section presents and briefly describes the obtained results of this study. It begins
with comparisons of the training performance by observing the learning curves of all
9 models on the train and test set, then moves to the generalization by comparing the classi-
fication metrics calculated on the evaluation set, and finalizes by comparing the heatmaps
produced by the Grad-Cam. For the latter, representative samples of the evaluation set
are presented.

3.1. Training Performance

Training models with DL architectures is a resource-intensive process that demands
significant time and computational power. Since VGG16 and VGG19 have much more
parameters than the AlexNet architecture, the time and memory requirements are increased
much more. Moreover, these requirements were further amplified when trained on the
larger dataset-2 (i.e., 60,000 training samples). Table 1 summarizes the average time of
an epoch completion in Google Colab using a GPU backend, along with the model’s
parameters and the models’ size in the disk. For the latter, only the weights were saved.

Table 1. Comparative table showing the average time an epoch required to be completed on Google
Colab using GPU backend, the total model’s parameter, and the model’s size. For the latter, only the
weights of the model were saved.

Model Average Epoch Time (s) Models Total Model’s Size (MB)
Parameters
AlexNet-1 ~55.4
AlexNet-2 ~173.1 58,299,139 222
AlexNet-3 ~208.2
VGG16-1 ~253.2
VGG16-2 ~972.0 134,289,731 512
VGG16-3 ~283.2
VGGI19-1 ~309.3
VGG19-2 ~1217.8 139,604,547 533
VGG19-3 ~307.8

VGG19-2 model has the longest average epoch time, while AlexNet-1 has the shortest
average time suggesting faster training. The average training time is significantly affected
by the increase in convolutional layers. For instance, compared to the average epoch
time of AlexNet-1, the VGG16-1 model is approximately 357.1% larger, while VGG19-1 is
458.3% larger. Moreover, VGG19-1, which has three additional convolutional layers than
VGG16-1, takes 22.2% more time on average. The epoch times are further increased when
using dataset-2, with VGG16-2 and VGG19-2 taking longer times by 461.5% and 603.5%
over AlexNet-2, respectively. In this case, the addition of three more convolutional layers in
VGG19-2 over VGG16-2 further increases the epoch time by 25.3%. Lastly, the increase in
training set volume resulted in an average time increase of 212.5% for AlexNet-2, 283.9% for
VGG16-2, and 293.7% for VGG19-2.

The accuracy and loss learning curves are summarized in the left and right columns,
respectively, in Figure 3. Starting with AlexNet architecture, the validation curves show
significant fluctuations in both accuracy and loss. Some important observations are:
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Figure 3. The resulting loss and accuracy learning curves for all 9 models grouped by the architecture.
Blue color represents the results obtained from models AlexNet-1, VGG16-1, and VGG19-1 that
were trained with dataset-1 (~15,000 training samples) and orange represents the results obtained
from models AlexNet-2, VGG16-2, and VGG19-2 trained with dataset-2 (~60,000 training samples),
while green color represents the results obtained from AlexNet-3, VGG-16-3, and VGG19-3 trained
with dataset-1 using image augmentation techniques to replace training samples. The dashed line
indicates the accuracy and loss calculated on the training set, while the solid line is the validation

accuracy and validation loss calculated on the test set for each dataset.

e AlexNet-1 appears to be more stable towards the end of training. In contrast to
validation, the training curves are smooth with model AlexNet-1 to present the fastest
convergence to 1, followed closely by model AlexNet-2. Among the three models,
AlexNet-3 performed the worst, having very noisy validation curves, while training
curves of accuracy and loss do not converge to 1 and 0, respectively. Convergence to 1
and 0 for accuracy and loss are important indices expressing how effectively a model
learns during training. Hence, a faster convergence suggests faster learning.

e  The models trained by VGG-16 architecture demonstrate overall better training per-
formance. Fluctuations are still present in the validation curves but are more limited
compared to AlexNet models. Models VGG16-1 and VGG16-2 performed similarly,
with VGG16-1 being slightly more stable toward the end of the training. All three
models exhibit smooth training curves, with VGG16-2 having faster convergence,
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followed closely by VGG16-1. VGG16-3 has a poorer performance exhibiting more
noisy validation curves and slower convergence in the training curves.

e  The behavior of VGG-19 models is mixed in comparison to VGG-16 models. Models
VGG19-1 and VGG19-3 have worse performance than VGG16-1 and VGG16-3, respec-
tively, with more fluctuations in the validation curves. However, towards the end of
the training, VGG19-1 also stabilizes its performance. On the other hand, the model
VGG19-2 performed the best and better than VGG16-2, exhibiting much smoother and
more stable validation curves. The training curves also show good behavior with the
accuracy to converge to 1 and loss to converge to 0.

3.2. Generalization

To compare the generalization, the models” sets of weights exhibiting the lowest
validation loss were chosen from the learning curves presented in Figure 3. Specifically,
AlexNet-1 was epoch 29, AlexNet-2 was epoch 36, AlexNet-3 was epoch 31, VGG16-1
was epoch 44, VGG16-2 was epoch 27, VGG16-3 was epoch 35, VGG19-1 was epoch 32,
VGG19-2 was epoch 38, and, lastly, VGG19-3 was epoch 40. These models were used to
make predictions on the 170 unseen samples of the evaluation set. The confusion matrices
and classification accuracy are presented in Figure 4. Overall, the resulting models perform
well, with the VGG19 architecture models exhibiting the highest and lowest accuracies.
More specifically, VGG19-2 has the highest accuracy of 94.12%, while VGG19-1 and VGG19-
3 have the lowest of 87.65%.

Confusion Matrices - Evaluation set

AlexNet 1-acc. 88.24% AlexNet 2 - acc. 91.76% AlexNet 3 - acc. 88.82%
Anomaly: 0
]
5
- Noise: 1
E
[
Structure: 2
VGG-16 1 - acc. 90.91% VGG-16 2 - acc. 91.76% VGG-16 3 - acc. 88.82%
Anomaly: 0
£
< Noise: 1
g
&
Structure: 2
VGG-19 1 - acc. 87.65% VGG-19 2 - acc. 94.12% VGG-19 3 - acc. 87.65%
Anomaly: 0
)
Q
= Noise: 1
z
=

Structure: 2

Predicted label Predicted label Predicted label

Figure 4. The confusion matrices were calculated on the evaluation set for all 9 models. On top of
each matrix, the total accuracy score is presented.
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The diagonal elements of the matrices represent the TPs for each class, while the
rest are the misclassified elements. For the Anomaly class, VGG19-3, despite the lower
classification accuracy, has the most TPs. It correctly predicted 41 out of 42 samples, while
1 sample was wrongly classified as Noise. The next best models for the Anomaly class are
VGG19-2, VGG16-2, and AlexNet-2, counting 40 TPs. For all three models, the 2 samples are
misclassified as a Structure. The model with the fewer TPs is VGG16-1, having predicted
37 out of 42 samples correctly, while the rest are misclassified as a Structure.

For the Noise class, VGG19-2 has the most TPs, having predicted correctly 50 out of
52 samples, while the remaining 2 samples are misclassified as a Structure. The next best
performance for the Noise class is observed in models VGG19-1, VGG16-2, and AlexNet-1,
counting 49 TPs each. VGG19-1 and AlexNet misclassified three samples as a Structure,
while VGG16-2 wrongly classified one sample as an Anomaly and two as a Structure.
The worst performance for this class is observed by model VGG16-3, having 44 TPs and
8 misclassified samples, where 7 of these were identified as a Structure and 1 as an Anomaly.

Last, VGG19-2 performed the best for the Structure class, correctly classifying 70 out
of 76 samples, while the remaining 6 were misclassified as an Anomaly. The next best-
performing models are AlexNet-1, having 69 TPs and 7 misclassified samples. Out of
them, one is identified as Noise, while the rest are misclassified as an Anomaly. Finally, the
worst performance is observed by VGG19-1, having predicted 61 samples correctly. Of the
15 misclassified samples, 5 were identified as Noise and 10 as Anomaly.

Table 2 summarizes the metrics of precision, recall, and f1-score for each model and
each class. For comparison reasons, red is used to highlight the lowest score, while blue is
used to highlight the highest. Some observations are:

e  For the Anomaly class, most models have precision ranging from 0.8 to 0.87. Excep-
tions are the models VGG16-3 and VGG19-3, which have relatively low precision of
0.74 and 0.76, respectively. The highest precision of 0.87 is scored by model VGG19-2,
having a recall of 0.95. The f1-score ranges from 0.84 to 0.91, with VGG19-2 having the
highest and VGG16-3 the lowest. Overall, the model with the best performance for the
anomaly class is VGG19-2.

e The Noise class’s precision is very high and ranges from 0.89 to 1.00, with model
AlexNet-1 scoring the lowest and models AlexNet-3, VGG16-2, VGG16-3, and VGG19-
2 scoring the highest. The recall metric ranges from 0.85 to 0.96, with model VGG19-3
scoring lower and VGG19-2 scoring higher. Finally, the f1-score is very high, ranging
from 0.91 to 0.98, with model VGG19-3 scoring the lowest and VGG19-2 scoring the
highest. In this case, the model with the best performance is VGG19-2, while VGG19-3
performs the worst.

Table 2. Classification metrics results for the 9 models. Precision, recall, and f1-score calculated for
each model are presented. Bold blue indicates the highest score per class for each metric, while bold
red shows the lowest score per class for each metric.

Class Anomaly Class Noise Class Structure
Model
ode Precision Recall f1-Score  Precision Recall f1-Score  Precision Recall f1-Score
AlexNet-1 0.84 0.90 0.87 0.89 0.94 0.92 0.90 0.83 0.86
AlexNet-2 0.85 0.95 0.90 0.98 0.90 0.94 0.92 091 0.91
AlexNet-3 0.80 0.95 0.87 1.00 0.87 0.93 0.88 0.87 0.87
VGG16-1 0.80 0.88 0.84 0.92 0.92 0.92 0.88 0.83 0.85
VGG16-2 0.80 0.95 0.87 1.00 0.94 0.97 0.94 0.88 0.91
VGG16-3 0.74 0.95 0.83 1.00 0.92 0.96 0.93 0.83 0.88
VGG19-1 0.80 0.93 0.86 0.91 0.94 0.92 0.91 0.80 0.85
VGG19-2 0.87 0.95 0.91 1.00 0.96 0.98 0.95 0.92 0.93
VGG19-3 0.76 0.98 0.85 0.98 0.85 0.91 0.90 0.84 0.87

Highest metric score per class Lowest metric score per class




Remote Sens. 2023, 15, 3193

13 of 21

Structure class also has a high precision ranging from 0.88 to 0.95, with models
VGG16-1 and AlexNet-3 scoring the lowest, while model VGG19-2 scored the highest.
As for the recall, the range is from 0.80 to 0.92, with VGG19-1 performing the worst and
VGG19-2 performing the best. The f1-score ranges from 0.85 to 0.93, where model VGG19-1
scored the lowest and VGG19-2 the highest. Model VGG19-2 performed the best also for
the Structure class.

Further, the Anomaly class has better recall scores and worse precision scores com-
pared to the other classes. On the other hand, the Noise class has a better precision score
and fl-score. The Structure class has lower recall scores; however, the fl-score was better
than the Anomaly class. So overall, the prediction made for the Anomaly class were more
accurate. According to these observations on the classification metrics, it can be seen that
some models performed better than others on the three classes, while model VGG19-2 has
the overall best performance and achieved better generalization.

3.3. Grad-CAM Results

In this section, the heatmaps generated by the Grad-CAMs are overlaid on selective
and representative samples of the evaluation set and presented. These heatmaps show the
part of the C-scan that each model identifies as the output class. Figure 5a summarizes the
results of correctly predicted examples for the Anomaly class, Figure 5b for the Noise class,
and Figure 5c for the Structure class.

Starting with the Anomaly class and Figure 5a, the selected samples exhibit buried
small metallic objects (sample no. 5), scatter anomalies identified as a rocky layer (sample
no. 9), linear anomalies of the stratigraphic layer (samples no. 13 and no. 24), and anomalies
of irregular shapes identified as stratigraphic layers (samples no. 27, no. 34, and no. 39).
The produced heatmaps showed the regions of the image that affected the correct prediction
the most. For sample no. 5, it is revealed that not all the targets were identified as an
Anomaly, and not much correlation exists for all 9 models. For sample no. 9, most of the
models were affected by the upper part of the image. For samples no. 13, no. 24, no. 27,
no. 34, and no. 39, the VGG16 and VGG19 models have an overall higher correlation
to the targets than AlexNet models, with VGG16-2, VGG19-1, VGG19-2, and VGG19-3
standing out.

For the Noise class (Figure 5b), the selected samples are weak striping noise in the
background (sample no. 44) and linear noise in different amplitude intensities caused by
background removal (samples no. 47, no. 52, no. 61, no. 69, and no. 88). Lastly, sample
no. 68 is horizontal linear noise caused by plowing lines. Aside from sample no. 47, no. 52,
and no. 61, where most models describe the target noise well, the rest of the heatmaps
show variations in the areas upon which the predictions were made. The horizontal noise
in sample no. 68 is best described by AlexNet-1 and VGG16-3, while the rest of the VGG
models are affected by more extensive areas of the image. Similar behavior is presented
for the vertical noise of sample no. 69, with AlexNet-1 having the best correlation. As for
the attenuated noise in sample no. 44 and no. 88, AlexNet models were affected almost by
the whole image, while VGG models were affected by image segments of different shapes
and sizes. In addition, some of the models were affected by points in the image, such as
the cases of VGG19-1 and VGG19-2 for input sample no. 88, which have no correlation
with the target. Lastly, AlexNet3 has produced zero heatmaps for sample no. 47, no. 52,
no. 61, no. 68, no. 69, and no. 88, showing no correlation to the targets but having made a
correct prediction.

Representative results for correctly classified samples under the Structure class are
summarized in Figure 5c. The selected samples include well-defined segments of structures
forming corners and rectangles. Samples no. 102 and no. 121 derive from the ancient
Halos site [29], with the former having more attenuated amplitudes compared to the other
samples. Sample no. 126 derives from the Sissi archaeological site and is ground truth [30].
The rest of the samples were collected near the ancient Roman road of Egnatia in northern
Greece. Overall, the VGG models describe the targets the best for all samples, all showing
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good correlations with slight differences. Sample no. 102 is best described by VGG19-1;
sample no. 121 by VGG16-2; sample no. 126 by VGG16-3, VGG19-2, and VGG19-3; sample
no. 136 by VGG16-1; sample no. 144 by VGG16-3, VGG19-2, and VGG19-3; sample no. 161
by VGG16-3, VGG19-1, and VGG19-2; and, lastly, sample no. 169 by VGG16-2, VGG16-3,
and VGG19-1.

Class Anomaly - True Positive
Input AlexNetl AlexNet2 AlexNet3 VGGI16-1 VGGI6-2 VGGI6-3 VGGI9-1 VGGI9-2 VGGI9-3

Sample #5

e -

Sample #13

Sample 224

Sample 227

Sample 34

Sample 39

7
.-.’ .

Class Noise — True Positive
AlexNetl AlexNet2 AlexNet3 VGGI6-1 VGGI6-2 VGG16-3 VGGI9-1 VGGI92 VGG19-3

Input

Sample 244

Sample 247

Sample #52

Sample 261

Sample 68

Sample 769

Sample 288

Class Structure — True Positive
Input AlexNetl AlexNet2 AlexNet3 VGGI6-1 VGGI6-2 VGGI6-3 VGGI9-1 VGGI92 VGGI9-3

Sample #102

Sample #121

Sample #126

Sample 136

Sample £144

A

Simple’lel ..........
Sample #169
...-....-.(C)

Figure 5. Selective Grad-CAM results of the evaluation set for correct predictions under the Anomaly

class (a), the Noise class (b), and the Structure class (c). For all three cases, the first column is the input
to trained models, and the following columns are the generated heatmaps for each model overlaid on
the input image. Warm colors indicate the most important regions for each model’s correct prediction,
while cooler colors suggest little to no contribution to the classification prediction.
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Sample 15

Sample 7111

To gain more insights, a selection of samples wrongly classified by the majority of the
models is presented in Figure 6. These include one sample of the Anomaly class and nine
samples of the Structure class. The bottom of each sample also displays the prediction scores
for the two highest-ranking classes. In this visual representation, incorrect predictions are
highlighted in red, while the correct class for each input sample is indicated in blue.
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Figure 6. Compilation of Grad-CAM results for the samples where models made the most mistakes.
On the top row are the inputs, where each class is mentioned at the bottom. The generated heatmaps
for all 9 models are overlaid on each input. Warm colors indicate the highest impact, while cooler
colors indicate little to no impact on the classification prediction. The classification prediction of
the highest two percentages is presented at the bottom of each sample, with the first one being the
classification outcome. Red indicates the wrong class, while blue indicates the correct class.
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Sample no. 13 is a linear stratigraphic layer that was mistaken by most models as a
Structure, with VGG9-1 and VGG19-3 being exceptions. VGG19-1 predicted sample no. 13
by 74.74% as Anomaly and 24.96% as a Structure, while VGG19-3 predicted it as a 100%
Anomaly. However, the heatmap showed little correlation with the target and was affected
the most by the background. The rest of the models classify this sample as a Structure. In
these predictions, AlexNet models have the lowest correlation to the target, with AlexNet2
being the worst, while VGG16-1, VGG16-2, VGG16-3, and VGG19-2 perform better.

Samples no. 111, no. 112, and no. 113 are different images of the same structural
pattern collected at the ancient Halos site. Most of the models classified it as a Structure.
More precisely, sample no. 111 was wrongly classified by all models, while sample no.
112 was correctly predicted as a Structure by models AlexNet2 (by 62.77%), VGG16-2 (by
99.46%), and VGG19-2 (by 68.15%). The heatmaps showed some correlation for VGG16-2
and VGG19-2; however, the main target did not affect the correct prediction. For the same
sample, AlexNet-2 was affected by most parts of the image, emphasizing three smaller
regions. Similarly, sample no. 113 was also misclassified as an Anomaly by most models,
and only VGG19-2 classified it correctly as a Structure by 76.36%. Likewise, the heatmap
shows no correlation to the main structural pattern despite being classified correctly. Sample
no. 114 is the same structure shown in no. 111, no. 112, and no. 113 but from a deeper
C-scan, where it is not well described. This sample was also classified as an Anomaly by
most models, with VGG16-1 (56.28% structure), VGG16-3 (66.6% structure), and VGG19-2
(97.64% structure) being exceptions. The heatmaps in all these examples are partially
correlated to the target.

Sample no. 129 is part of a structure close to the ancient Egnatia road that is not well
preserved. All models predicted this sample as an Anomaly. For this case, the heatmaps
for most models show that small parts of the target have led to wrong prediction, while
AlexNet-1 and AlexNet-3 were affected by the most part of the image. Sample no. 132 is
also collected at the ancient Egnatia road and is a structure from deeper levels that exhibits
attenuated amplitudes. Models AlexNet-1, VGG16-1, VGG19-1, and VGG19-3 classified
it as Noise, while models AlexNet-2, VGG16-2, and VGG16-3 classified it as an Anomaly.
Only VGG19-2 classified this sample as a Structure by 99.41%. However, the heatmap
shows only a small correlation with the target.

Samples no. 150, no. 151, and no. 152 are linear structures partially preserved and
also collected from the ancient Egnatia road. Sample no. 150 was wrongly classified as an
Anomaly by models AlexNet-3, VGG16-2, VGG16-3, VGG19-1, VGG19-2, and VGG19-3,
while AlexNet-1 classified it as Noise. The AlexNet-2 and VGG16-1 correctly classified this
sample as a Structure with 99.93% and 75.50%, respectively. The heatmaps of AlexNet-2
showed that the prediction was affected by the whole image, while VGG16-1 has a partial
correlation to this structural pattern. Similarly, Sample no. 151 was mistaken as Noise by
models AlexNet-1, AlexNet-2, and VGG19-1, while it was classified as an Anomaly by the
rest models. With the exception of AlexNet-1, which has a good correlation to the target,
the generated heatmaps for the rest models do not clearly show what contributed to the
wrong prediction. Last, sample no. 152 was misclassified as an Anomaly by most models.
Only AlexNet-2 classified it correctly as a Structure by 93.56%, but the heatmap, once again,
does not show much correlation with the target.

4. Discussion

The results presented in the previous section provide intriguing and informative
comparisons among the 9 evaluated DL models. These comparisons between AlexNet
and VGG offer valuable insights into the potential impact of deeper DL architectures on
learning, particularly when the training dataset is limited in size. It also encourages further
investigation using more recent and state-of-the-art architectures. Furthermore, the results
shed light on the efficacy of augmentation techniques for generating additional training
samples and the impact of training dataset volume on model performance. Notably, the
study also demonstrates the significant potential of DL for automatically interpreting GPR
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C-scans images from archaeological sites. In the following subsections, the key findings of
this study are discussed in greater detail.

4.1. Training Performance Comparisons

As shown in the learning curves of Figure 3, all the models trained with AlexNet
architectures produced smooth training curves, while the validation curves have significant
fluctuations. This is one of the signs indicating overfitting, where the training accuracy
is high but the validation accuracy drops. This inconsistent behavior could also show an
insufficient training dataset. However, no improvements were shown when producing
more data with augmentation techniques (i.e., model AlexNet-2) and by applying random
augmentation techniques to the training samples (i.e., model AlexNet-3).

With the AlexNet models’ learning curves as a reference, VGG-16 models brought
significant improvements. The validation curves have limited fluctuations and show a
more consistent training behavior. It seems that the additional and succeeded convolutional
layers of small kernel size helped limit overfitting. However, the increment of data volume
using augmentation techniques did not seem to have any particular gains, as VGG16-1 and
VGG16-2 models performed very similarly. Next, the additional layers of VGG19 did not
improve the performance further for the case of VGG19-1 and VGG19-3, where dataset-1
was used, but on the contrary, it produced more fluctuation in the validation curves. On
the other hand, VGG19-2 trained with dataset-2 showed the best overall performance. The
validation curves become stable after epoch 29, converging to 1 and 0 for accuracy and loss,
respectively. This suggests that producing more training samples through augmentation
techniques and using a deeper architecture can lead to great performance gains and limited
overfitting, even when the initial training set is small. This observation suggests exploiting
deeper architectures but can also be used for future improvement on the training dataset
to increase the training samples. On the other hand, image augmentation techniques,
when applied randomly to the training samples, worsen both training and validation
performance for all the architectures tested in this study. This might suggest that the chosen
techniques and parameters are inappropriate and further testing is required.

However, all this performance improvement comes at a cost. As it was shown in
Table 1, using the deeper architectures, VGG-16 and VGG-19 over AlexNet significantly
increased the average epoch time, which amplifies when using a larger dataset. Therefore,
any potential improvements in performance using these architectures come at the expense
of longer training times. Despite this, the results of this study suggest that the trade-off
is worthwhile.

4.2. Classification Results Comparisons

The generalization comparison was performed on 170 unseen data, and predictions
were made using the models’ set of weights for each architecture that showed the lowest
validation loss. The validation loss was preferred to validation accuracy to avoid overfitting.
In addition, several popular metrics were used to better evaluate and gain more insights,
including the accuracy, classification matrix, recall, precision, and f1-score.

Starting with the accuracy (Figure 4), the model VGG19-2 scored the highest at 94.12%,
while VGG19-1 and VGG19-3 had the lowest at 87.65% each. The next best-performing
models are AlexNet-2 and VGG16-2, scoring both 91.76%. The same accuracies observed
here are due to the small size of the evaluation set. The accuracy metric suggests that
increasing the volume of the training set with data augmentation techniques improved
the generalization for all the architectures; however, when trained with the deeper VGG19
architecture, the obtained best model, VGG19-2, outperformed the others.

The confusion matrices (Figure 4) were helpful in seeing each model’s TPs and misclas-
sified samples and better showing their differences. For example, the best-acquired model
VGG19-2 was the most accurate in the predictions for the Noise and Structure classes;
however, it was the second most precise model for the Anomaly class. The confusion
matrix observations become clearer when comparing the precision, recall, and f1-score



Remote Sens. 2023, 15, 3193

18 of 21

metrics summarized in Table 2. Based on the fl1-score, VGG19-2 performed the best for all
classes and was the highest for the Noise class (0.98), followed by the Structure class (0.93)
and then the Anomaly class (0.93). It is also shown that the models trained with dataset-2
scores have higher fl-scores, showing improved generalization. This is important as it
suggests more training data can be produced with image augmentation without leading to
overfitting, regardless of the architecture.

Focusing on the best-obtained model, the anomaly class shows a higher recall value
(0.95) and a lower precision (0.87). This suggests that the model tends to classify samples
of other classes as an anomaly. This is validated by the confusion matrix, where most of
the misclassified samples were identified as an Anomaly. On the other hand, the Noise
class has the perfect score in precision (1.00) and a slightly lower recall value (0.96). This
means that all the samples classified as Noise were a correct prediction, but some noise
samples were mistaken as an Anomaly or a Structure by the model. Likewise, the Structure
class also has a lower recall value (0.92) and a higher precision (0.95), meaning that more
samples were misclassified. This is expected since the evaluation set is imbalanced, having
more samples under the Structure class.

4.3. Grad-CAM Results Comparison

The grad-CAM technique was used to give more insights into how the models make
predictions, what they have learned, and whether differences are observed. In contrast with
the other metrics, the heatmap did not reveal “the best model” but rather differences in how
each model behaves, which can be used to navigate future work for improvements. For
example, the produced heatmaps for the correctly predicted samples (Figure 5) showed that
each model was affected by different parts of the targets. For most cases, the heatmaps of
VGG models tend to have a better correlation to the target than AlexNet models, suggesting
improvement in using deeper architecture. In addition, using augmentation techniques
in the two ways tested in this study seems to improve the heatmaps’ correlation to the
target when using VGG architectures. In a similar way, the heatmaps produced for the
misclassified samples (Figure 6) were also interesting as the images’ regions that confused
the models were highlighted, giving more useful insights.

Additionally, it was revealed for many samples that despite the correct prediction,
there was no correlation to the target. These cases might suggest that more training samples
are needed to better describe the patterns of interest. A good example is the structure of
sample no. 112, no. 113, and no. 114 of Figure 6. Even though the best model according
to the classification metrics, VGG19-2, was one of the few to make correct predictions, the
produced heatmaps show no correlation to the target. Another possible explanation is that
the most important features were learned in the previous convolutional layers, so the last
layer did not affect the prediction much. In any case, more research is required on this
matter, including generating heatmaps of the previous layers and using alternatives or
variations of Grad-CAMs such as guided backpropagation [31] and Grad-CAMs++ [32].

5. Conclusions

This study evaluated and compared the performances of AlexNet architecture with
the deeper VGG-16 and VGG-19 on a custom-made dataset of GPR C-scans collected
from various archaeological sites. These are widely used and well-studied architectures
in image classification, never tested before for this study’s context, and were chosen to
serve as a baseline to monitor future improvements and assist decision-making. The main
goal was to examine whether adding more layers in a CNN network can improve the
generalization in unseen data or would lead to overfitting due to the small size of the
custom dataset. The dataset of interest has a training set of 15,000 images and 3750 images
as a test set, belonging to three classes, Anomaly, Noise, and Structure. Acknowledging the
small size of the dataset can be a limitation in improving the generalization, augmentation
techniques were employed in two ways. The first way was to produce more training
samples, resulting in raising the original dataset to 60,000 images. The second way was to



Remote Sens. 2023, 15, 3193

19 of 21

apply a random combination of the selected techniques to the training samples without
affecting the volume of the dataset. Therefore, 9 models were trained in total and compared.
Finally, the generalization was tested on the evaluation set, with 170 samples entirely
excluded from the training process.

For the comparisons, several metrics were used. The accuracy and loss calculated on
the training and test set and the respective learning curves were produced to evaluate the
training performance. The metrics used to compare the generalization on the new data
were the classification matrix, accuracy, precision, recall, and f1-score. These metrics were
calculated on the evaluation set. Additionally, to gain more insights into what the models
have learned, the Grad-CAM technique was used to generate heatmaps highlighting the
regions of the input images of the evaluation set that affected the final prediction the most.

The comparison of the results showed that using DL architectures has overall benefits
in both training performance and generalization over the AlexNet models. The best
model, however, was obtained by VGG-19 when trained in the dataset of 60,000 images.
It exhibited less overfitting, and the learning curves had little fluctuations compared to
the other models. Further, it scored the highest accuracy of 94.12% and showed the best
generalization, based on the f1-score, for all classes. The heatmaps calculated by the Grad-
CAM also showed some improvement of the VGG-trained models over AlexNet models,
as the correct prediction had a higher correlation to the target. This observation suggests
that deeper DL architectures might positively impact the model’s learning. However, there
were also instances, even by the best-obtained model, where the prediction was correct
but there was no or little correlation to the target. For this, further research is required,
including using alternatives to the Grad-CAM technique to better understand and improve
the training dataset. Further, this study’s results showed the importance of generating
a visual explanation of the classification results besides classification metrics. Lastly, the
results showed the potential of DL architectures toward an automated data interpretation
of the GPR C-scans collected from archaeological sites.

In conclusion, the findings of this study offer valuable insights into the adaptation of
DL architectures for classifying GPR C-scans in archaeological prospection, bridging a gap
in the existing literature. The study highlights the potential of DL in facilitating an efficient
and automated interpretation scheme for GPR C-scans, emphasizing the importance of
utilizing larger and more diverse annotated datasets and leveraging the advantages of
deeper DL architectures. These results underscore the need for further investigations in
this area, promoting continued exploration and advancements.
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