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Abstract: This paper addresses the problem of tracking multiple extended targets in three-dimensional
space. We propose the Gaussian process Gaussian mixture probability hypothesis density (GP-PHD)
filter, which is capable of tracking multiple extended targets with complex shapes in the presence of
clutter. Our approach combines the Gaussian process regression measurement model with the proba-
bility hypothesis density filter to estimate both the kinematic state and the shape of the targets. The
shape of the extended target is described by a 3D radial function and is estimated recursively using
the Gaussian process regression model. Furthermore, we transform the recursive Gaussian process
regression problem into a state estimation problem by deriving a state space model such that the
estimation of the extent can be integrated into the kinematic part. We derive the predicted likelihood
function of the PHD filter and provide a closed-form Gaussian mixture implementation. To evaluate
the performance of the proposed filter, we simulate a typical extended target tracking scenario and
compare the GP-PHD filter with the traditional Gamma Gaussian Inverse-Wishart PHD (GGIW-PHD)
filter. Our results demonstrate that the proposed algorithm outperforms the GGIW-PHD filter in
terms of estimating both kinematic states and shape. We also investigate the impact of the measure-
ment rates on both filters; it is observed that the proposed filter exhibits robustness across various
measurement rates, while the GGIW-PHD filter suffers under low-measurement-rate conditions.

Keywords: extended target tracking; PHD filter; Gaussian process regression

1. Introduction

The tracking of moving targets within surveillance areas plays a crucial role in various
fields such as automotive driving and robotic systems [1]. With the increasing demand for
accurate tracking, high-resolution sensors such as Radar and Lidar have gained significant
importance. In traditional tracking scenarios, e.g., air traffic control, each target produces
at most one detection. However, in many recent applications, such as autonomous driving,
this is not the case, because the resolution of the sensor is high enough that the detected
object may occupy multiple resolution cells and thus generate multiple measurements. In
the literature [2], such scenarios are defined as the extended object tracking (EOT) problem,
which is also referred to as the extended target tracking (ETT) problem. In the ETT problem,
the shape of the target is not negligible, requiring the tracking algorithm to estimate both
its shape and kinematic states. Moreover, the data association and the track management
in the ETT problem are far more complicated than in the point target tracking scenario.
The ETT has become a key problem in the automotive system. Given its importance in
automotive systems, extensive research has been conducted on the ETT problem, utilizing
the random finite set (RFS) theory and nonlinear estimation methods [3–6]. Recently, deep
learning-based methods have also been proposed to address the ETT problem [7,8]. A
comprehensive tutorial for the ETT problem is given in [1].
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The ETT problem can be divided into two parts: the non-point target measurement
model and the multiple-target tracking (MTT) problem. Some commonly used non-point
target measurement models are the random matrix (RM) [9,10] model and the random
hypersurface model (RHM) [11]. The RM model, first introduced in [9], assumes that the
measurements of extended targets are distributed over the entire ellipse surface, following a
spatial Gaussian distribution. A semi-positive definite (SPD) matrix is employed to describe
the contours of the ellipse. However, the original RM model neglects the measurement
errors caused by the sensor, which can accumulate and lead to an overestimation of the
object’s shape. To address this limitation, Koch enhances the measurement model in [10]
by taking the measurement error into account. In addition, the interacting multiple model
(IMM) is integrated into the RM model, enabling the filter to track maneuvering targets.
Further investigation into the IMM model’s utilization for maneuvering extended target
tracking is presented in [12]. A joint detection, tracking, and classification (JDTC) approach
for multiple extended objects is proposed in [13]. This also uses an RM to model the
ellipse. In many situations, it is not accurate enough to model the target as an ellipse.
Therefore, Lan [14] proposes an approach that uses multiple sub-ellipses to model the
extended targets with complex shapes. Another common method assumes that extended
targets are star-convex and use the RHM to derive the measurement model. RHM-based
methods assume that the measurement sources have certain spatial distributions and are
located on differently scaled inner surfaces of the target. The implicit measurement model
is then updated with a non-linear filter such as an extended Kalman filter (EKF). Based
on the RHM, the radial function is introduced in [15] to explicitly describe the surface of
the non-point target, and the Fourier series expansion is used to approximate the radial
function. Sun et al. [16] propose a filter to track number-variable maneuvering extended
targets using the RHM and the IMM. The B-spline model is another approach to modeling
star-convex targets and is first introduced by [17]. Compared to the RHM and the RM
model, the B-spline model is capable of describing arbitrary shape extended targets using
the control points on the B-spline. In [18], the B-spline model is used under the Poisson
multi-Bernoulli mixture (PMBM) filter framework to track non-ellipsoidal targets. The
B-spline model is also used to track elongated targets such as trains and pedestrians [19].
The Gaussian process (GP) has been widely used in machine learning and other fields
because of its easy-to-compute posterior probability and excellent analytical properties [20].
It is first proposed in [21] to use the GP regression to estimate the radial function. The GP
model can describe arbitrary shaped extended targets and is computationally more efficient
than the B-spline model. At the same time, the estimation of the target shape is more
accurate than the ellipse approximation models. A new temporal covariance kernel for GP
regression is proposed in [22] that could improve the accuracy of object shape estimation.
The dependency of connected extended targets is utilized in [23] and the GP model is used
to estimate the shape of the extended target.

The MTT problem is challenging due to the track associations, miss detections, etc.
However, the RFS theory [24] proposed by Mahler provides a rigorous treatment of the
MTT. Their method is completely free of explicit data associations, unlike traditional MTT
techniques such as the joint probabilistic data association (JPDA) filter and the multiple
hypothesis tracker (MHT). Furthermore, with the improvement of hardware [25–28], it
is possible to employ algorithms based on the RFS theory. The optimal Bayesian filter
derived from the RFS theory involves high-dimensional integrals. Therefore, Mahler
proposes several theoretical approximation methods, such as the PHD filter [29] and the
MB filter [24]. Among these methods, the PHD filter stands out as the most computationally
efficient and memory-friendly, making it a practical choice given current computational
resources. The first attempt to address the ETT problem within the framework of the
PHD filter is proposed by [2]. A Gaussian mixture implementation of [2] is given in [30]
called the extended target Gaussian mixture PHD filter (ET-GM-PHD). Nonetheless, both
methods in [2,30] only estimate the kinematic states of the target and omit the shape which
contains crucial information about the target. In [31], the RM approach is first used in the
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PHD framework to estimate the shape of an unknown number of extended targets in the
presence of clutter and miss detections. Granström [32] further considers target spawning
and combination and proposes the GGIW-PHD filter, which is the state-of-the-art ETT
tracker and has been successfully tested in a real marine surveillance scenario [33].

Although 3D data, generated by sensors such as depth cameras and Lidars, are
becoming increasingly accessible, there have been few attempts to address the ETT problem
in 3D space. The relationship between the ellipse and symmetrical SPD matrix is analyzed
and the ellipse fitting approach (EFA) is proposed [34]. In [35], a generalization of the
RHM to 3D space is proposed; however, only cylinder targets are suitable for this method.
Current approaches for 3D ETT usually use simple geometries such as cylinders and ellipses
and are not able to model complexly shaped extended targets. The GP model approach to
tracking 3D targets is proposed in [36,37], but it only considers the single-target situation.
Therefore, to solve the 3D ETT problem, the combination of a complex-target model and
multiple-target tracking filters, such as the PHD filter, is required.

In this paper, we propose a method that uses a 3D radial function to describe the
shape of the target. The GP regression model is adopted to estimate the value of the
radial function. We transform the regression problem into a state estimation problem. This
approach allows us to use the Bayesian filter paradigm to estimate the unknown shape of
the target and can be integrated into the kinematic estimation process. The computationally
efficient PHD filter is combined with the measurement model to track an unknown number
of extended targets in the presence of clutter. The kinematic states and the shape are then
inferred by the EKF. The proposed filter is capable of tracking multiple extended targets
with complex shapes in the presence of clutter. To demonstrate the performance of the
algorithms, we simulate point cloud measurements in MATLAB for two dynamic objects
with different shapes in the presence of clutter. We evaluate the performance of the filter
using both the optimal sub-pattern assignment (OSPA) [38] and the intersection-over-union
(IoU) value. The proposed method outperforms the traditional GGIW-PHD filter in the
simulation experiment. We also test the stability of the two filters at different measurement
rates. It is shown that the proposed filter performs better than the GGIW-PHD filter under
low-measurement-rate conditions.

2. Materials and Methods
2.1. Extended Target Tracking Problem Formulation

In the multiple extended target tracking problem, the states of extended targets at time
k can be represented by an RFS:

Xk =
{

ξ i
k

}Nx,k

i=1
∈ F (X), (1)

where Nx,k is the number of unknown targets, ξ i
k is the kinematic and extent states of the

ith extended target, and F (X) is the multiple targets’ state space. We use operation | · | to
denote the cardinality of a set, and then |Xk| = Nx,k. Measurements at time k can also be

represented by an RFS Zk =
{

z(j)
k

}Nz,k

j=1
, where Nz,k is the number of measurements. The

ETT problem is to estimate the posterior density πk(Xk|Z1:k) of the target’s state using
measurements Z1:k = {Z1, · · · , Zk} from time 1 to k.

2.2. The PHD Filter

The multi-target Bayesian filter based on RFS theory includes the prediction and the
update process. According to the Chapman–Kolmogorov equation, the posterior density at
time k is

πk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|Xk−1)πk−1(Xk−1|Z1:k−1)δXk−1, (2)
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where fk|k−1(Xk|Xk−1) is the probability transition density. Given the predicted density and
measurements, the updated density at time k is

πk(Xk|Z1:k) =
gk(Zk|Xk)πk−1(Xk−1|Z1:k−1)∫
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)δXk

, (3)

where gk(Zk|Xk) is the likelihood density of the measurements. There is no closed solution
to Equation (3) that involves high-dimensional integral. The PHD filter is an approximation
of the optimal Bayesian filter that estimates multiple target states by passing the first
moment of the multi-object probability density, or PHD. The PHD can be calculated by
multi-object density

D(x) =
∫

π({x} ∪ X)δX. (4)

The PHD filter contains a prediction and an update process to estimate the density
Dk+1|k+1(·) of the target’s RFS Xk. The prediction equation of the extended target PHD
filter is given in [2] as

Dk+1|k(ξk+1) =
∫

ps(ξk)pk+1|k(ξk+1|ξk)Dk|k(ξk)dξk + Db
k+1(ξk+1), (5)

where ps(·) is the survival probability, pk+1|k(ξk+1|ξk) is the state transition density and
Db

k+1(ξk+1) is the birth PHD. The update equation for the extended target PHD filter is
given as follows

Dk|k(ξk|Zk) = LZk (ξk)Dk|k−1(ξk|Zk−1), (6)

where LZk (·) is the pseudo-measurement likelihood function. LZk (·) is given as follows

LZk (ξk) ,(1− e−γ(ξk))pD(ξk)

+e−γ(ξk)pD(ξk) ∑
P∠Zk

ωP ∑
W∈P

γ(ξk)
|W|

dW
∏

zk∈W

φzk (ξk)

λkck(zk)
, (7)

where

• γ(ξk) is the expected number of measurements from targets;
• pD(ξk) is the probability of detection;
• ck(zk) is the spatial distribution of clutter over the surveillance area;
• φzk (ξk) is the single-target measurement likelihood function;
• P∠Z denotes that P partitions the measurement set Zk into different nonempty mea-

surement cells W. W ∈ P denotes that the cell W is in partition P .

dW and L(j,W)
k are non-negative coefficients. We use δ denoting the Kronecker delta

function, and the coefficients are given as follows

wP =
∏W∈P dW

∑P ′∠Zk ∏W′∈P ′ dW′
, (8)

dW = δ|W|,1 + Dk+1|k

[
pdγ

|W|
k exp(−γk) ∏

zk∈W

φzk (·)
λkck(zk)

]
. (9)

3. Gaussian Process Regression Measurement Model

The Gaussian process has been widely used in tasks such as classification and regres-
sion. A Gaussian process f (u) can be defined by its mean function µ(u) and the correlation
function C(u, u′), which are given as

µ(u) = E[ f (u)], (10)
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C(u, u′) = E
[
( f (u)− µ(u))( f (u′)− µ(u′))T

]
. (11)

Therefore, the GP f (u) can be denoted as

f (u) ∼ GP(µ(u), C(u, u′)). (12)

The Gaussian process could be regarded as the generalization in the infinite dimension
of a joint Gaussian distribution, and so the function values of N input u1 · · · uN are Gaussian
distributed as  f (u1)

...
f (uN)

 ∼ N (µ, K), (13)

where

µ =

µ(u1)
...

µ(uN)

, K =

C(u1, u1) · · · C(u1, uN)
...

...
C(uN , u1) · · · C(uN , uN)

. (14)

We assume that a training set is given, whose input is u = [u1, · · · , uN ]
T and output is

z = [z1 · · · , zN ]
T . The measurement model of the training set is

zk = f (uk) + ek, ek ∼ N (0, R). (15)

The Gaussian process regression is used to estimate the output f = [ f (uf
1), · · · f (uf

N)]
T

of some given test set inputs uf = [uf
1, · · · , uf

N ]
T

. The training set, together with the
measurement model, leads to the following distribution[

z
f

]
∼ N

(
0,
[

K(u, u) + IN ⊗R K(u, uf)
K(uf, u) K(uf, uf)

])
. (16)

The conditional distribution of the joint Gaussian distribution is still a Gaussian
distribution that gives

p(f|z) = N (Az, P), (17)

where
A = K(uf, u)Ky, (18)

P = K(uf, uf)−K(uf, u)K−1
y K(u, uf), (19)

Ky = K(u, u) + IN ⊗R. (20)

The measurements are collected recursively rather than in the batch form in the
multiple-target tracking problem, and so the Gaussian process regression needs to be
improved in order to estimate the output of the test set recursively. Ref. [39] introduces
basis points which are considered to be the inputs of the training set. This article adopts
the same approach as [39], where a state-space model is also introduced to estimate the
output recursively. uf = [uf

1, · · · , uf
N ]

T
and xf

k denote the input and the output of the test
set, respectively, and so the state-space model is

xf
k+1 = xf

k, (21)

zk = Hf(uk)x
f
k + ef

k, ef
k ∼ N

(
0, Rf(uk)

)
, (22)
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where zk is the measurement at time k. We assume xf is sufficient statistics for zk. Under
this assumption

p(zk|xf, z1:k−1) ≈ p(zk|xf), (23)

the recursive optimal Bayesian filter gives the posterior probability density function (PDF)
p(xf|z1:k) as

p(xf|z1:k) ∝ p(zk|xf, z1:k−1)p(xf|z1:k−1)

≈ p(zk|xf)p(xf|z1:k−1).
(24)

According to Equation (17), the joint distribution of zk and xf is[
zk
xf

]
∼ N

(
0,
[

K(uk, uk) + R K(uk, uf)
K(uf, uk) K(uf, uf)

])
. (25)

Therefore, the likelihood function and the prior PDF are

p(zk|xf) = N (zk; Hf
kxf, Rf

k), (26)

p(xf) = N (0, Pf
0). (27)

where
Hf(uk) = K(uk, uf)[K(uf, uf)]

−1
, (28)

Rf(uk) = K(uk, uk) + R−K(uk, uf)[K(uf, uf)]
−1

K(uf, uk), (29)

Pf
0 = K(uf, uf). (30)

The advantage of the method is that the extent states can be inserted into the kinematic
states and be estimated using a single-state space model.

Measurement Model

In this article, we assume that the measurement sources are all on the object’s surface.
A 3D radial function r = f (θ, φ) is used to model the shape of the target, whose inputs
(θ, φ) are the azimuth and the elevation. For simplicity, we use γ to denote the pair (θ, φ).
The function value r of the radial function is the distance between the basis points and the
center of the extended target. The radial function is assumed to be a GP, denoted as

f (γ) ∼ GP
(

µr, C(γ,γ′) + σ2
r

)
. (31)

The mean function of the GP model is assumed to be some unknown constant µr,
which is Gaussian-distributed, and we assume that µr = 0 as in [37]. The correlation
function in [37] is used, which is

C(γ,γ′) = σ2
f exp

(
−d2(γ,γ′)

2l2

)
, (32)

where σ2
f represents the prior variance, l is the length scale, and d(γ,γ′) calculates the

relative distance between two inputs, given as follows

d(γ,γ′) = arccos(cos(φ) cos(φ′) cos(θ) cos(θ′)
+ cos(φ) cos(φ′) sin(θ) sin(θ′) + sin(φ) sin(φ′)). (33)

The output range of the distance function is [0, π], and any coincident input is mapped
to 0, while the opposite pair is mapped to π. The employed distance d(γ,γ′) is specified to
imply a higher correlation for closer regions compared to separated regions.
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Together with the radial function and the GP model, both the kinematic model and

measurement model can be derived. We denote the extended target state as xk , [
−
x

T

k , fT
k ]

T

,

where
−
xk = [xt

k
T , xr

k
T ]

T is the extended target kinematic state including the translation
vector xt

k and the orientation vector xr
k. The values of the radial function are denoted as fk.

The kinematic model of the extended target is

xk+1 = Fkxk + wk, wk ∼ N (0, Qk), (34)

Fk =

[−
Fk

Ff
k

]
, Qk =

[−
Qk

Qf
k

]
, (35)

−
Fk =

[
Ft

k
Fr

k

]
,
−
Qk =

[
Qt

k
Qr

k

]
. (36)

The constant velocity (CV) model is considered for the translation of the extended
target in this article, which gives

xt
k , [xc

k,
.
xc

k]
T

, (37)

Ft
k =

[
1 T
0 1

]
⊗ I3, (38)

Qt
k =

[
T3/3 T2/2
T2/2 T

]
⊗ σxI3. (39)

A 3× 3 orthogonal matrix called a rotation matrix is usually used to describe the orien-
tation of the target. However, a rotation matrix is singular or discontinuous at some points.
Quaternion is used in this article instead of a rotation matrix to describe the orientation of
the target. A quaternion q is a 4D vector which contains two parts: a three-dimensional
vector and a constant, denoted as

q =
[
−
q

T
q4

]T
. (40)

The translation between the rotation matrix and the quaternion is

RL
G(qk) =

(
(q2

4 −
−
q

T−
q)I3 + 2

−
q

T−
q− 2q4[

−
q×]

)T

, (41)

where R(·) represents the rotation matrix and [
−
q×] is the cross-product matrix

[
−
q×] =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

. (42)

The multiplication of two quaternions q’ and q is defined as

q’ � q =

q′4q + q4q’ −
−
q’ × −q

q′4q4 −
−
q’

T
−
q

. (43)

A useful property of quaternion is

R(q’)R(q) = R(q’ � q), (44)
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which indicates that the product of two rotation matrices can be represented by the product
of quaternions. Therefore, the continuous rotation of a target can be represented by the
product of quaternions. Ref. [40] introduces an approach to estimate the orientation of the
target recursively using quaternions based on the property of Equation (44). This method
can be augmented in the process of estimating the target’s kinematic states. The orientation
of the target at time k can be expressed as

q = δq(a)� qref (45)

where qref is the reference orientation and δq(a) is the deviation from the reference orienta-
tion. To estimate the orientation recursively, the estimated orientation at time k− 1 is used
as the reference orientation. a is the deviation vector, and δq(a) is defined using Rodrigue
parameterization as

δq(a) =
1√

4 + |a|2

[
a
2

]
. (46)

The core idea is to estimate the deviation vector a, and the orientation at any moment
can be calculated together with the reference orientation. Ref. [41] gives the dynamic model
of the deviation vector

.
a =

(
I3 +

1
4 aaT + 1

2 [a×]
)

ω

≈
(

I3 +
1
2 [a×]

)
ω.

(47)

We denote the rotation vector as xr
k ,

[
aT ωT]T , and the dynamic model of the

rotational part of the extended target can be derived using Equation (47) as

.
x =

[(
I3 +

1
2 [a×]

)
ω

03×1

]
+

[
03
I3

]
α, (48)

where α is the acceleration of the rotation vector, and is assumed to be the Gaussian white
noise in the article. Equation (48) indicates a nonlinear system, and therefore the first-
moment Taylor expansion is used to derive the approximated linear model. The first-order
Taylor expansion of the estimated orientation xr = xr

k|k at time k is given as

.
xr

= f (xr) + Bα

≈ f (x̂r) + Ar
k(x

r − x̂r).
(49)

The deviation vector is set to zero after each measurement update, and so the Taylor
approximation in Equation (49) is

Ar
k=

d
dxr f (xr)

∣∣∣
xr=x̂r

k|k

=

[ 1
2 [−ω̂k|k×] I3

03 03

]
.

(50)

The discrete system is

xr
k+1 = Fr

kxr
k + wr

k, wr
k ∼ N (0, Qr

k), (51)

where
Fr

k = exp(AkT)

=

[
exp

(
T
2 [−ω̂k|k×]

)
T exp

(
T
2 [−ωk|k×]

)
03 I3

]
.

(52)
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Substituting Equation (42) into Equation (52) gives

exp
(

T
2
[−ω̂k|k×]

)
= I3 +

sin
(

T
2

∣∣∣ω̂k|k

∣∣∣)∣∣∣ω̂k|k

∣∣∣ [−ω̂k|k×] +
1− cos

(
T
2

∣∣∣ω̂k|k

∣∣∣)∣∣∣ω̂k|k

∣∣∣2 [−ω̂k|k×]
2, (53)

where T is the sampling time. The process noise covariance matrix is

Qr
k = GkΣαGT

k . (54)

Because the deviation vector is set to zero, Gk is

Gk =

[∫ T
0 exp

(
τ
2

[
−ω̂k|k×

])
dτ

∫ T
0 exp

(
τ
2

[
−ω̂k|k×

])
dτ

03
∫ T

0 I3dτ

]
. (55)

The following are the details of the matrices

∫ T
0 exp

(
τ
2

[
−ω̂k|k×

])
dτ = TI3 +

2(1−cos( T
2 |ω̂k|k|))

|ω̂k|k|2
[
−ω̂k|k×

]

+
T− 2

|ω̂k|k|
sin( T

2 |ω̂k|k|)

|ω̂k|k|2
[
−ω̂k|k×

]2
,

(56)

∫ T
0 τ exp

(
τ
2

[
−ω̂k|k×

])
dτ = T2

2 I3+

1
|ω̂k|k |

2

(
4

|ω̂k|k |
sin
(

T
2 |ω̂k|k|

)
− 2T cos

(
T
2 |ω̂k|k|

))
×
[
−ω̂k|k×

]
+ 1
|ω̂k|k |

2

(
T2

2 + 2T
|ω̂k|k |

sin
(

T
2 |ω̂k|k|

)
+ 4
|ω̂k|k |

2

(
cos
(

T
2 |ω̂k|k|

)
− 1
))[
−ω̂k|k×

]2
,

(57)

∫ T

0
I3dτ = TI3. (58)

We assume that the shape of the target does not change, and that therefore the dynamic
model for the extent state of the extended target is

fk+1 = fk + wk, wk ∼ N (0, Qf
k), (59)

Qf
k = (

1
λ
− 1)Pf

k|k, (60)

which indicates that Ff
k = I.

Two coordinate systems are used in the article to derive the measurement model.
The first one is the global coordinate denoted as the upper letter G, and the second one
is the local coordinate of the target denoted as the upper letter L. Figure 1 shows the
two coordinates.
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We assume nk measurements
{

zk,i
}nk

i=1 at time k are received, and so the ith measure-
ment zk,i can be expressed as

zG
k,i = xc

k + pk,i f (γL
k,i) +

−
ek,

−
ek ∼ N (0,

−
R) (61)

where pk,i =
zG

k,i−xc
k∥∥∥zG

k,i−xc
k

∥∥∥ is the direction vector. Measurements in the local coordinate can be

derived using the global coordinate measurements and the reference quaternion as

zL
k,i = RL

G(qk)(z
G
k,i − xc

k). (62)

The azimuth and elevation of the measurements are

θL
k = arctan

(
yL

xL

)
, (63)

φL
k = arctan

 zL√
(xL)

2
+ (yL)

2

, (64)

γL
k = (θL

k , φL
k ). (65)

Substituting Equation (21) into Equation (61) gives

zG
k,i = xc

k + pk,i

[
Hf(γL

k )fk + ef
k

]
+
−
ek, (66)

which can be further simplified to obtain the pseudo-measurement function

h(xk, zG
k,i) + ek,i = 0, ek,i ∼ N (0, Rk,i), (67)

where
h(xk, zG

k,i) = xc
k − zG

k,i + pk,i H
f(γL

k )fk, (68)
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ek,i = pk,ie
f
k +

−
ek, (69)

Rk,i = pk,iR
f
k,ip

T
k,i +

−
Rk,i. (70)

4. Gaussian Process Gaussian Mixture PHD Filter
4.1. Prediction Process

We use GAM(·) to denote the Gamma distribution. The prediction process of the
extended target PHD filter is given as [30]

Dk+1|k(ξ) = Ds
k+1|k(ξ) + Db

k(ξ), (71)

Ds
k+1|k(ξ) =

Jk−1|k−1

∑
j=1

w(j)
k+1|kGAM(γk+1|k; α

(j)
k+1|k, β

(j)
k+1|k)N (xk+1|k; m(j)

k+1|k, P(j)
k+1|k), (72)

where Ds
k+1|k(ξ) is the survival PHD, and Db

k+1|k(ξ) is the birth PHD representing new
targets. The survival PHD is given as

w(j)
k+1|k = psw(j)

k|k, (73)

α
(j)
k+1|k =

α
(j)
k|k
ηk

, β
(j)
k+1|k =

β
(j)
k|k

ηk
, (74)

m(j)
k+1|k = Fkm(j)

k|k, (75)

P(j)
k+1|k = FkP(j)

k+1|kFk
T + Qk. (76)

The birth PHD is approximated using a Gaussian mixture model

Db
k+1|k(ξ) =

Jb,k

∑
j=1

w(j)
b,kGAM(γb,k; α

(j)
b,k, β

(j)
b,k)N (xb,k; m(j)

b,k, P(j)
b,k). (77)

4.2. Update Process

Without considering the target spawn, the update process of the PHD filter is

Dk+1|k+1(ξ) = DND
k+1|k+1(ξ) + DD

k+1|k+1(ξ), (78)

where DND
k+1|k+1(ξ) is the miss detection PHD given as

DND
k+1|k+1(ξ) =

Jk+1|k

∑
j=1

wND,(j)
k+1|k+1GAM(γk+1|k+1; α

ND,(j)
k+1|k+1, β

ND,(j)
k+1|k+1)×N (xk+1|k+1; mND,(j)

k+1|k+1, PND,(j)
k+1|k+1) (79)

where
wND,(j)

k+1|k+1 = (1− pD)w
(j)
k+1|k, (80)

α
ND,(j)
k+1|k+1 = α

(j)
k+1|k, β

ND,(j)
k+1|k+1 = β

(j)
k+1|k, (81)

mND,(j)
k+1|k+1 = m(j)

k+1|k, (82)
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PND,(j)
k+1|k+1 = P(j)

k+1|k. (83)

The updated target PHD is DD
k+1|k+1(ξ), which is given as

DD
k+1|k+1(ξ) = ∑

P∠Zk

∑
W∠P

Jk+1|k
∑

j=1
w(j,W)

k+1|k+1GAM(γk+1|k+1; α
(j,W)
k+1|k+1, β

(j,W)
k+1|k+1)

×N (xk+1|k+1; m(j,W)
k+1|k+1, P(j,W)

k+1|k+1).
(84)

The partition method in [30] is adopted in this article to reduce the computational
load. The update of the Gamma distribution is

α
(j,W)
k+1|k+1 = α

(j)
k|k+1 + |W|, (85)

β
(j,W)
k+1|k+1 = β

(j)
k|k+1 + 1. (86)

The GP regression measurement model derived in the previous section is used to
update the Gaussian mixture component. The pseudo-measurement model Equation (67) is
a non-linear system. Therefore, the EKF is used to update the extended target states, which
can be given as follows

m(j,W)
k+1|k+1 = m(j)

k|k+1 + Kk+1

(
0− h

(
m(j)

k|k+1, z(W)
k

))
, (87)

P(j,W)
k+1|k+1 = P(j)

k|k+1 −Kk+1HkP(j)
k|k+1. (88)

where h(m(j)
k|k+1, z(W)

k ) is given in (68) and the Kalman gain Kk+1 is

Kk+1 = P(j)
k|k+1HT

k Sk
−1, (89)

Sk = HkP(j)
k|k+1HT

k + Rk, (90)

Hk =
d

dxk
hk(m

(j)
k|k+1, z(W)

k )

∣∣∣∣xk=m̂(j)
k|k+1

. (91)

The weight of the gamma Gaussian mixture component is

w(j,W)
k+1|k+1 =

w√pDL
(j,W)
k w(j)

k|k−1

dWβ
|W|
FA,k

, (92)

L(j,W)
k = ∏

zk∈W
φ(zk|xk)

= N
(

W; h
(

m(j)
k|k+1, z(W)

k

)
, Rk

)
,

(93)

where φzk (·) is the single extended target measurement likelihood.

5. Simulation Results and Discussion

In this section, a simulation experiment is conducted to compare the performance
of the GP-PHD filter proposed in the article with the traditional GGIW-PHD filter [33].
A three-dimensional area with size [−30 m,−30 m,−5 m]× [30 m, 30 m, 5 m] is consid-
ered. We assume that two extended targets move in the x–y–z plane. Target 1 (T1) is a
cylinder with r = 1 m, h = 2 m and target 2 (T2) is a cube with w = 2 m, l = 4 m, and
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h = 2 m. We denote the target states as x = [mx, my, mz, vx, vy, vz]
T . The initial states of T1 is

x1 = [0, 0, 0, 1, 0, 0]T and the initial states of T2 is x2 = [10, 0, 1, 1, 0, 0]T . T1 moves at con-
stant speed v = 1 m/s along the y axis. T2 moves at constant speed v = 1.5 m/s in the first
10 s, and then makes a constant turn at speed ω = π

20 rad/s for 10 s. After the constant turn,
T2 moves along the y axis at a constant speed. Both targets’ moving duration is 30 s and the
sampling time is 0.1 s. The experiment is a simulation of a typical traffic scenario, where
T1 corresponds to the pedestrian and T2 corresponds to a practical medium size vehicle.
Both linear and non-linear motion models of extended targets are considered. Although we
use a linear motion model, the filter is expected to be robust enough to handle such model
mismatches, which are common in most tracking applications.

We assume that all the measurements come from the surface of the target and that the
number of the measurements is Poisson-distributed. The Poisson rate of the measurements

is λ = 20 and the covariance matrix of the measurement noise is
−
R = 0.12I3 m2. The

Poisson rate of the number of clutter is λc = 2, and clutter is uniformly distributed in the
surveillance area. Figure 2 shows clutter and measurements collected in the surveillance
area. All experiments in the following section are carried out with different realizations of
the measurement noise, the measurement source, and the clutter. The result numbers of the
experiments are the averages of Monte Carlo (MC) runs.
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Figure 2. The measurements and clutter collected in the surveillance area.

The CV model is considered for both the GGIW-PHD filter and the GP-PHD filter. The
process noise of the dynamic model is σx = 0.1. For the GP-PHD filter, 642 basis points
equally located in [0, 2π] are used and the hyperparameters of the GP model are set to
µ = 0, σf = 1, σr = 0.2, l = π/3. The parameters for the GGIW-PHD filter are given in
Table 1.

The number of the gamma Gaussian mixture component is no more than Mmax = 100
and the number of Gaussian components per target is no more than Jmax = 100. The
tracking results of the two filters are shown in Figure 3. Figure 3 shows that both filters are
able to deal with the non-linear movements of the targets, while the GP-PHD filter is more
capable of handling the motion model mismatches and the estimated trajectory is closer to
the truth.
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Table 1. Parameters of the GGIW-PHD filter.

Parameter Value

Forgetting factor ηk 1.05
Detection probability pD 0.95
Survival probability ps 0.99

Birth weight ωk
(b) 0.11

Birth rate a(b)k , b(b)k
100, 5

Birth extension v(b)k , V(b)
k

10, 10
Pruning threshold T 10−3

Merging threshold U 25
Temporal decay τ 120

Scaling parameter ρ 1/4
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Figure 3. Tracking results of the GGIW−PHD filter and the GP−PHD filter.

We use the OSPA distance to evaluate the performance of the filter, which takes into
account both errors made in estimating target states and the errors in estimating target
cardinality. The order and the penalty factor are set as c = 15, p = 1. The average result is
obtained through 100 MC runs, which is shown in Figure 4.

The estimation of the shape is illustrated in Figure 5. The GP-PHD filter shows superior
performance compared to the GGIW-PHD filter in terms of shape estimation. The GP-PHD
filter uses a radial function to describe the shape of the target, which is suitable for arbitrary
shape extended targets. However, the GGIW-PHD filter is limited to ellipsoidal shape
targets. Therefore, both filters show satisfactory performance in estimating the shape of
T1 in Figure 5a. However, the GGIW-PHD filter shows a poor performance in estimating
the shape of T2, especially when the target is making a turn. The GP-PHD filter takes into
account the orientation of the target. Figure 5b shows that the GP-PHD filter is able to
estimate the shape of the target, even when the target is making a turn.

The performance of the estimation of the shape is evaluated using the IoU, which is
defined as

IoU(Strue, Ŝ) =
volume(Strue ∩ Ŝ)
volume(Strue ∪ Ŝ)

, (94)

where Strue is the true target shape and Ŝ is the estimated target shape. The IoU value
not only accounts for the quality of the estimation of the kinematics states but also the
extent. The average results of 100 MC runs are shown in Figure 6. Overall, the GP-
PHD filter estimates the shape of the extended targets better than the GGIW-PHD filter.
The performance of the GGIW-PHD filter is not stable, particularly when the target is
making a turn.
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Figure 4. The OSPA distance error for the GGIW-PHD filter and the GP-PHD filter with 100 Monte
Carlo runs.

We further examine the measurement rates’ impact on the proposed filter and the GGIW-
PHD filter. The measurement rates are set as λ = 10, 30. The experiments are repeated for
50 MC runs, respectively, to obtain the average results shown in Figures 7 and 8. It is reported
that the GP-PHD filter shows good performance at both low and high measurement rates,
while the measurement rate has a great impact on the performance of the GGIW-PHD filter.
The GP-PHD filter is more robust compared to the GGIW-PHD filter. The main reason for
the impact of the measurement rate on the GGIW-PHD filter is that there is less information
about the shape that can be exploited by the GGIW-PHD filter when the measurement rate
is low. However, the covariance function of the GP model assumes that the radial function
has a period of π. This assumption suggests that the target is symmetric, which is the usual
case in tracking. Therefore, under low-measurement-rate conditions, the GP-PHD filter can
obtain more information about the target and a more accurate estimation of the shape can
be expected.

All the simulations are conducted in MATLAB 2022b on a computer with an AMD
Ryzen 5 3600X 6-Core processor and 16 GB RAM. The average computation time for the
GP-PHD filter and the GGIW-PHD filter are 459 s and 5.11 s for 300 updates. Both the
GGIW-PHD filter and the GP-PHD filter are recursively updated by the standard EKF, and
therefore the computational load is mainly determined by the dimension of the state vector.
The state dimension of the GP-PHD filter is dim(xk) = 654, which is much greater than
that of the GGIW-PHD filter. Further improvements, such as projecting the contour of the
3D target into 2D space to reduce the computational burden, can be considered.
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6. Conclusions

In this paper, we propose a new approach for tracking multiple extended targets in
three-dimensional space. The key contribution of our method is the utilization of a 3D
Gaussian process radial function to describe the shape of the extended targets. Furthermore,
we also present a state estimation method that allows for the recursive estimation of the
target’s shape. A pseudo-measurement equation is derived, and a Gaussian mixture
implementation of the filter is presented in the article. The proposed filter is capable of
tracking the target and estimating the shape of the target simultaneously in the presence
of clutter. The method is flexible enough to express a variety of different shapes. We
evaluate the performance of the proposed filter and the traditional GGIW-PHD filter
in the simulation experiment using the OSPA distance and the IoU value. The results
demonstrate that our proposed filter outperforms the traditional GGIW-PHD filter in
both kinematic states and shape estimation. Furthermore, we compare the performance
of the filters under different-measurement-rate conditions. The proposed filter is robust
under different-measurement-rate conditions, while the GGIW-PHD filter suffers under
low-measurement-rate conditions. The algorithm provides an effective solution to the ETT
problem in 3D space, which can be further used in scenarios such as autonomous driving.
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