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Abstract: When construction materials are exposed to the atmospheric environment, they are subject
to deterioration, which varies according to the time period of exposure and the location. A tool named
Dose–Response Functions (DRFs) has been developed to estimate this deterioration. DRFs use specific
air pollutants and climatic parameters as input data. Existing DRFs in the literature use only ground-
based measurements as input data. This fact constitutes a limitation for the application of this tool
because it is too expensive to establish and maintain such a large network of ground-based stations
for pollution monitoring. In this study, we present the development of new DRFs using only satellite
data as an input named Satellite Sensed Data Dose-Response Functions (SSD-DRFs). Due to the
global coverage provided by satellites, this new tool for monitoring the corrosion/soiling of materials
overcomes the previous limitation because it can be applied to any area of interest. To develop
SSD-DRFs, we used measurements from MODIS (Moderate Resolution Imaging Spectroradiometer)
and AIRS (Atmospheric Infrared Sounder) on board Aqua and OMI (Ozone Monitoring Instrument)
on Aura. According to the obtained results, SSD-DRFs were developed for the case of carbon
steel, zinc, limestone and modern glass materials. SSD-DRFs are shown to produce more reliable
corrosion/soiling estimates than “traditional” DRFs using ground-based data. Furthermore, research
into the development of the SSD-DRFs revealed that the different corrosion mechanisms taking place
on the surface of a material do not act additively with each other but rather synergistically.

Keywords: satellite data; corrosion; soiling; modeling corrosion tools; machine learning

1. Introduction

When various materials are exposed to the air we breathe, they suffer wear and tear
from both air quality and the wind depending on the time of exposure and location. To
deal with this problem, maintenance procedures are used, which constitute 4–5% of the
global GDP (gross domestic product) [1]. The role of air pollution, in relation to climatic
conditions, in the deterioration of construction materials exposed outdoors has already been
recognized in the literature [2–6]. To model this deterioration, a tool named Dose–Response
Function (DRF) has been developed. Firstly, this tool was developed after laboratory
deterioration experiments in a controlled environment. Before the 2000s, it was found
that the main air pollutant dominating the corrosion/soiling effect was SO2. So, the main
research focused on the effect of SO2 on different materials. The presence of additional
contaminants in the atmospheric environment has led to the study of their participation in
the corrosion/soiling effect on materials such as SO2. After several studies, it was shown
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that NO2 and O3 contribute to corrosion/the soiling effect. The difference is that there is no
direct chemical reaction with materials, but their presence on the surface of the material
has a catalytic reaction with the presence of SO2. After the 2000s, with the desulfurization
of the atmosphere, it was seen that the corrosion/soiling problem was a multi-factorial
effect [7–19]. Nowadays, DRFs quantify the corrosion/soiling effect on materials using the
concentration of specific air pollutants, such as SO2, NO2, O3, HNO3, PM10 (particulate
matter with an aerodynamic diameter equal to or less than 10 µm) and meteorological
parameters such as temperature, relative humidity and precipitation [20–27].

Over the years, several projects have been carried out with exposure campaigns to
develop new DRFs or improve existing ones. One of these projects with a significant
contribution to this effort is called the “International Co-operative Programme on Effects
on Materials including Historic and Cultural Monuments (ICP Materials)”. In this study,
we use some of the DRFs developed in the framework of ICP Materials, specifically for the
materials carbon steel, zinc, limestone and modern glass [23,28]. The common characteristic
of all existing DRFs in the literature is that they use ground-based measurements of air
pollutants and meteorological parameters. This feature limits their application to cases
where the necessary ground-based data are available.

This research attempts to overcome this limitation by developing new deterioration
modeling tools that make use of satellite data that have the advantage of near-global
coverage. Such satellite data are recorded by remote sensing instruments on environmental
satellites. All these available satellite data can be used in material deterioration modeling.

This study presents the development of these new deterioration modeling tools that
use satellite data to quantify corrosion/soiling in structural materials. To identify these new
DRFs, the term Satellite-Sensed Data Dose–Response Functions or SSD-DRFs is proposed.

2. Materials and Methods
2.1. Object of Study

The materials studied in this research are the following:

• Carbon steel;
• Zinc;
• Limestone;
• Modern glass.

These materials were chosen because they are widely used in modern constructions.
Additionally, limestone and zinc are the basic materials in cultural heritage monuments.
Within the framework of the ICP Materials and MULTI-ASSESS (model for multi-pollutant
impact and assessment of threshold levels for cultural heritage) projects, DRFs were de-
veloped for each material. These DRFs are presented below ([23] Equations (1)–(3); [28]
Equation (4)):

DRFs.
Carbon steels

ML = 51 + 1.39[SO2]
0.6 · Rh60 · e f (T) + 0.593PM10 + 1.29Rain ·

[
H+

]
(1)

f (T) = 0.15(T − 10), for T < 10 ◦C (1a)

f (T) = −0.054(T − 10), for T ≥ 10 ◦C (1b)

Zinc

ML = 3.5 + 0.471[SO2]
0.22 · e0.018Rh+ f (T) + 1.37[HNO3] + 0.041Rain

[
H+

]
(2)

f (T) = 0.062(T − 10), for T < 10 ◦C (2a)

f (T) = −0.021(T − 10), for T ≥ 10 ◦C (2b)
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Limestone

R = 4 + 0.0059[SO2] · Rh60 + 0.078[HNO3] · Rh60 + 0.0258PM10 + 0.054Rain
[
H+

]
(3)

Modern glass

H = (0.2215[SO2] + 0.1367[NO2] + 0.1092PM10)/
(

1 + (382/t)1.86
)

(4)

where
ML = mass loss (the difference in the specimen’s initial mass minus the remaining

mass after removing its corroded part), g m−2;
R = surface recession, µm (absolute values);
H = haze, %;
t = exposure time, in days;
Rh = relative humidity, %—annual average;
Rh60 = Rh − 60 when Rh > 60, 0 otherwise;
T = mean annual temperature, ◦C;
[SO2] = mean annual concentration, µg m−3;
[NO2] = mean annual concentration, µg m−3;
[HNO3] = mean annual concentration, µg m−3;
Rain = precipitation amount, mm year−1—total rain amount in one year;
PM10 = mean annual concentration, µg m−3;
[H+] = mean annual concentration, mg L−1. The unit for [H+] is not the normal one

(mol L−1) used for this denomination and the relationship between pH and [H+] is therefore
[H+] = 1007.97 × 10−pH ≈ 103−pH here.

In the case of [HNO3], if in situ measurements are unavailable, then the concentration
is estimated by Equation (5) [22].

[HNO3] = 516 · e−3400/(T+273) · ([NO2][O3]Rh)0.5 (5)

where
[O3] = mean annual concentration, µg m−3.
In the above DRFs, and all other available DRFs in the literature, it is clearly shown

that they rely solely on the availability of ground-based data to provide deterioration
estimates of the different materials. This is a major limitation of the utility of these models
because, among other things, it is difficult and expensive to deploy the necessary network
of ground-based stations at all sites of interest. The authors believe that the solution to this
may be the development of SSD-DRFs. Nowadays, the multitude of different satellite data
enables us to develop new techniques and approaches.

2.2. Satellite Remote Sensing Data

Satellite air quality data from the Ozone Monitoring Instrument (OMI), the Atmo-
spheric Infrared Sounder (AIRS) and the Moderate Resolution Imaging Spectroradiometer
(MODIS) were used for this purpose. Specifically, concentration data for O3, NO2 and SO2
were collected by OMI [29–31], air temperature (Temp) data were collected by AIRS [32]
and Aerosol Optical Depth (AOD) data were collected by MODIS [33]. In the case of relative
humidity (RH), reanalysis data from the European Centre for Medium-Range Weather
Forecasts (ECMWF) were used. This fact was deemed necessary since satellite-derived
relative humidity data show little correlation with ground-based data.

Data were collected for the same time periods and sites as the ICP Materials exposure
campaigns. Table 1 shows the time periods of the exposure campaigns, and all the cities
where the campaigns took place are shown in Table 2.
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Table 1. Time periods of ICP Materials exposure campaigns.

Exposure Campaign Time Period

Exposure 1 2005–2006 [34]
Exposure 2 2008–2009 [35]
Exposure 3 2011–2012 [36]
Exposure 4 2014–2015 [37]
Exposure 5 2017–2018 [38]

Table 2. ICP Materials exposure sites for time periods (2005–2006, 2008–2009, 2011–2012, 2014–2015,
2017–2018) [34–38].

Exposure Site Exposure Period Exposure Site Exposure Period

Aspvreten 1, 2, 3, 4, 5 Paris 1, 2, 3, 4, 5
Athens 1, 2, 3, 4, 5 Prague 1, 2, 3, 4, 5
Berlin 1, 2, 3, 4, 5 Riga 1, 2, 3, 4

Birkenes 1, 2, 3, 4, 5 Rome 1, 2, 3, 4, 5
Bottrop 1, 2, 3, 4, 5 Sofia 2
Casaccia 1, 2, 3, 4, 5 Split 5

Chaumont 1, 2, 3, 4, 5 St. Petersburg 3
Hameenlina 4, 5 Stockholm 1, 2, 3, 4, 5

Katowice 1, 2, 3, 4, 5 Svanvik 1, 2, 3, 4, 5
Kopisty 1, 2, 3, 4, 5 Toledo 1, 2, 3, 4, 5

Lahemaa 1, 2, 4 Venice 1, 2, 3, 4, 5
Madrid 1, 2, 3, 4, 5 Vienna 2, 3, 4, 5
Milan 1, 2, 3, 4, 5 Zagreb 5
Oslo 1, 2, 3, 4, 5 Zilina 4, 5

In addition to satellite and reanalysis data, corrosion/soiling results from the above-
mentioned exposure campaigns were collected for the needs of the SSD-DRFs being devel-
oped. The corrosion/soiling results were used to develop and test the new SSD-DRFs [39–46].

3. Results

Multiple regression analysis, a supervised machine learning technique, was performed
to develop the SSD-DRFs. Due to the non-linearity of the corrosion/soiling effect, and
the complexity that presents such problems from a study point of view, an attempt was
made to convert the non-linear problem into a linear one. As mentioned earlier, the
corrosion/soiling effect is a multi-factorial effect. If we consider that observed deterioration
results from the synergistic effect of all meteorological and air pollution parameters, we
can consider that the non-linear Equation (6) describes the relationship between them.

D = [X1]
A · [X2]

B · . . . · [Xn]
N (6)

where
D = deterioration;
[Xi]j = corrosion/soiling parameters, where i denotes different parameters or products

of parameters and j denotes the exponent of the i term.
If we calculate the logarithm of Equation (6), then the following relationship is obtained:

ln(D) = A · ln([X1]) + B · ln([X2]) + . . . + N · ln([Xn]) (7)

When trying to model the response using a single predictor or more variables, Pear-
son’s correlation is used to estimate a linear correlation coefficient between the predictors
and the target. In our case, the meteorological parameters and air pollutants mentioned
above are the predictive factors and the target is the corrosion/soiling of the material. One
of the first sources of non-linearity is due to different interactions between predictors. For
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instance, the synergistic effects on corrosion between NO2, O3 and SO2, combined with the
relative humidity, affect the amount and form of water available on a material’s surface. To
examine the linear relationship of the interaction between parameters and corrosion, the
interaction terms must be multiplied by themselves.

In addition, in this study, an attempt was made to insert SSD-DRFs, a term for pollu-
tants’ diffusivity, on the material surfaces, as it is known that atmospheric corrosion can
occur either in a dry environment (low humidity) or in a wet environment (high humidity).
In the case of high humidity, a thin film of water forms on the material’s surface (Figure 1).
Air pollutants can diffuse into this water film, resulting in an acceleration of the corrosion
effect [47]. This mechanism is modelled in the SSD-DRFs by incorporating the diffusion
coefficient parameter into them.
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As has been shown, the diffusion coefficient, D, in a single diffusion mode obeys an
Arrhenius-like behavior, as seen in Equation (8):

D = D0 · exp
[

−E
(KBT)

]
(8)

where the activation energy E and the pre-exponential factor D0 are essentially temperature
independent, and KB is the Boltzmann constant. From Equation (8), it is possible to calculate
the values of the activation energy E through the slope of the plot of lnD vs. 1/T [48]. In the
following years, many experimental studies were carried out using infrared laser resonant
desorption (LRD) techniques to calculate diffusion coefficients in ice film [49–55]. The
results from these studies confirmed the linear relationship between lnD and 1/T [56]. This
result clearly suggests that Equation (8) can be used to estimate the diffusion coefficient at
any temperature when the diffusion coefficient at two different temperatures is known.

Varotsos and Zellner [56] used the above studies [53,54] and found a significant
result, namely that there is a linear relationship between the natural logarithm of the
pre-exponential factor D0 and the activation energy E (i.e., lnD0 vs. E). Summarizing all
the above studies, it is concluded that it is possible to estimate the diffusion coefficients
of other important species in ice. Based on the same theory, it is possible to calculate the
diffusion coefficient of any important species we want in the thin film of water on the
material’s surface. Thus, if the diffusion coefficient is known at two different temperatures,
from the slope of the lnD vs. 1/T plot, it is possible to calculate the diffusion coefficient
at any temperature. The diffusion coefficients of O3 [57], NO2 [58] and SO2 [59] in water,
at different temperatures, are available from laboratory experiments that are presented
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in the literature. The resulting equations for the diffusion coefficients are the following
(Equations (9)–(11)):

DO3 = 1.1 × 10−6exp
(
−1896

T

)
(9)

DNO2 = exp
[
(−1.885) ·

(
1000

T

)
+ 6.641

]
(10)

DSO2 = exp
[
(−2.96) ·

(
1000

T

)
+ 10.42

]
(11)

The resulting diffusion coefficients from Equations (9)–(11) for each site in the exposure
campaigns were multiplied by the corresponding atmospheric pollutant concentration, as
derived from satellite data. After multiplications between all parameters, 36 products were
calculated. These products were used to investigate the correlation of each of them with
the corrosion/soiling experimental results of each material by calculating the Pearson’s
correlation coefficient. According to the obtained results, different parameters showed a
linear correlation with the corrosion/soiling in each material. The parameters that correlate
well with the corrosion/soiling of each material have been used in SSD-DRFs development.

Tables 3–6 present the results of Pearson’s correlation coefficient calculations between
environmental parameters and corrosion/soiling estimates. For the case of carbon steel,
Table 3, it is evident that this material presents the highest correlation coefficients with
relative humidity (RH), parameters, the product of RH with NO2 and AOD (Aerosol Optical
Depth) concentrations, as well as the product of RH2, NO2 and SO2 concentrations. The
asterisks denote the statistical significance level of the obtained correlation coefficients.
The parameter N in the following tables denotes the number of samples of experimental
corrosion/soiling values used in each case.

Table 3. Chosen parameters for carbon steel mass loss SSD-DRF.

RH RH ∗ NO2 RH ∗AOD RH2 ∗ NO2 ∗ SO2

Mass loss

Pearson
Correlation 0.498 ** 0.443 ** 0.611 ** 0.484 **

N 110 110 110 110
** Correlation is significant at the 0.01 level (2-tailed).

Table 4. Chosen parameters for zinc mass loss SSD-DRF.

RH RH ∗ O3 RH ∗ SO2

Mass loss

Pearson
Correlation 0.383 ** 0.386 ** 0.232 *

N 112 112 112
** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Table 5. Chosen parameters for limestone mass loss SSD-DRF.

RH RH ∗ NO2 RH ∗ AOD

Mass loss

Pearson
Correlation 0.234 * 0.202 * 0.127

N 105 105 105
* Correlation is significant at the 0.05 level (2-tailed).
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Table 6. Chosen parameters for modern glass soiling SSD-DRF.

Temp AOD SO2 ∗ DSO2 NO2 ∗ DNO2 O3 ∗ DO3

Soiling
Pearson

Correlation 0.612 ** 0.465 ** 0.434 ** 0.360 ** 0.586 **

N 97 97 97 97 97
** Correlation is significant at the 0.01 level (2-tailed).

For the case of zinc (Table 4), it is evident that this material presents the highest correla-
tion coefficients with the parameters of RH and the product of RH with the concentrations
of O3 and SO2.

For the case of limestone (Table 5), it is obvious that this material, in all cases, presents
low values of correlation coefficients; however, we have considered the highest of them,
i.e., RH and the product of RH with O3 concentration. Both are statistically significant at
the 0.05 level. Analyzing the obtained results, it was evident that these two parameters
could not adequately model the limestone’s corrosion, so it was decided that the product
of RH with SO2 concentration should also be used, which, according to the literature [4], is
an air pollutant that affects limestone’s corrosion.

For the case of modern glass (Table 6), it was found that this material presents the
highest correlation coefficients with the climatic parameter of temperature (Temp), the air
quality parameter of AOD and the products of the SO2, NO2 and O3 concentrations with
their diffusion coefficients, respectively.

After selecting the parameters to be used to develop SSD-DRFs, linear regression
analysis was applied using the Sklearn library in python. To apply this tool, the entire data
set was split into train and test sets in a ratio of 80–20% and with the help of a loop we run
regression analysis 10,000 times for each material. Each run resulted in 10,000 different
sets of constants and coefficients for the parameters. In the next step, we kept only the
results where all parameters were positive, because a negative parameter would mean a
decrease in corrosion with increasing pollutant concentration, which is contrary to current
knowledge. In the end, from the remaining results, we selected the set of a coefficient and
constant value which showed similar accuracy in train/test sets and the whole data set.

The following list gives the mathematical formulation of the SSD-DRF of each material
(Equations (12)–(15)):

Carbon steel

ML = 2.389· ln(RH) + 0.332· ln(RH·NO2) + 1.313· ln(RH·AOD) + 0.007· ln
(

RH2·SO2·NO2

)
− 23.988 (12)

Zinc

ML = 0.32· ln(RH) + 0.921· ln(RH·O3) + 0.00035· ln(RH·SO2) (13)

Limestone

R = 0.433· ln(RH) + 0.18· ln(RH·O3) + 0.095· ln(RH·SO2)− 1.914 (14)

Modern glass

H = 16.511· ln(Temp) + 0.824· ln(AOD) + 0.018· ln(NO2·DNO2) + 0.333· ln(O3·DO3) + 0.015· ln(SO2·DSO2)− 94.12 (15)

These functions were then used to calculate the corrosion/soiling estimates of the
different materials at each different site during all exposure periods. Table 7 gives the
Pearson’s correlation coefficient obtained by investigating the linear correlation between
the SSD-DRFs corrosion/soiling estimates and the experimental data. The size of the paired
samples used for each material is given in the second line of Table 7.
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Table 7. Pearson correlation coefficients between SSD-DRFs estimates and experimental data.

Carbon Steel
(Observed
Mass Loss)

Zinc
(Observed
Mass Loss)

Limestone
(Observed
Recession)

Modern Glass
(Observed

Soiling)

SSD-DRF 0.613 ** 0.367 ** 0.240 ** 0.633 **

N 110 112 105 97
** Correlation is significant at the 0.01 level (2-tailed).

Table 8 shows the Pearson’s correlation coefficients between G-DRFs and experimental
data as well as SSD-DRFs and experimental data, where the name G-DRFs refers to the
existing DRFs, Equations (1)–(4), which use ground-based data as inputs. The size of the
paired samples used for each material is given in the third line of Table 8.

Table 8. Pearson correlation coefficients between G-DRFs and experimental data, SSD-DRFs and
experimental data.

Carbon Steel
(Observed
Mass Loss)

Zinc
(Observed
Mass Loss)

Limestone
(Observed
Recession)

Modern Glass
(Observed

Soiling)

G-DRF 0.511 ** 0.207 * 0.327 * 0.413 **

SSD-DRF 0.589 ** 0.364 ** 0.401 ** 0.723 **

N 55 73 55 71
** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Figures 2–5 show the observed experimentally (OBS) corrosion/soiling values esti-
mated using SSD-DRFs (SSD-DRFs) and estimated using G-DRFs (G-DRF) for the case of
carbon steel, zinc, limestone and modern glass, respectively, at the indicated sites.

Figure 6 presents, in the form of box plots, the statistics of the relative differences between
SSD-DRFs and G-DRF estimates in experimentally obtained corrosion/soiling values.
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Figure 2. The experimentally observed mass loss of carbon steel (red bars), the estimated mass loss
of carbon steel using SSD-DRF (blue bars) and the estimated mass loss of carbon steel using G-DRF
(yellow bars) for case (a) Athens, (b) Bottrop, (c) Kopisty, (d) Madrid, (e) Prague and (f) Toledo after
five different one-year exposure periods (2005–2006, 2008–2009, 2011–2012, 2014–2015, 2017–2018).
The missing yellow bars in the case of Athens are due to the lack of the necessary ground-based data
necessary for the application of G-DRF.
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4. Discussion and Conclusions

According to Table 8, the corrosion/soiling estimates produced by SSD-DRFs show a
better correlation with the experimental results than the estimates produced by G-DRFs for
all materials studied. This means that the SSD-DRFs developed using only satellite data
improve the corrosion/soiling estimation results compared to the already available G-DRFs,
which use only ground-based data. This conclusion is also supported by the box plots
presented in Figure 6. According to these results, the populations with relative differences
between the corrosion/soiling estimates, calculated using SSD-DRFs, and experimentally
obtained data have a smaller range, excluding the extreme values, and in most cases their
medians are closer to zero than the same results estimated using G-DRFs.

Another remark is related to data availability. According to Table 7, the sizes of the
available sample pairs of carbon steel, zinc, limestone and modern glass are 110, 112,
105 and 97, respectively. As for G-DRFs, their usability is limited by the availability of
ground-based data. Due to the lack of necessary data, the sizes of the available sample
pairs given in Table 8 are 55, 73, 55 and 71 for carbon steel, zinc, limestone and modern
glass, respectively. This means that the applicability of SSD-DRFs increases for the various
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materials by about 200%, 150%, 190% and 135%, respectively. This is confirmed by the
graphs plotted in Figures 2–4 for the case of Athens. Yellow bars indicating G-DRFs
estimates of carbon steel, zinc and limestone corrosion are missing for the exposure periods
2005–2006, 2008–2009 and 2011–2012 (and 2014–2015 carbon steel only) due to a lack of
some necessary ground-based data. In contrast, the availability of satellite data meets the
data needs of SSD-DRFs to enable continuous monitoring of the corrosion/soiling.

It should be mentioned that satellite data also offer an almost global coverage, which
means that the proposed SSD-DRFs can be directly applied to almost any part of the globe
according to user needs (e.g., cultural heritage managers, stakeholders, policy makers,
etc.). In addition, this new tool offers the potential to produce continuous large-scale corro-
sion/soiling mapping, without the need for ground-based meteorological and pollution
networks. Thus, the SSD-DRFs tool could act as a global corrosion/soiling monitoring
system capable of identifying “hot spots” across the planet and/or providing warnings
about sensitive areas at an early stage, offering valuable time to address any type of
problematic status.

Although we have historical air pollution data, more work needs to be carried out
to improve the knowledge and accuracy of corrosion/soiling estimation obtained with
satellite data to contribute, inter alia, to the achievement of the Sustainable Development
Goals—UN 2030 Agenda [60,61].
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