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Abstract: Methane (CH4) is recognized as the second most important greenhouse gas. An accurate
and precise monitoring of methane gas globally has a vital role in studying the carbon cycle and
global warming. The spaceborne integrated path differential absorption (IPDA) lidar is one of the
most effective payload for methane detection. The simulation and optimization of the lidar system
parameters can create an important base for the development of spaceborne payloads. However,
previous IPDA lidar simulations have mostly used standard atmospheric models at simulation
conditions, and to the best of our knowledge, there is no literature yet which applies a wavelength
optimization to the IPDA system. In this study, we have investigated the relationship between the
IPDA lidar system, based on wavelength optimization, and error measurement for CH4 column-
averaged concentration. By selecting the wavelengths with the lowest comprehensive error as on-line
and off-line, the error has been minimized by 10 ppb approximately relative to before optimization.
We have proposed an IPDA simulation model at real atmospheric conditions, combining with ERA-5
reanalysis data, to simulate methane concentration globally, and present the distribution of errors.
Finally, after the optimization of the lidar system parameters, we have ensured that the maximum
inversion error for CH4 measurement is less than 10 ppb, to provide a reference for designing
spaceborne IPDA lidar systems for high-precision CH4 column-averaged concentration detection.

Keywords: methane; IPDA lidar; wavelength optimization; error analysis; simulation

1. Introduction

Methane (CH4) is the second most important greenhouse gas after carbon dioxide
(CO2) [1]. Post the industrial revolution, global methane concentration increased stagger-
ingly; there was a period of stabilization at the beginning of the 21st century [2], but it has
started to rise again since 2007 [3,4] and has increased by a factor of 2.6 since 2021. Currently,
the atmospheric methane gas level has reached over 1895 parts per billion (ppb), which
is a remarkable increase as compared to the modest level of 722 ppb in the beginning [5].
Ice core measurements reveal that such levels are unprecedented over the last 6.5 million
years [6–8]. By now, it has been assured that CH4 has been considered to be a crucial factor
in global climate change. Further increase in its atmospheric concentration level in the 21st
century could undermine international climate change mitigation efforts [9]. Hence, the
detection of methane gas is critical, in which global methane gas detection technologies can
help us not only to regulate methane gas emissions to mitigate the effects of climate change
but can also help us to understand its role in Earth’s climate change.

To systematically observe methane gas, the World Meteorological Organization’s (WMO)
Global Atmospheric Watch (GAW) program started working on it since the 1880s [10]. The
stratospheric and mesospheric sounder (SAMS) instruments installed on the Nimbus-7 satel-
lite achieved the first detection of stratospheric CH4 profile, to build a foundation for Earth
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observation systems, such as Aqua, Terra, Aura, Landsat, and SeaWiFS [11]. Similarly, SCIA-
MACHY satellites detected methane gas distribution using 1.65 µm and 2.3 µm channels
with a spatial resolution of 30 km× 60 km [12–15]. Among the existing thermal infrared (TIR)
spaceborne instruments devoted to tropospheric remote sensing, the Infrared Atmospheric
Sounding Interferometer (IASI), the Atmospheric Infrared Sounder (AIRS) and the Cross-
track Infrared Sounder (CrIS) use methane TIR absorption bands for observations [16–18].
Zhou et al. also have analyzed the spatiotemporal distributions and changes of methane in
atmosphere globally using data from these hyperspectral TIR instruments [19]. Additionally,
passive remote sensing satellites, such as GOSAT, GHGSat, TROPOMI, GOSAT-2, GF-5,
and Prisma also monitored methane gas [20–27]. Moreover, China’s FY-3D satellite was
launched in 2018 with 1.65 µm channel to monitor methane gas with a spatial resolution
of 10 km [28]. Based on the development of satellite detection technology and inversion
algorithms, the accuracy of CH4 inversion has been improved. The deviation of the in-
verse CH4 concentration in the sky-bottom mode, using the ground station data, is at
least 14 ppb, where the highest spatial resolution is 7 km × 7 km, and all of them are
spaceborne monitoring with passive remote sensing [29–31]. However, passive remote
sensing has limitations: it does not have the ability to observe at night, is influenced by
clouds, aerosols and atmospheric molecules, has poor accuracy, and is unable to achieve the
required accuracy of 10 ppb to detect methane gas globally [3]. Moreover, current passive
remote sensing satellites are unable to observe high latitudes area.

Spaceborne integrated path differential absorption (IPDA) lidar is considered to be
effective for the monitoring of global methane concentration changes [32]. These lidars
determine target gas concentrations by measuring the difference in absorption produced by
the laser beam on the round-trip path between the lidar and the hard target. They are not
affected by the backscattering of laser due to atmospheric molecules, clouds, and aerosols,
resulting in high signal-to-noise ratio and minimum atmospheric influence. Active remote
sensing technology, with IPDA lidar, has a large signal-to-noise ratio and can be only
minimally affected by the sunlight, allowing for uninterrupted global monitoring at any
weather condition and season, and thus has improved the spatial and temporal resolution
of methane gas monitoring. The Deutsches Zentrum für Luft- und Raumfahrt (DLR) and
the Centre National d’Etudes Spatiales (CNES) are jointly working on the Methane Remote
Lidar Mission (MERLIN) program. The program is expected to launch in 2024 with an
integrated path differential absorption lidar and will operate in a sun-synchronous orbit
at an altitude of about 500 km [33,34]. The channels selected for methane gas detection
will be 1645.552 nm at the center of the methane absorption line and 1645.846 nm at the
methane absorption valley (reference wavelength) [34]. The expected horizontal spatial
resolution will be 50 km, with a methane gas detection random error of less than 22 ppb
and a systematic error of less than 3 ppb [35,36].

Currently, several simulations and error analyses of IPDA lidar systems for methane
gas measurement have been reported. Cassét et al. [37] analyzed the uncertainty of meteo-
rological information on methane measurement results. Bousquet and Ehret et al. [35,38]
have carried out error budgeting for methane gas measurement from the perspective of
random and systematic errors. Xie et al. [39] have proposed a wavelength optimization
model of IPDA lidar systems for CO2 detection. The MERLIN team, the first international
developer of a methane detection satellite lidar, has also estimated methane detection errors
for different regions of the world, where Kiemle et al. have evaluated the entire IPDA
system performance and has studied the sensitivity for MERLIN [40,41], resulting in better
detection accuracy than the GOSAT passive remote sensing satellite [35]. Most of the previ-
ous studies have presented system simulations with fixed global methane concentration
or used standard atmospheric models, which have not accurately obtained the simulation
results and error magnitudes for different regions, and have not analyzed the influence
of wavelength selection on methane gas detection errors. This paper combines global
meteorological element data and methane gas column concentration to establish an IPDA
lidar simulation and error analysis model for different regions worldwide. Additionally,
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the lidar’s wavelength is optimized for the first time to improve the accuracy of the entire
system.

China launched the world’s first satellite DQ-1 with the capability of carbon dioxide
laser detection in 2022; a lidar for global methane detection is also under consideration.
Therefore, methane gas measurement and analysis simulations, and development in pay-
loads are of great significance. In addition, simulation and error analysis can also help to
improve the existing active inversion algorithms for greenhouse gases. In this study, we
have selected the wavelength of the laser around 1645 nm, and the influence of systematic
and random errors was considered individually. To minimize the error, the wavelength op-
timization algorithm was employed to find the selection of on-line and off-line wavelengths.
The simulation and error analysis of the IPDA lidar have been conducted based on meteo-
rological data and column-averaged methane gas mixing ratio data at different locations
worldwide. At the optimization of the lidar system parameters, the overall system inversion
accuracy was controlled up to 10 ppb. These results may present a theoretical foundation
to design China’s new generation of greenhouse gas detection satellites. Section 2 of the
paper presents the principle and methods of error analysis of the IPDA system, followed by
the wavelength optimization method and the results of the two lasers used by the system.
Section 3 describes the parameter sources and processing methods used in the simulation
model. Section 4 presents the results of simulation model and error analysis, to reduce
random errors by the optimization of lidar parameters. Section 5 summarizes the entire
simulation process and proposes the design requirements for lidar parameters.

2. Methods
2.1. IPDA Lidar Inversion Principle

The differential absorption lidar (DIAL) emits two laser beams with similar wave-
lengths, referred to as on-line and off-line [38]. The on-line beam is typically located at a
position with strong methane absorption, making it more sensitive to changes in methane
gas concentration, whereas the off-line beam is located at a position with low methane gas
absorption property. Both these laser beams have similar values of wavelength. The other
parameters used in laser transmission, such as the transmission rate of other gases and
aerosols, can be considered to be the same. By using the DIAL equation (Equation (1)), the
energy of the backscattered signals of the two wavelengths can be calculated [38].

Pon = ρ
π

Eon
∆te f f

A
R2

G
ToptTatm exp

[
−2
∫ R f

Rstr
σon(r) · nCH4(r)dr

]
Po f f =

ρ
π

Eo f f
∆te f f

A
R2

G
ToptTatm exp

[
−2
∫ R f

Rsur
σo f f (r) · nCH4(r)dr

] (1)

The variables, Pon/Po f f , represent the echo power of the two laser beams, respectively,
Eon/Eo f f represent the emitted powers, respectively, A denotes the radar receiving area,
σon/σo f f , respectively, show the atmospheric methane gas absorption cross-section of both
the wavelengths at a distance r from the lidar, ρ represents surface reflectance, RG is the
distance between the lidar and the ground, ∆te f f is the effective pulse width, Topt and Tatm
indicate the aerosol optical transmission and the atmospheric transmission, respectively,
of other gases, whereas R f and Rsur describe the distances between the lidar and the
atmospheric layer top side and ground side, respectively. Similarly, nCH4 denotes the
number of methane molecules per unit volume.

Using the above two equations, the differential absorption optical depth of methane
gas can be obtained as below:

∆τCH4 =
∫ RG

RTOA

∆α(r)dr =
∫ RG

RTOA

nCH4(r)∆σ(r)dr =
1
2

ln
Po f f (RG)Eon

Pon(RG)Eo f f
(2)
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Combining the equations of static equilibrium and the universal gas law, the following
equation is obtained:

∆τCH4 =
∫ pG

pTOA

ρCH4(p)WF(p.T)dp (3)

ρCH4 shows the air and methane gas mixing ratio, pTOA and pG are the pressure at the
top of the atmosphere and at the ground, respectively, and WF is the weighting function,
which is expressed as:

WF(p.T) =
σon(p.T)− σo f f (p.T)(

mdryair + ρH2O(p)mH2O

)
g

(4)

mdryair is the molecular mass of dry air, ρH2O is the relative humidity of the air and
column-averaged concentration of methane gas, indicated by XCH4, can be obtained using
Equations (2)–(4):

XCH4 =

1
2 ln

Po f f Eon
PonEo f f∫ PG

PTOA

∆σ(p,T)
(mdryair+ρH2O(p)mH2O)g

dp
(5)

2.2. Error Calculation for the IPDA Lidar System
2.2.1. Calculation of Random Error

In the IPDA lidar system, errors can be divided into systematic and random errors. The
random errors can be caused by several sources of noise, such as background noise, thermal
noise, and dark current of detectors. The random error fits the Gaussian distribution, and
its mean value can be obtained by using the signal-to-noise ratio (SNR). The SNR of the
avalanche photodiode (APD) output can be computed using Equation (6) [42]. The on-line
and off-line SNR can be calculated using the echo signal and system parameters, and
then by combining it with Equation (7), the value of relative random error (RRE) can be
calculated.

SNR =
(MαPs)

2RL[
2eM2∆ f (αFPs + id) +

4kBTdw∆ f
RL

]
RL

(6)

RRE =
1

2DAOD

√√√√( 1
SNR2

on
+

1
SNR2

o f f

)
1

Nshots
(7)

where, M shows the internal gain factor of APD, e is the individual electron power, α is
the unamplified APD detector responsivity, α = eη/hυ (υ is the laser frequency, h is the
Planck constant, and η is the quantum efficiency), Ps is the average power of incident
light, ∆ f is the electron bandwidth, F is the excess noise factor, id is the dark current, kB
is the Boltzmann constant, Tdw is the internal operating temperature of APD, RL is the
feedback resistance. DAOD is the differential absorption optical depth, SNRon indicates
the signal-to-noise ratio of the on-line echo signal, SNRo f f indicates the signal-to-noise
ratio of the off-line echo signal, and Nshots is the number of detections per unit horizontal
resolution of the IPDA system.

2.2.2. Calculation of Systematic Error

Systematic errors in the lidar system are primarily caused by errors in the atmospheric
and system parameters, wherein atmospheric errors are caused due to inaccuracies in
temperature, humidity, and pressure data. In this study, the atmospheric parameters are
mainly obtained using ERA-5 reanalysis data [43]. The data are obtained from one of the
extensive databases worldwide. The evaluation results from ECMWF show that the error in air
temperature is about 0.5 K, pressure error is about 0.5 hPa, and relative humidity error is about
5% [43]. Variations in temperature and pressure values can cause error in the methane gas
absorption cross-section, which leads to an error in the methane gas differential absorption
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optical depth (DAOD). Moreover, relative humidity error may cause integral weighting
function (IWF) calculation error. To surmise, the effect of the magnitude of 1/IWF due to
such error may influence the inversion results of XCH4. In this study, we use Equation
(8) [38] to calculate the relative error of the methane gas inversion results (RSEatm), caused
by the errors occurring in several meteorological variables.

RSEatm =

(
1

IWF

)
Eatm
−
(

1
IWF

)
0(

1
IWF

)
0

=
∆ 1

IWF(
1

IWF

)
0

(8)

where,
(

1
IWF

)
Eatm

is the inverse of integral weight function including error in atmospheric

parameters and
(

1
IWF

)
0

is the inverse of integral weight function value without error.
Systematic parameter errors occur due to laser linewidth, monitoring accuracy of

laser emission energy, and laser frequency drift [38]. The accurate emission energy error is
primarily because of the inevitable presence of the monitoring systematic errors during
practical laser emission. The systematic error caused by emission energy accuracy (RSEE)
is shown by Equation (9):

RSEE =

√√√√√√[∆τ(Eon + dEon)− ∆τ(Eon)

∆τ(Eon)

]2
+

∆τ
(

Eo f f + dEo f f

)
− ∆τ

(
Eo f f

)
∆τ
(

Eo f f

)
2

(9)

where, ∆τ shows the values of differential absorption optical depth at different positions
for specific wavelength values of the emitted laser energy.

The lasers emitted by a lidar is not theoretically monochromatic and have a broader
spectrum at the laser frequency. The atmosphere also absorbs light spectrum in this vicinity,
but the absorption cross-section may vary with frequency, modifying the strength of the
echo signal and which results in systematic errors. To calculate the linearity error of the
laser, the differential absorption cross-section has to be replaced by the effective differential
absorption cross-section ∆σe f f , using Equation (10), which is as follows:

∆σe f f (r) =

∫ ∞
0 L(v− v0)t2(r, v)

[
σ(r, v− von)− σ

(
r, v− vo f f

)]
dv∫ ∞

0 L(v− v0)t2(r, v)dv
(10)

Assuming that the emitted laser is in accordance with the Lorentz linearity, the spectral
distribution function, L(v), can be obtained [38]. Here, σ(r, v) represents the absorption
cross-section at various locations and frequencies, and t2(r, v) shows the atmospheric
transmittance.

Systematic error is also caused by the center frequency drift of the laser. Similarly, the
laser linewidth is caused by changes in the absorption cross-section of methane gas at differ-
ent frequencies, resulting in differential absorption optical depth error. The corresponding
systematic error (RSEf) can be expressed using the differential absorption spectroscopy
slope, as shown in the following equation:

RSE f =
1

DAOD
∂DAOD

∂ f
δ f (11)

2.3. On-Line and Off-Line Wavelength Optimization

To obtain the spectral line intensity of the absorption lines, the HITRAN 2020 database [44]
and the Voigt profile are combined [38,45] at different frequencies. The comparison con-
cludes that the absorption cross-section of methane is the same, around 6075 cm−1, for
multiple versions of HITRAN 2020 and HITRAN 2004, hence, the comparison results in
this study are not related to the version of the HITRAN database. By proper tuning of
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temperature and pressure values, the absorption cross-section of CH4 can be calculated.
Measurements of methane gas was carried out at standard atmospheric temperature and
pressure. The absorption spectra of methane gas, water vapors, and carbon dioxide gas
were calculated separately. It was found that water vapors had a stronger absorption ability
in the infrared band. To eliminate interference from the other two gases, the methane gas
absorption peak near 1645 nm was selected, with two small absorption peaks coinciding
with the weak absorption bands of water vapors and carbon dioxide gas.

The on-line and off-line wavelength optimization is very important to minimize the
expected error for the IPDA lidar system. Xie et al. [39] investigated the sensitivity of the
measurement error of CO2 column concentration versus wavelength in terms of both random
and systematic errors, where the wavelength optimization was carried out to minimize the
total error of the lidar system to detect CO2 column concentration. As the inversion princi-
ple of CH4 is similar to that of CO2 [38], therefore, a similar optimization algorithm has
been employed in this paper to optimize the on-line and off-line wavelengths. Among the
several error factors, the systematic error caused by temperature variation and frequency
offset, and the random error caused by background noise vary greatly with on-line wave-
length. The other factors are less sensitive to the wavelength. Because the measurement
errors of the IPDA lidar for methane in Antarctica, Qinghai-Tibet Plateau and Greenland
Island are high, the above errors in these areas are calculated individually by combining
the atmospheric background fields, such as ERA-5, surface reflectance and CH4 column
concentration data.

For random errors, we assumed an excess noise factor of 4.3 for the APD operating
at 23 °C, with an electronic broadening of 3 MHz, a dark current of 160 fA

√
Hz, and a

feedback resistance of 1 MΩ, the system quantum efficiency was 0.8, and the internal gain
factor was 20. The energy of echo signal at different on-line wavelength values in the
Antarctic, Greenland, and Qinghai-Tibet Plateau regions was calculated using Equation (1),
whereas using Equations (6) and (7), in combination with the 1976 standard atmospheric
model, we have calculated the random errors, as shown in Figure 1a. The figure shows that
selecting the on-line wavelengths closer to the two small absorption peaks near 1645 nm
increases the optical depth, which results in reducing the signal-to-noise ratio. However,
moving away from the absorption peaks causes a decrease in the differential effect, leading
to an increase in error.

The systematic error caused by temperature variation affects the absorption coefficient
and thus influences the XCH4 inversion results. Following the US standard atmospheric
model, and using Equation (8) with a temperature error of 1 K and 0.5 K, the relationship
between the IPDA systematic error and different wavelengths can be calculated for the
three different regions with higher errors (as shown in Figure 1b). The figure shows that
selecting on-line wavelengths, slightly deviating from the absorption peak, can reduce the
error.

The error caused by the laser frequency instability, can be calculated by assuming
a fluctuation of 0.6 MHz in the central frequency using Equation (11). The relationship
between the differential optical depth and the on-line wavelength selection is shown in
Figure 1c. As the figure shows, the frequency instability error increases near the centers of
the two CH4 absorption peaks. This is because the closer the center of the absorption peak,
the greater the differential absorption spectrum slope, which then leads to a high frequency
instability error.
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effectively avoids the adverse effect of low SNR at the center of the absorption peak and 
experiences an insignificant differential effect at a distance away from the peak. 

For the IPDA lidar, the off-line should be at a distance away from the CH4 absorption 
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Figure 1. (a) The effect of different on-line wavelength selections near 1645 nm on the systematic
random error due to background noise, where three areas with large errors are selected for calculation,
(b) the random error due to temperature uncertainty near 1645 nm versus on-line wavelength selection
with the temperature offsets of 0.5 K and 1 K values, (c) the relationship between systematic error and
wavelength at a selected frequency offset of 0.6 MHz, (d) the relationship between the comprehensive
relative error and on-line wavelength selection; the dotted line position is the lowest error point of
the on-line wavelength selection.

The three types of absolute errors are combined to obtain the relationship between the
comprehensive error and wavelength, as shown in Figure 1d. The on-line wavelength is
selected at a minimum value of total error, where the value of wavelength is 1645.565 nm.
The graph shows the maximum value of the error at the center of the absorption peak and
minimum value at both sides of the peak. At a larger distance from the peak, the error
gradually increases. The distribution of total error at a selected wavelength is same to that
of the CO2 calculated by Xie et al. [39]. Choosing the on-line wavelength at this position
effectively avoids the adverse effect of low SNR at the center of the absorption peak and
experiences an insignificant differential effect at a distance away from the peak.

For the IPDA lidar, the off-line should be at a distance away from the CH4 absorption
peak, but on-line should be at the nearest point so that the optical depth of the other gases,
the ground reflectance and the aerosol optical depth may hardly change. The systematic
error from the absorption effect of the other gases in the off-line can be calculated using
Equation (12):

RSEother =
∆τCO2 + ∆τH2O

∆τCO2 + ∆τCH4 + ∆τH2O
(12)

The ∆τCO2 and ∆τH2O represent the differential absorption optical depth of CO2 and
water vapors in the atmosphere, respectively. Assuming the atmospheric concentrations
of 1900 ppb for CH4, 400 ppm for CO2, and 20,000 ppm for H2O, the optical depth of the
three gases was calculated using the 1976 US standard atmosphere model and is shown
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in Figure 2. According to Equation (12), the RSEother caused by H2O and CO2 was also
calculated as shown in Figure 2: the RSEother is minimized when the off-line wavelength is
selected at 1645.831 nm, using the above position, and the effect of CO2 and H2O is reduced;
the RSEother remains minimal at an off-line frequency offset of 0.6 MHz. In conclusion,
the optimization results show that the on-line and the off-line wavelengths can be set at
1645.565 nm and 1645.831 nm, respectively. These selected values of wavelength minimize
the sum of the four types of errors analyzed as mentioned previously.
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figure are the off-line and on-line positions of the IPDA lidar system. The black dashed line is the
relative error corresponding to the selection of different off-line.

2.4. IPDA Lidar System Parameters and Simulation Routes

The instrument parameters of the IPDA system used for the initial simulation are
listed in Table 1, which can be easily implemented. At a certain value of systematic and
random errors, for example, the temperature error is 0.5 K, the pressure error is 0.5 hPa,
the relative humidity error is 5%, the laser frequency offset is 0.3 MHz, and the accuracy
error of the emitted laser energy and other factors are added. The three-dimensional
distribution of global methane gas absorption cross-section was obtained by combining the
three-dimensional field of temperature and pressure. Using the satellite data, the global
distribution of reflectance, aerosol transmittance, and XCH4 can be obtained. The echo
signals of the two laser beams can be inverted, followed by the calculation of the global
distribution of the IWF value. The XCH4 can be determined by comparing it with the
simulated value obtained in the forward process. The error distribution of the global
simulation results can thus be obtained, and the specific process is explained in Figure 3.

Table 1. System parameters for IPDA LIDAR simulation.

System Parameter Value

On-line wavelength 1645.565 nm
Off-line wavelength 1645.831 nm
Laser pulse energy 0.05 J

Pulse repetition frequency 75 Hz
Pulse width 75 ns

Average output power 3.75 W
Telescope diameter 0.75 m

Total optical efficiency 0.65
Quantum efficiency 0.6

Orbit altitude 500 Km
APD gain factor 20
APD bandwidth 3 MHz

APD dark current 160 fA
√

Hz
APD operating temperature 23 °C

Excess noise factor 4.3
Feedback resistance 1 MΩ
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3. Materials
3.1. Calculation of Surface Reflectance

The surface reflectance is the ability of the surface to reflect laser, where each underly-
ing surface has its own reflectance value, differentiating the strength of the echo signal, that
may affect the SNR and the random error of lidar. In this study, channel 6 (1628–1652 nm)
data provided by MCD43C3 in MODIS reflectance product [46] has been used. This data
provide an estimated value of spectral reflectance of every spectral band and corrects the
atmospheric scattering and aerosol effects. In case of passive remote sensing MODIS Terra
satellite, polar data are missing due to solar zenith angle limitations. At the surface of ice
and water, the reflectance values cannot be used directly without making some corrections.
Dumont et al. [47] have proposed the modified equation for snow and ice reflectance. Hu
and Lancaster and Disney et al. [48–50] have proposed a correction equation for sea surface
reflectance based on sea surface wind speed. We have combined these methods with the
average ground snow cover and sea surface wind speed for August 2020 using ERA-5
data [43] to calculate the surface reflectance, as shown in Figure 4. The specific correction
equations for different earth surfaces are shown in Table 2, where, ρ is the original surface
reflectance in sr−1, f is the snow cover, v is the wind speed, and β is the corrected surface
reflectance. For high wind speed of the sea surface, the reflectance is higher because of
rough sea surface.
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Table 2. Surface reflectance correction methods for different surface types.

Surface Type Condition Correction Method

Land f < 0.95 β = (1.23− 0.23 · f ) · ρ

Snow f > 0.95 β = 0.016sr−1

Ocean

v < 1 m/s β = 0.105sr−1

1 m/s < v < 7 m/s β = 0.00154sr−1

0.0146√v

7 m/s < v < 13.3 m/s β = 0.00154sr−1

0.03 + 0.00512√v

v > 13.3 m/s β = 0.0213sr−1

3.2. Calculation of the Aerosol Optical Depth

Angstrom [51] has proposed the following formula to calculate aerosol optical depth
of whole atmosphere:

τ(λ) = βλ−α (13)

The value of β is directly dependent on the aerosol concentration, while α reflects the
properties of aerosol particle size distribution. The aerosol optical depth at two known
wavelengths can be used to determine the depth at other wavelengths theoretically using
Equations (14) and (15):

α =
ln
(

τλ1
τλ2

)
ln
(

λ2
λ1

) (14)

τλ3 = τλ2 ·
(

λ3

λ2

)−α

(15)

In this study, the MODIS aerosol optical depth (AOD) data at 1.24 µm and 1.64 µm in
the MOD04_L2 product’s near-infrared band dataset from NASA’s Global Meteorological
Data Center [52] for August 2020 have been chosen. Using Equations (13)–(15), the AOD at
1645 nm wavelength can be calculated as presented in Figure 5, showing AOD is higher in
the northern parts of Africa and temperate Asia.
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3.3. Calculation of the XCH4 Field

In previous simulations of lidar, the methane gas data have a fixed value during the
forward process. However, this can cause errors in the resulting global echo signal distri-
bution and error distribution. To improve the accuracy of the inversion results, this study
utilized Level 4B data from the GOSAT satellite, which provides global column-averaged
methane gas mixing ratio fields integrated from the actual observations [53]. XCH4 is
obtained by a weighted average in the vertical direction based on the weighting function
in the GOSAT dataset and the methane concentration at different altitudes. Using the tem-
perature, humidity, and pressure field data collected via ERA-5, the number of atmospheric
molecules at different altitudes can be calculated. Using these calculated data, the number
of methane molecules at different altitudes nCH4(r) can be obtained. By incorporating this
data into the forward process, the inversion results became more accurate. Methane gas
diffusion occurs slowly, as gas concentration cannot fluctuate significantly in a short time, so
the average methane gas column concentration from January to December 2020 was calculated
to generate a global distribution map of yearly average (as shown in Figure 6). The methane
gas concentration in the northern hemisphere was found to be denser than that in the
southern hemisphere, whereas in Asia it was relatively high, which resulted in an increased
differential optical depth and lower signal-to-noise ratio, leading to higher random errors.
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4. Results and Discussion
4.1. Calculation of the Integral Weighting Function

The simulation process for XCH4 is presented above in Section 2.1, and the value of
the integral weight function (IWF) can be obtained for different regions of the globe. The
main factors affecting the IWF value are the integration height, temperature, humidity and
pressure. Temperature and pressure affect the IWF value by influencing the differential
absorption cross-section. In this paper, the global three-dimensional fields of temperature,
pressure and humidity are obtained from the reanalysis information of ERA-5. A global re-
analysis dataset is published by the European Center for Medium-Range Weather Forecasts
(ECMWF) [43].

Using Equation (4) and combining the global surface elevation data obtained from the
Global Land One-kilometer Base Elevation (GLOBE) dataset and by setting the elevation
value on the ocean to 0, we obtained the global altitude, as shown in Figure 7a. On the other
hand, after setting the lower limit of integration to the global altitude and the upper limit to
the height of 1 hPa of atmospheric pressure to integrate the WF in the vertical direction, we
have obtained the global distribution of the IWF value (as shown in Figure 7b). For regions
at high altitudes, like, the Antarctic Plateau and the Tibetan Plateau, the optical depth is
lower and hence the IWF value is lower. For regions with the same altitude, at a lower
value of temperature and pressure, the corresponding absorption cross-section and IWF
have larger values.
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4.2. IPDA System Simulation Results and Estimation of Random Errors

After calculating the system parameters and combining them with the instrument
parameters, the on-line and off-line backscattered signal strength can be calculated using
the lidar Equation (1), and the corresponding global distribution of relative random error
and absolute random error caused by background noise and detector dark current and
the methane gas column concentration can be calculated using Equation (7), as shown
in Figure 8c,d. In addition, the IPDA lidar signal simulation of methane in this paper
was ideal in the case of no clouds. In the presence of clouds, it is difficult for the laser to
pass through the target, which allows the lidar to only measure the methane gas column
concentration above the clouds, requiring the surface reflectance data to be changed to the
reflectance of the clouds. However, we can combine the methane column concentration
over the clouds with numerical weather predictions to get the whole atmospheric XCH4.
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By combining the energy of the echo signal with the system parameters mentioned in
Figure 3, the SNR of the on-line and off-line channels of the lidar can be calculated using
Equation (6), as shown in Figure 8a,b. The SNR in Figure 8 is calculated by averaging the
echo signal every 200 times along the satellite orbit, which corresponds to a horizontal
resolution of about 20 km.

The aerosol optical depths are large and methane concentrations are the greatest in
Central Asia, resulting in a weak echo signal and low signal-to-noise ratio, presenting
high value of random error in Central Asia. As for the global random error, the maximum
calculated value is 5.03 ppb, so the high coverage of ice and snow with a low surface
reflectance in the regions of Antarctic and Greenland lead to a high random error with an
average value of 4.43 ppb. Although the reflectance is low on the ocean, the small aerosol
optical depth and large echo power result in an average random error of only 3.52 ppb. In
ocean, the main factor affecting the random error is the wind speed magnitude. The larger
the ocean surface reflectance, the greater the SNR at locations with high sea surface wind
speed. On land, the main factors affecting the error are the aerosol optical depth and the
surface reflectance. Overall, the initial design requirements meet at a horizontal resolution
of about 20 km.

4.3. Analysis of Systematic Errors Using IPDA Lidar
4.3.1. Verification of Model Accuracy

Prior to calculating the inversion error, it is necessary to verify the accuracy of the
model. The specific methods used to classify errors in the literature for previous error
analysis of CH4 do not agree with ours, so a direct comparison cannot be carried out to
verify our correctness. In 2008, Ehret et al. showed [38] that the principles of differential
absorption lidar inversion for CO2 and CH4 are the same, and hence the correctness of our
model can be verified by comparing the CO2 error inversion results. This study refers to the
parameter data of the lidar system presented in reference [38]. Using the same model and
methods for calculating different types of errors presented in Section 2.2, the error of the
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CO2 inversion results is calculated under the assumption of a 380 ppm CO2 concentration,
and a horizontal comparison is carried out, as shown in Table 3.

Table 3. The comparison results of the relative errors of XCO2 due to different error sources obtained
from the simulation of the same system parameters selected for comparison.

Sources of Error Error Distribution Relative Error Relative Error Calculated by
Ehret et al. [38]

Temperature 0.5 K 0.0120% 0.0100%
Pressure 0.5 hPa 0.0360% 0.0320%

Relative humidity 5% 0.0190% 0.0230%
Laser energy emission accuracy 0.05% 0.0310% 0.0250%

Laser linewidth 15 MHz 0.0016% 0.0010%
Laser frequency offset 0.3 MHz 0.0330% 0.0280%

Some specific parameters are not specifically presented in the reference, such as the
molecular transmittance of other atmospheric gases and the aerosol optical depth, and the
absorption lines cannot be exactly the same due to rounding errors, which can lead to some
deviation in the error calculation. But overall, the comparative results of the two papers are
similar and can prove the correctness of our error analysis model, so we can then use the
model and simulate the error of CH4.

4.3.2. Simulation of Systematic Errors

To process methane gas inversion, the sensitivity of the systematic error is calculated
using the US 1976 standard atmospheric model. We employ Equation (8), presented in
Section 2.3, to compute the relative error of the system caused by meteorological factors.
The sensitivity of the linewidth, frequency offset, and energy detection accuracy to the
systematic error caused by the parameters can be evaluated by assuming the indepen-
dent influence of each factor and using Equations (10)–(12), mentioned in Section 2.3.
The sensitivity of the systematic error in the XCH4 inversion results are shown in Figure 9.
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As seen in Figure 9, meteorological elements, such as temperature, pressure and relative
humidity have a great influence on the error of the whole system with high sensitivity, hence,
it is rather important to choose a high precision global atmospheric background field. The
emission accuracy of the laser has a great impact, and a shift in the center frequency of the
laser will affect the differential absorption coefficient of the methane gas, thereby generating
errors.

Assuming that the inversion errors caused by each error source are independent of
each other, with only the on-line and off-line wavelengths changed, using the model we
have verified as correct in Section 4.3.1, the absolute errors at the wavelengths selected by a
previous study (on-line and off-line were selected at 1645.552 nm and 1645.846 nm) [35] and
the error distribution after wavelength optimization (on-line and off-line at 1645.565 nm
and 1645.831 nm) are calculated separately and presented in Table 4. The results show that
the system can meet the 10 ppb requirement in the Antarctic region where the inversion
error is relatively high. Additionally, the absolute error is reduced by 10.1 ppb compared to
before wavelength optimization in this region.

Table 4. For the IPDA lidar model in this paper, the absolute systematic errors at 1900 ppb concen-
tration of XCH4 were chosen to be inverted at on-line and off-line wavelengths before and after
optimization under certain error assignments for different error factors.

Sources of Error Error Distribution Result 1 1 Result 2 2

Temperature 0.5 K 0.73 1.67
Pressure 0.5 hPa 1.24 1.37

Relative humidity 5% 0.64 0.50
Laser energy emission accuracy 0.1% 0.84 1.77

Laser linewidth 30 MHz 0.06 1.25
Laser frequency offset 0.5 MHz 0.10 0.13

Random error Antarctic average 3 4.43 11.45
Total error 8.04 18.14

1 Absolute errors calculated at 1900 ppb column concentration for the wavelengths selected in this paper. 2 Ab-
solute errors calculated for the wavelength selected by previous study [35]. 3 Mean relative error of methane
inversions in the Antarctic.

4.4. Random Errors Optimization

As the inversion of the total XCH4 from different error sources is not completely inde-
pendent, it is important to count all the errors to calculate the total error. In this study, the
six influencing factors are listed in Table 4. These errors are the parameters of the forward
simulation process. The global methane gas column concentration is obtained using the
same steps as shown in Figure 3. The two laser beam signals and global distribution of
the differential absorption optical depth (DAOD) are calculated and shown in Figure 10a.
The comparison of the XCH4 values through inversion using the original GOSAT satellite
XCH4 data is carried out, to obtain the global error distribution of the XCH4 (as shown in
Figure 10b).

The figure shows that the average absolute error of the XCH4 inversion in the southern
hemisphere is smaller than the northern hemisphere due to lower average methane gas
column concentration. On the other hand, large error values resulted with an average error
of 8.41 ppb, in the Tibetan Plateau region, due to smaller differential absorption optical
depth and in Central Asia, due to larger aerosol optical depth. Bousquet et al. [35] has
also mentioned the high value of errors for methane gas in temperate Asia. Although our
simulation uses a horizontal resolution of 20 km, while the reference is 50 km, the very
small difference in horizontal resolution will only have an effect on the absolute magnitude
of the error, and it can be seen that our simulation is similar to the error distribution of
Bousquet et al.
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(b) global distribution of the total error using inversion.

In the polar regions, the low signal-to-noise ratio is because of low snow and ice
reflectance which results in a relatively large random error. The average methane error
is only 6.69 ppb due to low average methane concentration. Other regions may have an
average error of 6.51 ppb over the ocean and 7.18 ppb over the land surface. The overall
results are below 10 ppb which meets the target requirements.

However, there may be other factors which increase the actual inversion error. More-
over, the results show that the random error accounts for a large proportion and has
significant randomness, hence, it is important reduce the random error more. Random
error can be reduced by increasing the telescope receiving area, increasing the energy of
laser emission, and by increasing the number of detections. Because of the large random
error in the Antarctic, the relationship between the magnitude of the random error and
these factors is calculated assuming that in the Antarctic, the atmospheric parameters and
the surface reflectance are the average values, as shown in Figure 11.
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An increase in number of detections can significantly reduce the random errors. But
even with an increase in number of detections, the horizontal resolution of detecting
methane gas will decrease without increasing the pulse repetition rate. The diameter of
the receiver telescope in the atmospheric dynamics mission, Aeolus, is 1.5 m [54], where
a telescope with 1.2 m diameter is well-matured and developed. The single pulse energy
of the laser carried by the CALIPSO lidar is 110 mJ [55], hence, a laser of 75 mJ is also in
line with the actual situation. Therefore, according to the requirements of the system, the
value of the single pulse energy is set to 75 mJ, the telescope diameter value is set As 1.2 m,
and the number of detections is 200 times, which has finally reduced the random error to
3.5 ppb. The final inversion results control the maximum global error in the temperate
Asian region to 8.14 ppb, which is the design requirement of the system.
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5. Conclusions

In this study, we have used the HITRAN 2020 spectral database to calculate methane
gas absorption cross-sections and analyze the relationship between random error, sys-
tematic error, and selected wavelength. The on-line and off-line optimal wavelengths of
1645.565 nm and 1645.831 nm, respectively, were selected. These parameter selection has
resulted in the integrated error reduction of about 10 ppb in the integrated error of the
system as compared to the inversion results of previous study using different wavelengths.
To simulate errors in different regions at real atmospheric conditions, GOSAT satellite XCH4
data have been used in conjunction with ERA-5 reanalysis meteorological data. Similarly,
MODIS satellite land surface reflectance, and aerosol optical depth data are used to simulate
and analyze methane gas column concentrations in different regions worldwide. Further-
more, the error allocation for the IPDA lidar system was performed, meeting the total error
index of 10 ppb. The results of the global error simulation show that the average error
can be controlled up to 6.51 ppb over the ocean and up to 7.18 ppb over land. However,
in temperate Asia, the inversion error reaches a local maximum of 8.41 ppb due to the
high aerosol optical depth and low echo signal-to-noise ratio. To address this issue, this
study optimizes the IPDA lidar system parameters by controlling the single pulse energy
to 75 mJ, increasing the receiver telescope diameter to 1.2 m, and increasing the detection
frequency to 200 times per unit spatial resolution. These optimizations effectively improve
the system signal-to-noise ratio and control the maximum global error up to 8.14 ppb, to
meet the design requirements. This study can provide important reference information
for the parameter designing of spaceborne IPDA lidar systems for high-precision CH4 gas
column concentration detection.
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