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Abstract: The spatial heterogeneity of soil properties has a significant impact on crop growth,
making it difficult to adopt site-specific crop management practices. Traditional laboratory-based
analyses are costly, and data extrapolation for mapping soil properties using high-resolution
imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate
results using a desktop workstation. To overcome these challenges, cloud-based solutions such
as Google Earth Engine (GEE) have been used to analyze complex data with machine learning
algorithms. In this study, we explored the feasibility of designing and implementing a digital soil
mapping approach in the GEE platform using high-resolution reflectance imagery derived from a
thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a
suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-
chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability
of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated
using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime,
Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such
as spectral indices and a digital surface model (DSM). Our results indicate that the predictions
based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART
and RF algorithms are superior to those based on individual spectral bands. Additionally, the
DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that
high-resolution multispectral imagery processed in the GEE platform has the potential to develop
soil properties prediction models essential in establishing adaptive soil monitoring programs for
agricultural regions.
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1. Introduction

It is estimated that by the year 2050, the demand for food for human consumption
will increase by up to 70% and, in the absence of available land for agricultural expansion,
agricultural intensification predicated on optimal water, soil, and crop management will
become increasingly necessary in order to maintain the productive capacity of agricultural
lands [1]. Soils, as a heterogeneous system and dominant factor of agricultural production,
are characterized by distinct physical and chemical properties that affect the health of
crops and determine, to a large extent, their development and sustenance throughout the
duration of the growing cycle [2]. Therefore, the efficient management of agricultural soils
requires the adoption of site-specific management practices that account for the existing
variability of soils and subsequently crops. As such, detailed spatial information is re-
quired to delineate oftentimes homogeneous management units, with similar physical
and chemical properties [1,3]. Typically, the physical and chemical properties of soils
can be determined with laboratory-based analysis, but for large fields and at the scale of
agricultural management systems, these methods prove to be costly and have multiple
drawbacks [4]. Recently, to assuage some of these limitations in assessing the produc-
tive potential of different soil and agricultural systems, a wide range of remote sensing
methods have been applied to determine soil properties and assess overall agricultural
productive potential, with demonstrably good results, faster and at comparatively large
spatial scales [5]. Specifically, on the ground soil mapping technologies depend heavily
on the use of geographic information systems (GIS) and global positioning system (GPS)
and are increasingly being supplemented with remote sensing technologies for integrated
digital soil mapping approaches or soil information systems that use sophisticated data
analysis workflows to predict soil properties based on environmental predictors [6].

The cutting edge in the development of integrated soil information systems is there-
fore at the intersection of GIS, GPS, and remote sensing. Remote sensing technology in
particular can provide valuable information on crop health, growth, and yields without
the need for physical intervention. Techniques such as aerial photography, multispectral,
and hyperspectral imaging and most recently Unoccupied Aerial Vehicles (UAVs) can be
used to collect data that can be analyzed to optimize irrigation management, identify pest
infestations, and detect disease outbreaks in crops, as well as soil properties [7]. Deery
et al. [8] and Prashar and Jones [9] found that close-range remote sensing technology can
accurately measure crop growth and identify crop stress caused by factors such as water or
nutrient deficiencies. Jindo et al. [10] used remote sensing to identify pest infestations in
potato crops, while Luo et al. [11] found that remote sensing can be used to identify disease
outbreaks in crops, allowing for timely interventions to prevent yield losses. Furthermore,
Cheng et al. [12] demonstrated that remote sensing can be used to map crop water pro-
ductivity, leading to significant water savings while maintaining or increasing crop yields.
These studies highlight the potential of remote sensing technology to assist in crop and soil
management, allowing users and farmers to make informed decisions, optimizing their
operations and scale production through means of agricultural intensification.

As an important emerging component of remote sensing technologies, UAVs can be
used to support agricultural intensification and optimize water, soil, and crop management
to meet the global increasing demand for food. Generally, UAVs are being utilized for crop
monitoring, precision agriculture [13], harvest monitoring, and, importantly, soil mapping.
UAVs lead the cutting edge in digital soil mapping given their ability to contribute to deriv-
ing high-resolution maps of soil properties and characteristics [14,15]. UAVs equipped with
various multispectral and hyperspectral sensors; those images allow for the generation
of multiple related indices from reflectance data supplemented with in situ information
through algorithms and with indicators of detailed vegetative development and soil prop-



Remote Sens. 2023, 15, 3203 3 of 21

erties [16], including carbon (C), nitrogen (N), water content, and soil texture [17]. Similarly,
widely utilized spectral indices such as NDVI (Normalized Difference Vegetation Index),
in combination with more specific vegetation indices (VIs) derived from visible and near
infrared (NIR) data have been shown to be related to soil organic carbon [13], infiltration
rates [18], and soil moisture and evapotranspiration metrics [19]. However, there are rela-
tively few instances in the literature on the determination of specific soil physical-chemical
properties from remotely sensed multispectral imagery. For instance, multispectral imagery
collected by an unmanned aerial vehicle (UAV) was used to determine soil properties such
as organic matter content [20], clay content [21], soil moisture content [22] or map soil
properties such as sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC)
and nitrogen [23].

With increasingly high temporal repeat and spatially denser datasets available from
both satellite and UAV platforms, machine learning models are leveraged more in order to
develop soil predictive models and formalized digital soil mapping frameworks, because
they improve the prediction accuracy and eliminate most of the statistical restrictions
that regression, kriging, and their variations demanded [24]. In order to implement these
complex models with massive datasets though, conventional desktop workstations became
insufficient to generate prediction maps in near real-time. An alternative solution to this
challenge is the use of cloud computing, and specifically Google Earth Engine (GEE) [25],
which has become a free geospatial data analysis platform, capable of storing and analyzing
high-resolution imagery as raster data using its computing infrastructure where machine
learning algorithms are designed to run in multiple processors simultaneously, reducing
the time of processing and resources with accurate results.

The aim of this work is to explore the feasibility to design and implement a digital soil
mapping approach using the Google Earth Engine (GEE) platform utilizing high-resolution
reflectance imagery derived from a thermal infrared and multispectral camera (Altum
model; MicaSense Inc.) flown aboard a UAV, compared with in situ measurements of
soil physical-chemical properties (lime (%), clay (%), sand (%), electrical conductivity (EC)
(mS/m), nitrogen (N) (ppm), phosphorus (P) (ppm), potassium (K) (ppm), organic matter
(OM) (%), aluminum (Al) (ppm) and pH). Accordingly, we had the following hypotheses:
(i) it is feasible to implement UAV imagery and ML to predict soil properties in the cloud
using Google Earth Engine, (ii) the use of spectral indices and DSM improve the accuracy
of predicted values of soil properties, (iii) ML models are efficient in manage multiple
datasets of predictors to perform spatially consistent soil properties maps.

First, we present the material and methods section, where we describe the study
area, how soil samples were collected, the imagery acquisition and software processing,
statistical and spatial analysis, and validation. Then, we show the results, the soil parame-
ters determined by the laboratory, the correlation analysis between soil parameters and
predictors, and the evaluation of machine learning models. Finally, we discuss the results
and present the conclusions.

2. Materials and Methods
2.1. Study Area

The Peruvian central zone, especially the Mantaro Valley, is purely agricultural and
simultaneously the largest agricultural area in the highlands of Peru. It is estimated that
between 40,000 and 70,000 ha are cultivated in the lowlands. The soil data collection was
carried out at the Santa Ana Agricultural Research Station (Santa Ana for the rest of the
text) of the Instituto Nacional de Innovación Agraria (INIA) (75◦13′17.60′′W, 12◦0′42.36′′S)
(Figure 1), which is located in the El Tambo district, Huancayo province and department
of Junin (Peru). Santa Ana is located in the southeast of Peruvian Mantaro Valley at the
base of an alluvial fan landscape. This inter-andean valley is located in the Peruvian central
highlands at a mean altitude of 3250 m.a.s.l. with a length of 53 km and a width ranging
from 4 to 21 km in places. Approximately 20.7% of this important inter-andean valley can
be used for agriculture.
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Figure 1. Location of the study area, Santa Ana, Junin (Peru).

Santa Ana has an altitudinal gradient range from 3303 to 3325 m.a.s.l. The physiogra-
phy is dominated by the plain landscape of the mountain valley. The climate is characterized
by periods of rain between November and March, a transition period from April to October
and a dry season between May and August with a total amount of 477 mm/year. The
average temperature ranges from 3.90 to 20.2 ◦C, with the lowest temperatures between
May and August, and frost events between July and August [26]. The agricultural fields
cover 49.83 ha from 67.08 ha distributed in 42 parcels, with flood irrigation canals. The
sowing period occurs between October to May.

2.2. Methodological Framework

The methodological framework employed in this study is presented in Figure 2, and
described in more detail in the following five methods subsections:

2.2.1. Field Sampling of Chemical and Physical Soil Parameters

A total of 46 soil samples were collected at 30 cm depth in one of the widest stretches
of the Mantaro valley at the Santa Ana experimental station; the sample plots were lo-
cated around the central point of each parcel and georeferenced using a D-RTK 2-DJI
GNSS GPS. This approach is simple to implement because the estimation of the quality
measures and their precision is straightforward and gives relatively precise estimates,
with no assumptions needed in quantifying the standard error of the estimated quality
measures [27].

The physicochemical analyses to determine lime (%), clay (%), sand (%), electrical
conductivity (EC) (mS/m), nitrogen (N) (ppm), phosphorus (P) (ppm), potassium (K)
(ppm), organic matter (OM) (%), aluminum (Al) (ppm) and pH of the soil were carried out
at the Laboratorio de Suelos, Aguas y Foliares (LABSAF) of Santa Ana. The samples were
dried at room temperature (15–30 ◦C), disaggregated, homogenized and sieved (2 mm). Soil
pH was determined according to the US EPA 9045 D method [28], electrical conductivity
(E.C) in (mS/m) was determined according to the ISO 11265:1994/Cor 1 method [29],
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organic matter (%), total nitrogen (5% of M.O.); available phosphorus (ppm), available
potassium (ppm), Al (ppm) and texture (%) according to the Mexican Official Standard [30].
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2.2.2. Acquisition and Processing of Multispectral Imagery

A thermal and multispectral Altum camera (MicaSense, Inc., Seattle, WA, USA),
on board a DJI Matrice 300 RTK UAV (DJI, Shenzhen, China) were used to take 16-bit
multispectral photos, with 5 spectral bands (blue (475 ± 20 nm), green (560 ± 20 nm), red
(668 ± 10 nm), NIR (840 ± 40 nm), and RE (717 ± 10 nm)) at 3.2 megapixels’ resolution
(2064 × 1544 pixels) and LWIR thermal band (160 × 120 pixels) 0.01 megapixels’ resolution.
Detailed characteristics of the UAV, camera, and flight plan used are shown in Figure 3.

The flight plan was executed roughly at noon local time on 8 August 2022, at a height
above the ground of 150 m. The photos were taken every 2.0 s with 75% front and side
overlap. Finally, these photos were stored in 16-bit .tiff format.

The photogrammetric processing was carried out in the Pix4D Pro Mapper software
(Prilly, Switzerland). The relative differences between the initial and optimized internal
parameters are minimal (0.48%), indicating that initial parameters are reliable for the
construction of the orthomosaic. We collected 8 ground control points with a D-RTK
2-DJI GNSS GPS (Horizontal: 1 cm + 1 ppm(RMS); Vertical: 2 cm + 1 ppm(RMS)) and
introduced them into the processing flow to improve the topographic precision of the point
cloud and orthomosaic reflectance bands, with a final ground surface distance (GSD) of
15.42 cm. Based on the point cloud, a digital surface model (DSM) was generated, at the
same resolution as the orthomosaic and exported in .tiff format.
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2.2.3. Model Development and Statistical Analysis
Variable Extraction

To develop the spatial soil parameters distribution models, we utilized the multispec-
tral 14 spectral indices commonly used in vegetation and soil analysis, shown in Table 1.
These indices include vegetation, soil and water indices. A circular buffer of 0.5 m in
diameter was used for each sampled point, where the reflectance values of each pixel are
converted into an observation replica that contrasts with the concentration value of the soil
parameter of interest. Vegetation indices were calculated through the different combinations
of reflectance, and compiled as predictors together with the pure spectral bands.

Table 1. Spectral indices extracted from the Micasense Altum imagery.

Bands Wavelength (nm)

Normalized Difference Vegetation Index (NDVI) [31] (NIR−RED)
(NIR+RED)

Enhanced Vegetation Index (EVI) [32] G× NIR−RED
NIR+C1×RED+C2×BLUE+L

Normalized Difference Water Index (NDWI) [33] NDWI = (GREEN−NIR)
(GREEN+NIR)

Soil Adjusted Vegetation Index (SAVI) [32] L = 0.6(
(NIR−RED)

(NIR+RED+1)

)
(1 + L)

Green Normalized Difference Vegetation Index (GNDVI) [34] (NIR−GREEN)
(NIR+GREEN)

Difference Vegetation Index (DVI) [35] (NIR− RED)

Optimized Soil Adjusted Vegetation Index (OSAVI) [36] (1 + 0.16)
(

(NIR−RED)
(NIR+RED+0.16)

)
Excess Green index (ExG) [37] 2× GREEN − RED− BLUE
Excess Red index (ExR) [38] 2× RED− GREEN
ExG − ExR [39] ExG − ExR
Normalized Difference Index (NDI) [40] (GREEN−RE)

(GREEN+RE)
Red-edge Normalized Difference Vegetation Index (NDRE) [41] (NIR−RED)

(NIR+RED)

Chlorophyll vegetation index (CVI) [42] NIR×
(

RED
GREEN2

)
Simple Ratio Red/Blue Iron Oxide (SRI) [43] RED/BLUE

MicaSense Altum multispectral central wavelengths: B, G, R, RE and NIR: 474, 560, 668, 717 and 840 nm.
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2.2.4. Spatial Analysis

The soil sample data were randomly split into training (70%) and validation data (30%).
Using a compiled set of spectral bands (1), spectral indices (2) and the DSM (3), multiple
models were developed using logic based algorithms available in the GEE platform [25] and
applied iteratively to four dataset stacks (spectral bands, spectral bands + DSM, spectral
indices, spectral indices + DSM). We used logic-based machine learning regression methods
to map soil properties, such as, decision tree (i.e., CART), Gradient boosting (XGBoost),
and random forest (RF) (Figure 4).
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Figure 4. Bagging/random forest example (left), boosting/XG-boost example (right).

CART is a non-parametric algorithm used for classification or regression analysis, with
the ability to suppress data noise, using a non-parametric regression method that adds a
set of decision trees in a binomial partition [44]. Additionally, regression trees replace the
missing data and manage the abnormal data, the hierarchical structure of classification
also allows model interactions between predictor variables [45]. However, it is not a stable
model in the sense that small changes in the input space can generate a completely different
tree. For this reason, CART is used as a base learner to construct more complex models
such as RF and XGBoost [46].

Random Forest [47] constructs multiple decision trees that are sampled independently
during training, typically improving classification by voting results compared to a single
decision tree model. The algorithm makes no assumptions about the data distribution; and
can handle scores and continuous variables simultaneously and has good nonlinear data
mining capabilities and generalization capabilities [48].

XGBoost is an improvement of the gradient boosting algorithm and has been widely
used in classification and regression analysis [49], with generally good accuracy. The
decision trees in XGBoost are trained sequentially with adjustments made from the error
of the previous tree, while in RF they are built in parallel and independently [46]. In
addition, it selects random subsets to fit individual predictors iteratively, in order to obtain
the minimized loss function and introduces the stochastic gradient boosting procedure,
which can reduce the risk of overfitting and improve the generalization of models with
regularization.

For random forest and XGBoost, we defined the number of generated decision trees of
100 leaving the other parameters by default; and for the other classifiers we used the default
configuration. A total of 120 models were built between the combination of predictors and
input data.

2.2.5. Model Validation and Accuracy Assessment

In order to evaluate the performance of the models developed, an accuracy assessment
was conducted to evaluate the performance of regression. The coefficient of determination
(R2), the Root Means Square Error (RMSE), and Mean Absolute Error (MAE) were used to
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compare the accuracy of different models. More specifically, the R2 was used to measure
the variation between the measured and predicted soil parameters evaluated; the RMSE
was used to assess the magnitude of error between the measurements and the predicted
soil parameter. MAE and RMSE express the average prediction error in units of the variable
of interest. Regarding validation metrics, the closer R2 is to 1, and the closer RMSE and
MAE are to 0, the better the model fit is considered. To select the best model, we used the
higher estimation accuracy, and the smaller error by soil parameter modeled.

R2 =
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)

2 (1)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (2)

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(3)

where n is the number of samples (individual plot) in the data set, yi is the measured soil
property, i is the predicted soil property based on the UAS imagery, and ŷi indicates the
average of the measured soil property.

Finally, we used variable importance metrics that consider that every time a split
of a node is made on a variable, the impurity criterion for the two descendent nodes is
less than the parent node and adding up the decreases for each individual variable over
all trees in the forest gives a fast variable importance that is often very consistent with
the permutation importance measure. That provided us with an additional means of
assessing how each predictor variable enabled accuracy improvements in the optimized
soil parameter prediction model, in terms of a normalized percentage contribution.

3. Results
3.1. Descriptive Statistics

The descriptive statistics of the soil properties analyzed are shown in Table 2. Lime,
Clay and Sand values ranged from 10.83 to 58.71%, with a balanced texture. The standard
deviation (SD) range from 4.45 to 8.46%, and the coefficient of variation (CV) range between
16.72 to 22.04% which indicate moderate variability according to the classification proposed
by Wilding and Drees [50].

Table 2. Descriptive statistics of soil Properties.

Soil Property Minimum Maximum Mean Median SD CV (%)

Lime (%) 27.42 58.71 38.08 37.35 6.24 16.72
Clay (%) 10.83 34.78 20.28 20.04 4.42 22.04
Sand (%) 22.58 56.46 41.64 42.30 8.46 20.01

EC (mS/m) 1.58 9.37 3.75 3.57 1.48 41.53
N (ppm) 0.07 0.23 0.12 0.11 0.02 21.06
P (ppm) 7.47 57.88 29.78 30.80 11.11 36.07
K (ppm) 57.88 335.42 107.16 97.80 45.29 46.31
OM (%) 1.48 4.57 2.31 2.29 0.48 21.06

Al (ppm) 0.27 9.46 4.27 4.32 2.56 59.23
pH 5.25 6.88 6.09 6.06 0.35 5.83

EC values in the entire study area varied greatly, ranging from 1.58 to 9.37 mS/m,
and the SD and CV were 1.48 mS/m and 41.53%, respectively. Al ranged from 0.27 to
9.46 ppm, and the SD and CV were 2.56% and 59.23%, respectively. K ranged from 57.88 to
335.42 ppm, and the SD and CV were 45.29 ppm and 59.23%, respectively. P ranged from
7.47 to 57.88 ppm, and the SD and CV were 11.11 ppm and 36.07%, respectively. These
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samples indicated high variability (CV > 35%) which may be attributed to random factors
such as environmental factors and measurement errors [51].

N values ranged from 0.07 to 0.23 ppm and the SD and CV were 0.02 ppm and 21.06%,
respectively. OM values ranged from 1.48 to 4.57% and CV were 0.48 ppm and 21.06%,
respectively; for both variables indicate a moderate variability.

Soil pH values in the entire study area varied from 5.25 to 6.88, with the mean and
median values of 6.09 and 6.06%, respectively, which indicate a low variability. The soil
properties in the entire study area were classified as acid.

3.2. Correlation Analysis between Predictors and Soil Properties

Figure 5 shows Pearson’s correlation coefficients (r), between soil properties and
predictors composed of spectral bands, spectral indices and the DSM obtained from the
Altum imagery calculated with the corrplot library [52], in R environment [53]. Over-
all, lime shows very low correlations (r = 0–0.19) with most predictors, low correlations
(r = 0.20–0.39) with NIR, LWIR; and moderate correlation (r = 0.4–0.59) with DSM. Clay
has negative moderated correlations with blue, red, LWIR bands, and NDWI, ExR and
NRE; and moderate positive correlations with most spectral indices. Sand shows moderate
correlation with LWIR band and high negative correlation (r = 0.6–0.79) with DSM. In
summary, textural soil properties expressed by contents of clay, sand and lime, show better
correlations with spectral indices and DSM than spectral bands.
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N shows low correlation with most spectral and indices bands, and moderate correla-
tion with ExR and ExG_ExR spectral indices. P presents very low and low correlations with
spectral bands and indices and moderate correlation with DSM, the spectral indices slightly
improve the correlation. K shows non-significant correlation with most predictors except a
low correlation with DSM. OM has low correlation for most spectral bands, spectral indices
and DSM, and a moderate correlation for ExR index. Al presents a very low correlation
with most predictors and a low correlation with DSM. EC shows non-significant correlation
with most predictors except a very low correlation with NIR, EVI and SRI index. pH shows
very low and low correlations with spectral bands and indices and moderate correlation
with DSM, the spectral indices slightly improve the correlation. Pearson’s correlation
coefficients reveal that in general, the predictors selected gave a poor relationship with soil
properties in the study area, spectral indices, and DSM used were better correlated with
soil properties than spectral bands.

3.3. Analysis of Modeling Results

The evaluation of the machine learning regression models in the training and valida-
tion datasets, response to a combination of predictors bands, spectral indices, and the DSM,
the results of accuracy are shown in Table 3.

Soil properties like clay, sand and phosphorus (P) present the highest accuracy (R2:
0.89 to 0.91) and smallest errors in RMSE (1.39 to 3.71) and MAE (0.29 to 1.20) when RF and
spectral indices (SI) were used together. Lime, nitrogen (N), organic matter (OM), electrical
conductivity (EC) and pH present high accuracy (0.81 to 0.92) and smaller errors, RMSE
(0.01 to 0.53) and MAE (0.03 to 6.18) when CART and SI are used together. The Al and K
content show better prediction accuracy if the DSM predictor is combined with SI (R2: 0.89,
0.88), minimizing the error RMSE (0.82, 18.36) and MAE (1.18, 0.001) through the CART
model. In general, the selected models had a satisfactory predictive capacity for all the
soil properties tested, with slight superiority of CART models combined with SI for Lime,
N, OM, EC and pH, and adding DSM is better for K and Al. RF combined with SI shows
better performance for clay, sand and P. XGBoost presents the worst performance for all the
soil properties evaluated.

3.4. Prediction Results and Relative Importance of the Predictors

Based on the previous results, we selected the best regression models and created
maps of the spatial quantitative distribution of each soil property in Figures 6–8. The maps
generated by the ten selected models show a gradient concentration of soil properties
from the north to south, and in general, the CART and RF models show similar spatial
distribution. The relative importance of the predictors (note that the importance value has
been converted to percentage) for the selected models with the highest accuracy and small
errors, are based on spectral indices, which revealed the similarities in the main predictors
in the for CART and RF models evaluated.
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Table 3. Evaluation of the prediction effects of the different models in predicting soil properties.

Algorithm Predictors
Training Validation

Lime Clay Sand N P K OM Al EC pH Lime Clay Sand N P K OM Al EC pH

R-square

CART

SB 0.60 0.52 0.51 0.23 0.45 −0.04 0.16 0.36 −0.14 0.26 0.46 0.49 0.61 0.54 0.46 0.01 0.41 0.28 0.01 0.39
SB.DSM 0.37 0.33 0.44 0.41 0.28 −0.23 0.43 0.24 0.03 0.19 0.25 0.35 0.40 0.50 0.29 0.01 0.46 0.12 −0.09 0.34

SI 0.92 0.88 0.89 0.82 0.83 0.55 0.81 0.91 0.89 0.90 0.89 0.86 0.76 0.84 0.89 0.72 0.84 0.88 0.86 0.87
SI.DSM 0.90 0.72 0.84 0.66 0.87 0.81 0.66 0.91 0.79 0.80 0.89 0.85 0.82 0.85 0.83 0.88 0.85 0.89 0.72 0.92

XGBoost

SB 0.40 0.42 0.43 0.34 0.37 0.20 0.34 0.35 0.21 0.33 0.32 0.41 0.42 0.26 0.37 0.15 0.26 0.35 0.20 0.34
SB.DSM 0.34 0.39 0.39 0.31 0.35 0.27 0.31 0.34 0.24 0.35 0.30 0.38 0.37 0.26 0.32 0.15 0.26 0.30 0.26 0.32

SI 0.54 0.53 0.54 0.41 0.53 0.39 0.41 0.54 0.53 0.50 0.50 0.51 0.50 0.30 0.52 0.29 0.30 0.52 0.53 0.50
SI.DSM 0.51 0.53 0.49 0.40 0.51 0.40 0.40 0.50 0.48 0.48 0.48 0.51 0.46 0.31 0.50 0.34 0.31 0.51 0.47 0.49

RF

SB 0.70 0.72 0.71 0.63 0.66 0.46 0.63 0.66 0.37 0.64 0.59 0.77 0.71 0.60 0.68 0.44 0.60 0.65 0.33 0.65
SB.DSM 0.66 0.68 0.72 0.60 0.63 0.52 0.60 0.63 0.43 0.64 0.56 0.74 0.67 0.59 0.61 0.45 0.59 0.55 0.42 0.65

SI 0.89 0.89 0.89 0.82 0.89 0.71 0.82 0.89 0.87 0.89 0.88 0.91 0.89 0.78 0.89 0.64 0.78 0.88 0.86 0.90
SI.DSM 0.85 0.85 0.87 0.75 0.83 0.71 0.75 0.83 0.76 0.84 0.82 0.87 0.84 0.74 0.82 0.65 0.74 0.81 0.77 0.86

RMSE

CART

SB 3.98 2.99 5.93 0.02 8.15 42.18 0.41 2.07 1.61 0.31 4.49 3.32 5.34 0.02 8.29 53.32 0.43 2.12 1.41 0.27
SB.DSM 4.98 3.54 6.32 0.02 9.37 45.84 0.34 2.25 1.49 0.32 5.28 3.74 6.60 0.02 9.52 53.79 0.41 2.35 1.48 0.28

SI 1.77 1.47 2.84 0.01 4.51 27.70 0.20 0.77 0.51 0.11 2.00 1.71 4.21 0.01 3.76 28.49 0.22 0.88 0.53 0.12
SI.DSM 2.03 2.29 3.34 0.01 3.99 18.02 0.26 0.76 0.69 0.16 2.05 1.77 3.66 0.01 4.58 18.36 0.22 0.82 0.75 0.10

XGBoost

SB 4.87 3.29 6.36 0.02 8.74 37.00 0.36 2.08 1.34 0.29 5.01 3.57 6.48 0.02 8.95 49.37 0.48 2.02 1.27 0.28
SB.DSM 5.11 3.38 6.58 0.02 8.87 35.40 0.37 2.10 1.31 0.29 5.09 3.64 6.77 0.02 9.28 49.39 0.48 2.09 1.21 0.28

SI 4.27 2.96 5.73 0.02 7.53 32.37 0.34 1.75 1.04 0.25 4.29 3.25 6.03 0.02 7.83 45.03 0.47 1.73 0.97 0.24
SI.DSM 4.40 2.97 6.01 0.02 7.69 32.03 0.35 1.82 1.09 0.26 4.40 3.23 6.26 0.02 7.97 43.55 0.46 1.75 1.03 0.24

RF

SB 3.44 2.30 4.56 0.01 6.42 30.34 0.27 1.50 1.20 0.22 3.92 2.22 4.62 0.02 6.42 40.19 0.35 1.48 1.16 0.20
SB.DSM 3.66 2.44 4.44 0.01 6.69 28.55 0.28 1.57 1.14 0.21 4.06 2.38 4.87 0.02 7.01 39.94 0.36 1.69 1.08 0.20

SI 2.07 1.41 2.78 0.01 3.68 22.19 0.19 0.87 0.55 0.12 2.13 1.39 2.82 0.01 3.71 32.12 0.26 0.88 0.53 0.11
SI.DSM 2.41 1.68 3.07 0.01 4.50 22.35 0.22 1.05 0.74 0.14 2.61 1.67 3.38 0.01 4.80 31.74 0.28 1.08 0.68 0.13
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Table 3. Cont.

Algorithm Predictors
Training Validation

Lime Clay Sand N P K OM Al EC pH Lime Clay Sand N P K OM Al EC pH

MAE

CART

SB 1.04 1.50 0.71 17.92 1.65 0.01 0.19 3.89 0.16 2.90 1.07 1.65 0.61 23.21 2.08 0.01 0.20 4.10 0.14 2.56
SB.DSM 1.13 1.90 0.68 19.94 2.46 0.01 0.16 4.95 0.17 3.38 1.15 1.96 0.76 24.20 2.69 0.01 0.19 5.25 0.15 3.67

SI 0.18 0.39 0.13 5.36 0.40 0.001 0.05 1.30 0.03 0.73 0.21 0.47 0.15 6.18 0.40 0.00 0.04 0.88 0.03 1.09
SI.DSM 0.21 0.87 0.22 3.51 0.46 0.001 0.09 1.15 0.05 0.89 0.20 0.70 0.22 3.32 0.44 0.00 0.08 1.18 0.03 0.90

XGBoost

SB 1.60 2.55 0.88 21.95 3.65 0.01 0.24 6.55 0.22 5.27 1.53 2.82 0.83 26.68 3.66 0.01 0.29 6.79 0.21 5.40
SB.DSM 1.60 2.58 0.87 21.37 3.78 0.01 0.25 6.71 0.22 5.41 1.59 2.87 0.82 26.89 3.78 0.01 0.29 7.14 0.21 5.63

SI 1.34 2.21 0.70 18.79 3.19 0.01 0.22 5.65 0.19 4.67 1.31 2.49 0.65 23.14 3.19 0.01 0.27 5.92 0.18 5.01
SI.DSM 1.37 2.23 0.72 18.69 3.22 0.01 0.22 5.85 0.19 4.83 1.32 2.47 0.67 23.36 3.20 0.01 0.27 6.14 0.18 5.08

RF

SB 1.01 1.54 0.68 16.94 2.29 0.01 0.16 4.13 0.14 2.98 0.98 1.55 0.67 21.04 2.51 0.01 0.19 4.29 0.14 2.91
SB.DSM 1.05 1.64 0.67 17.14 2.39 0.01 0.17 4.48 0.14 2.95 1.08 1.68 0.65 21.38 2.58 0.01 0.20 4.83 0.14 3.24

SI 0.53 0.86 0.31 10.06 1.20 0.00 0.10 2.15 0.07 1.58 0.53 0.89 0.29 12.84 1.17 0.01 0.12 2.26 0.07 1.60
SI.DSM 0.69 1.10 0.42 11.92 1.56 0.01 0.13 2.90 0.10 1.84 0.70 1.14 0.40 15.40 1.67 0.01 0.15 3.15 0.09 2.10

SB: Spectral bands (blue, green, red, red edge, nir, lwir), SI: Spectral indices (NDVI, EVI, NDWI, SAVI, GNDVI, DVI, OSAVI, ExG, ExR, ExG-ExR, NDI, NDRE, CVI, SRI), DSM: Digital
surface model.
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The SRI index was the main explanatory predictor for most models (already 10% of the
total relative importance), except for K and Al; for which the DSM is the main explanatory
predictor. For lime, clay and sand the predictors ExG, GNDVI, NDWI, NRE and EVI,
showed different hierarchical characteristics in the first four explanatory predictors, and
the maps for clay and sand show an opposite density distribution, due to the location of
the study area in an alluvial fan. For N and P, the spectral indices are the most important
variables, but not for K and Al, for which the second variable importance is still SRI. OM
has GNDVI and EXG_ExR and NDWI, as the first four important variables. These results
are similar for EC and pH. The major importance of predictors for all properties was not
consistent with the Pearson correlation results.
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4. Discussion

The sustainable intensification of agriculture will be necessary to meet the growing
global demand for food and while conventional agricultural intensification can lead to
negative environmental impacts, sustainable intensification, which includes optimal water,
soil, and crop management, as well as integrated crop-livestock management, can increase
yields while reducing environmental impacts [54,55]. Although most studies using UAVs
have focused on monitoring crops based on vegetation parameters and phenology [56],
our results showed that is feasible to use UAV-based multispectral imagery in an effective
way to predict soil properties for agricultural lands, using open-access GEE platform
through regression models using machine learning as Random Forests, CART and XGBoost
without having to purchase or download a software [20,57]. Although the use of GEE is
time-consuming in data preparation [58], the training phase and model construction is
faster than traditional computing methods for UAV-based imagery [59]. Raster datasets are
easily processed in parallel by subdividing an area into tiles [25], additionally the physical
resources needed are smaller.

Considering the low temporal variation of soil properties, we designed the study in
the dry season in order to avoid any potential pitfalls caused by the weather and potential
confusion introduced by soil moisture.

We contribute to prior work on UAV-derived measurements of soil physical and
chemical characteristics, yet we compute significantly more metrics than prior work has
accomplished. For instance, prior studies have extracted variables such as sand, silt, clay,
cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen [23], organic matter
content [20], clay content [21], and soil moisture content [22]. However, none of these prior
studies attempted to conduct a full-spectrum assessment of the spatial characteristics of
both physical and chemical soil properties as conducted in this work.

Considering the correlograms and performance of the extracted bands and calculated
spectral indices (Figure 4), in some cases it is common to find a negative R-square when the
model performs worse than the mean of the observations as predictors [60,61], however
the use of spectral indices as predictors improve the correlations with soil properties.
These results can be attributed mainly to the presence of typical absorption features for
soil organic matter in the VIS and NIR spectral regions, respectively [17]. Bogrekci and
Lee [62], reported monitoring systems to detect phosphorus in soil using diffuse reflectance
spectroscopy in the ultraviolet (UV), VIS, and NIR regions. Similarly, available phosphorus
was detected in the range of 300–700 nm [63]. Soil organic matter is better correlated with
spectral indices, likely given that the spectral regions of vegetation indices were more
sensitive to changes in soil organic carbon and clay than the other indices [44]. The addition
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of three-dimensional data (such as the DSM) improves correlations for soil properties,
likely because this predictor is related to soil variability and depends on the morphology of
the landscape, regularly used in soil mapping because of the critical role that landscape
morphology plays in soil formation [64].

Since machine learning models do not require an assumption of normality [65], data
transformations were not performed for the model used in this work, and RF is considered
a method that reduces the uncertainty of CART, because RF averages a group of fully grown
trees, and work for a large collection of de-correlated, noisy, approximately unbiased trees
are built, the average of the trees reduce the model variance and the uncertainty, and was
used on mapping soils [58,66,67].

However, some studies showed that CART has better performance for pH, compared
with RF [60,68]. When the interpretability of the resulting model is important for the user,
logical-based machine learning models are more appropriate, as they do not function as
“black boxes” [69], and the main advantage is that the former provides an estimate of the
relative importance of the predictors in the model, and avoids the elimination of predictive
covariates that may be relevant for soil, even if there are correlations between them [70].
Furthermore, it is necessary to consider that differences in soil condition, particularly
moisture, have a significant effect on the composition and amount of reflected and emitted
energy from a soil surface, which reduces the reflectance over the entire spectrum [71].
Moreover, several factors including soil roughness, crop residues, and tillage can generate
variability in soil structure and further complicate reflectance values collected from close-
range remote sensing [72].

In addition, it is also important to map the spatial error at the pixel level, more than
just show a statistical metric as RMSE [73], but is mandatory a systematic sampling that
can capture the spatial variability at a small scale, but this detailed soil survey should be
expensive in time and cost [74].

Although our results show that the combination of multiple spectral indices, and
topography can effectively predict soil properties, further improvements are still necessary.
Specifically, given that field-sampled values of soil fertility properties such as N, P and
K can change significantly both within and between every crop season as a function of
variability in soil treatments. In order to reduce the uncertainty and improve the prediction
accuracy of similar prediction modeling, it would be necessary to make continuous field
soil evaluations to capture the spatial variability in these soil properties over short time
periods.

5. Conclusions

Our work contributes to the current cutting-edge science highlighting the benefits
of using high-resolution imagery collected using multispectral sensors onboard UAVs for
precision agriculture and highly detailed soil information systems. We demonstrated how
machine learning algorithms computed in the cloud using Google Earth Engine can be a
solution to make processing more accessible without the use of physical servers, for predict-
ing soil properties at a detailed level with satisfactory results. We found that UAV-derived
multispectral indices can improve soil properties prediction when combined with digital
surface models constructed from UAV imagery and that the most significant predictors are
SRI, GNDWI, NDWI, and ExG. Lastly, by comparing three machine learning techniques
(CART, RF, and XGBoost), we demonstrated that CART models perform better and are
more spatially consistent than RF and XGBoost models for most of the soil properties we
investigated. These results suggest that the application of machine learning algorithms
with ground-truth data augmentation is effective in the spatial estimation of soil properties
using UAV-based multispectral imagery and can contribute to more efficient and effective
crop and agricultural field management.



Remote Sens. 2023, 15, 3203 18 of 21

Author Contributions: S.P. and C.C. designed the methodology; J.V., M.Q. and H.L. provided and
validated field data, J.V. and L.A. (Lino Achallma) collected soil samples and prepare test reports,
L.A. (Lidiana Alejandro) and I.G. performed laboratory analyses for all physicochemical parameters;
S.P., C.C. and D.F. performed the data processing; S.P. and C.C analyzed the data; W.S., J.C. and C.I.A.
funding acquisition, S.P., N.G.P., D.F., C.C. and M.Q. wrote the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the following two projects “Mejoramiento de los servicios de
investigación y transferencia tecnológica en el manejo y recuperación de suelos agrícolas degradados
y aguas para riego en la pequeña y mediana agricultura en los departamentos de Lima, Áncash, San
Martín, Cajamarca, Lambayeque, Junín, Ayacucho, Arequipa, Puno y Ucayali” CUI 2487112 and
“Creación del servicio de agricultura de precisión en los Departamentos de Lambayeque, Huancavel-
ica, Ucayali y San Martín 4 Departamentos” CUI 2449640 of the Ministry of Agrarian Development
and Irrigation (MIDAGRI) of the Peruvian Government.

Data Availability Statement: The data presented in this study are openly available in Dataverse at
https://doi.org/10.21223/PKPXQF.

Acknowledgments: Santa Ana’s LABSAF and AGPRES teams for providing infrastructure and
equipment for the soil data collection and laboratory analysis. We thank STC project “Precision
agriculture: determination of aerial biomass and yield of corn (Zea mays) and wheat (Triticum
aestivum) crop using machine learning applied to unmanned aerial vehicle images”. C.I.A. thanks
Vicerrectorado de Investigación of UNTRM.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sona, G.; Passoni, D.; Pinto, L.; Pagliari, D.; Masseroni, D.; Ortuani, B.; Facchi, A. UAV Multispectral Survey to Map Soil and

Crop for Precision Farming Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, 2016, 1023–1029.
[CrossRef]

2. Porta, J.; López, M.; Roquero, C. Edafología Para La Agricultura y El Medio Ambiente; Ediciones Mundi-Prensa: Madrid, Spain, 2003.
3. Corwin, D.L.; Lesch, S.M.; Shouse, P.J.; Soppe, R.; Ayars, J.E. Identifying Soil Properties That Influence Cotton Yield Using Soil

Sampling Directed. Agron. J. 2003, 95, 352–364. [CrossRef]
4. Srinet, R.; Nandy, S.; Padalia, H.; Ghosh, S.; Watham, T.; Patel, N.R.; Chauhan, P. Mapping Plant Functional Types in Northwest

Himalayan Foothills of India Using Random Forest Algorithm in Google Earth Engine. Int. J. Remote Sens. 2020, 41, 7296–7309.
[CrossRef]

5. Das, B.S.; Sarathjith, M.C.; Santra, P.; Sahoo, R.N.; Srivastava, R.; Routray, A.; Ray, S.S. Hyperspectral Remote Sensing: Opportuni-
ties, Status and Challenges for Rapid Soil Assessment in India. Curr. Sci. 2015, 108, 860–868.

6. McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [CrossRef]
7. Wang, D.; Wan, B.; Liu, J.; Su, Y.; Guo, Q.; Qiu, P.; Wu, X. Estimating Aboveground Biomass of the Mangrove Forests on Northeast

Hainan Island in China Using an Upscaling Method from Field Plots, UAV-LiDAR Data and Sentinel-2 Imagery. Int. J. Appl. Earth
Obs. Geoinf. 2020, 85, 101986. [CrossRef]

8. Deery, D.M.; Rebetzke, G.J.; Jimenez-Berni, J.A.; James, R.A.; Condon, A.G.; Bovill, W.D.; Hutchinson, P.; Scarrow, J.; Davy, R.;
Furbank, R.T. Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography.
Front. Plant Sci. 2016, 7, 1808. [CrossRef]

9. Prashar, A.; Jones, H.G. Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping. Agronomy 2014, 4, 397–417.
[CrossRef]

10. Jindo, K.; Teklu, M.G.; van Boheeman, K.; Njehia, N.S.; Narabu, T.; Kempenaar, C.; Molendijk, L.P.G.; Schepel, E.; Been, T.H.
Unmanned Aerial Vehicle (UAV) for Detection and Prediction of Damage Caused by Potato Cyst Nematode G. Pallida on Selected
Potato Cultivars. Remote Sens. 2023, 15, 1429. [CrossRef]

11. Luo, L.; Chang, Q.; Wang, Q.; Huang, Y. Identification and Severity Monitoring of Maize Dwarf Mosaic Virus Infection Based on
Hyperspectral Measurements. Remote Sens. 2021, 13, 4560. [CrossRef]

12. Cheng, M.; Jiao, X.; Shi, L.; Penuelas, J.; Kumar, L.; Nie, C.; Wu, T.; Liu, K.; Wu, W.; Jin, X. High-Resolution Crop Yield and Water
Productivity Dataset Generated Using Random Forest and Remote Sensing. Sci. Data 2022, 9, 641. [CrossRef] [PubMed]

13. Zhang, W.; Wang, K.; Chen, H.; He, X.; Zhang, J. Ancillary Information Improves Kriging on Soil Organic Carbon Data for a
Typical Karst Peak Cluster Depression Landscape. J. Sci. Food Agric. 2012, 92, 1094–1102. [CrossRef]

14. Zhang, Y.; Han, W.; Zhang, H.; Niu, X.; Shao, G. Evaluating Soil Moisture Content under Maize Coverage Using UAV Multimodal
Data by Machine Learning Algorithms. J. Hydrol. 2023, 617, 129086. [CrossRef]

15. Heil, J.; Jörges, C.; Stumpe, B. Fine-Scale Mapping of Soil Organic Matter in Agricultural Soils Using UAVs and Machine Learning.
Remote Sens. 2022, 14, 3349. [CrossRef]

https://doi.org/10.21223/PKPXQF
https://doi.org/10.5194/isprs-archives-XLI-B1-1023-2016
https://doi.org/10.2134/agronj2003.3520
https://doi.org/10.1080/01431161.2020.1766147
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1016/j.jag.2019.101986
https://doi.org/10.3389/fpls.2016.01808
https://doi.org/10.3390/agronomy4030397
https://doi.org/10.3390/rs15051429
https://doi.org/10.3390/rs13224560
https://doi.org/10.1038/s41597-022-01761-0
https://www.ncbi.nlm.nih.gov/pubmed/36271097
https://doi.org/10.1002/jsfa.5593
https://doi.org/10.1016/j.jhydrol.2023.129086
https://doi.org/10.3390/rs14143349


Remote Sens. 2023, 15, 3203 19 of 21

16. Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors,
Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [CrossRef]

17. Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near Infrared, Mid Infrared or
Combined Diffuse Reflectance Spectroscopy for Simultaneous Assessment of Various Soil Properties. Geoderma 2006, 131, 59–75.
[CrossRef]

18. Francos, N.; Romano, N.; Nasta, P.; Zeng, Y.; Szabó, B.; Manfreda, S.; Ciraolo, G.; Mészáros, J.; Zhuang, R.; Su, B.; et al. Mapping
Water Infiltration Rate Using Ground and Uav Hyperspectral Data: A Case Study of Alento, Italy. Remote Sens. 2021, 13, 2606.
[CrossRef]

19. Hassan-Esfahani, L. High Resolution Multi-Spectral Imagery and Learning Machines in Precision Irrigation Water Management; Utah
State University: Logan, UT, USA, 2015; p. 153.

20. Zhou, J.; Xu, Y.; Gu, X.; Chen, T.; Sun, Q.; Zhang, S.; Pan, Y. High-Precision Mapping of Soil Organic Matter Based on UAV
Imagery Using Machine Learning Algorithms. Drones 2023, 7, 290. [CrossRef]

21. Shabou, M.; Mougenot, B.; Chabaane, Z.L.; Walter, C.; Boulet, G.; Aissa, N.B.; Zribi, M. Soil Clay Content Mapping Using a Time
Series of Landsat TM Data in Semi-Arid Lands. Remote Sens. 2015, 7, 6059–6078. [CrossRef]

22. Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B.
Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990.
[CrossRef]

23. Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables
in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017,
12, e0170478. [CrossRef]

24. Keskin, H.; Grunwald, S. Regression Kriging as a Workhorse in the Digital Soil Mapper’s Toolbox. Geoderma 2018, 326, 22–41.
[CrossRef]

25. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial
Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

26. Instituto Geofísico del Perú. Atlas Climático de Precipitación y Temperatura Del Aire En La Cuenca Del Río Mantaro; Fondo Editorial
del Consejo Nacional del Ambiente—CONAM, Ed.; Instituto Geofísico del Perú: Lima, Perú, 2005.

27. Brus, D.J.; Kempen, B.; Heuvelink, G.B.M. Sampling for Validation of Digital Soil Maps. Eur. J. Soil Sci. 2011, 62, 394–407.
[CrossRef]

28. US Environmental Protection Agency Method 9045D Soil and Waste PH. 2004.
29. International Standard Organisation (ISO). Soil Quality: Determination of the Specific Electrical Conductivity. 1996. Available

online: https://www.iso.org/standard/19243.html (accessed on 10 May 2023).
30. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Norma Oficial Mexicana NOM-021-RECNAT-2000. 2002.

Available online: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf (accessed on 10 May 2023).
31. Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the

Third Earth Resources Technology Satellite Symposium, Washington, DC, USA, 10–14 December 1974; Volume 351, p. 309.
32. Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ.

1994, 48, 119–126. [CrossRef]
33. McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J.

Remote Sens. 1996, 17, 1425–1432. [CrossRef]
34. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS- MODIS.

Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]
35. Richardson, A.J.; Everitt, J.H. Using Spectral Vegetation Indices to Estimate Rangeland Productivity. Geocarto Int. 1992, 7, 63–69.

[CrossRef]
36. Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107.

[CrossRef]
37. Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification under Various Soil, Residue,

and Lighting Conditions. Trans. Am. Soc. Agric. Eng. 1995, 38, 259–269. [CrossRef]
38. Hindman, T.; Meyer, G.E. Machine Vision Detection Parameters for Plant Species Identification. Syst. Eng. 1998, 3543, 327–335.
39. Meyer, G.E.; Neto, J.C. Verification of Color Vegetation Indices for Automated Crop Imaging Applications. Comput. Electron.

Agric. 2008, 63, 282–293. [CrossRef]
40. Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [CrossRef]
41. Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L.

and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292.
[CrossRef]

42. Vincini, M.; Frazzi, E.; D’Alessio, P. A Broad-Band Leaf Chlorophyll Vegetation Index at the Canopy Scale. Precis. Agric. 2008, 9,
303–319. [CrossRef]

43. Hewson, R.D.; Cudahy, T.J.; Huntington, J.F. Geologic and Alteration Mapping at Mt Fitton, South Australia, Using ASTER
Satellite-Borne Data. Int. Geosci. Remote Sens. Symp. 2001, 2, 724–726. [CrossRef]

https://doi.org/10.3390/rs9111110
https://doi.org/10.1016/j.geoderma.2005.03.007
https://doi.org/10.3390/rs13132606
https://doi.org/10.3390/drones7050290
https://doi.org/10.3390/rs70506059
https://doi.org/10.3390/rs70302971
https://doi.org/10.1371/journal.pone.0170478
https://doi.org/10.1016/j.geoderma.2018.04.004
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1111/j.1365-2389.2011.01364.x
https://www.iso.org/standard/19243.html
http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1080/10106049209354353
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.13031/2013.27838
https://doi.org/10.1016/j.compag.2008.03.009
https://doi.org/10.1080/02757259509532298
https://doi.org/10.1016/S0176-1617(11)81633-0
https://doi.org/10.1007/s11119-008-9075-z
https://doi.org/10.1109/igarss.2001.976615


Remote Sens. 2023, 15, 3203 20 of 21

44. Jin, X.; Du, J.; Liu, H.; Wang, Z.; Song, K. Remote Estimation of Soil Organic Matter Content in the Sanjiang Plain, Northest China:
The Optimal Band Algorithm versus the GRA-ANN Model. Agric. For. Meteorol. 2016, 218–219, 250–260. [CrossRef]

45. Schuler, U.; Herrmann, L.; Ingwersen, J.; Erbe, P.; Stahr, K. Comparing Mapping Approaches at Subcatchment Scale in Northern
Thailand with Emphasis on the Maximum Likelihood Approach. Catena 2010, 81, 137–171. [CrossRef]

46. Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A Review of Machine Learning Applications
in Wildfire Science and Management. Environ. Rev. 2020, 28, 478–505. [CrossRef]

47. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
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