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Abstract: With the accelerated development of artificial intelligence, remote-sensing image technolo-
gies have gained widespread attention in smart cities. In recent years, remote sensing object detection
research has focused on detecting and counting small dense objects in large remote sensing scenes.
Small object detection, as a branch of object detection, remains a significant challenge in research due
to the image resolution, size, number, and orientation of objects, among other factors. This paper
examines object detection based on deep learning and its applications for small object detection in
remote sensing. This paper aims to provide readers with a thorough comprehension of the research
objectives. Specifically, we aggregate the principal datasets and evaluation methods extensively em-
ployed in recent remote sensing object detection techniques. We also discuss the irregularity problem
of remote sensing image object detection and overview the small object detection methods in remote
sensing images. In addition, we select small target detection methods with excellent performance in
recent years for experiments and analysis. Finally, the challenges and future work related to small
object detection in remote sensing are highlighted.

Keywords: artificial intelligence; deep learning; object detection; remote sensing

1. Introduction

The rapid advancement of science and technology has made remote-sensing image
technology indispensable for various applications. Some examples of these applications
include monitoring for diseases, transportation planning, environmental monitoring, crop
harvest analysis, geological surveys, and identifying objects used in military operations [1–6].

The primary objective of object detection and recognition, which is one of the primary
challenges in remote sensing, is to locate the items that can be noticed through digital
images. However, images obtained using remote sensing include a vast range of scales
because they cover such a large area. This results in a variety of object sizes. Because of
this, implementing algorithms for object detection in images obtained from remote sensing
will always encounter substantial obstacles.

To meet this challenge, this paper introduces a series of efficient small object detection
methods to help the reader understand the current development status and choose the
appropriate solution for specific problems. So far, the traditional object detection methods
are the Histograms of Oriented Gradients (HOG) feature extraction algorithm [7–9], and
the Deformable Part Model (DPM) algorithm [10–13].

The HOG algorithm starts by creating a grid out of the input image, then uses the
created feature table to create a histogram for each cell of the grid, extracts the region of
interest to generate features, and then feeds it into the support vector machines (SVM)
classifier so that it can be detected.

Remote Sens. 2023, 15, 3265. https://doi.org/10.3390/rs15133265 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15133265
https://doi.org/10.3390/rs15133265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7606-1411
https://orcid.org/0000-0002-4193-6062
https://doi.org/10.3390/rs15133265
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15133265?type=check_update&version=1


Remote Sens. 2023, 15, 3265 2 of 29

The DPM algorithm is an upgrade and extension of the HOG algorithm. It has a more
effective technique for finding a solution to the problem of the object’s multiple perspectives.
On the other hand, because these algorithms are focused primarily on detecting pedestrians,
the detection effect on remote sensing images is not very good.

In recent years, Convolutional Neural Networks (CNNs), feed-forward neural net-
works with a convolutional structure, have been widely used. The aforementioned ar-
chitecture is proficient in diminishing the amount of memory of deep neural networks.
The reduction of parameters in a network and the alleviation of model overfitting can be
effectively achieved through the implementation of three fundamental operations: local
perceptual fields, weight sharing, and pooling layers.

In general, CNNs have several convolutional and pooling layers. They use alternating
convolutional and pooling layers, i.e., one convolutional layer is connected to one pooling
layer, and so on. Each neuron of the output feature map in the convolutional layer is locally
connected to its input local. The corresponding connection weights are weighted and
summed with the local inputs, and bias values are added to obtain the neuron input values.

The CNN is named because the process is equivalent to the convolution process,
and the schematic diagram of CNN target detection is shown in Figure. With the develop-
ment of deep learning, a large number of deep learning-based target detection algorithms
have been proposed and have achieved remarkable results on remote sensing image
datasets. The principle diagram of CNN object detection is shown in Figure 1. The algo-
rithm for detecting objects in remote sensing images has emerged as a significant area of
research, with a multitude of experiments and studies conducted on the subject.

CONV RELU CONV RELU POOL CONV RELU CONV RELU POOL

FC

Input Output

Figure 1. The principle diagram of CNN object detection.

As the pioneering work of object detection algorithms based on deep learning, Region-
based Convolutional Neural Networks (RCNNs) [14] successfully link convolutional neural
networks with object detection. However, because RCNNs consist of four parts—generating
candidate windows, feature extraction, SVM classification, and window regression—the de-
tection efficiency of the algorithm is relatively low. Based on this problem, subsequent
SPPNet [15], Fast RCNN [16], Faster RCNN [17], FPN [18], Mask RCNN [19], etc., im-
proved the shortcomings of the previous algorithm to enhance the detector performance.
With the introduction of detectors such as the YOLO series [20–23] and SSD [24], the per-
formance of object detection algorithms has been improved, and the technology has been
continuously developed.

Several researchers have achieved some results in summarizing the overview of object
detection algorithms [25–29]. They mainly review the problems faced by high-resolution
object detection and the proposed methodological approaches, remote sensing image
datasets, and the performance of the leading detection methods at this time.

This paper provides an in-depth analysis of the remote sensing images and evaluation
metrics that are commonly used for object detection, which differs from the existing
literature. The article focuses on various categories of object detection techniques, the
constraints associated with remote sensing images, and the challenges caused by object
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irregularities, along with the strategies for addressing them. Additionally, it explores
methods for detecting small objects in remote sensing imagery.

The applications of small object detection on remote sensing images, especially rotating
small objects, are summarized. We classify the existing processes into six categories based
on different technical bases, including more recent techniques within the last two years.
In addition, we re-measure the mean Average Precision (mAP), Floating Point Operations
(FLOPs), number of parameters (Params), and Frames Per Second (FPS) transmitted for six
of the best methods. These algorithms are evaluated on this basis.

In this article, we present a comprehensive review of object identification methods
and how those methods have been applied to remote sensing in recent years. In addition,
we give a great deal of focus to developing algorithms and applications for detecting small
objects. The overview of this paper is shown as Figure 2.
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Figure 2. Hierarchical structure of this paper.

The main contributions of this paper are as follows:

• We present a detailed overview of the process of object detection using deep learning,
covering topics such as problem definition, the history of development, the current
status of research, datasets, and assessment methodologies.
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• We take a comprehensive approach to organize, classify, and compare the various
methods for object detection based on the various differentiation principles. The ir-
regularity problem in object detection for remote sensing is addressed using a variety
of different approaches and methodologies. The most up-to-date methods, as well
as the method of remote sensing photos and the detection of small objects, are ad-
dressed here.

• For small object detection methods in remote sensing, we have conducted a detailed
literature classification and analysis. We classify small object detection algorithms
into six categories, including multi-scale prediction, enhanced feature resolution,
contextual information, data enhancement, novel backbone network and training
strategy, and boundary discontinuity problem.

• In this paper, we provide an in-depth analysis of the issues and difficulties associated
with the detection of small objects in remote sensing images from various viewpoints,
and we clarify the future development trends and directions.

The rest of this review is organized as follows. In Section 2, we organize and analyze
the commonly used datasets for object detection and their evaluation methods. In Section 3,
we focus on different classes of object detection methods. In Section 4, we focus on object
detection methods and their applications for remotely sensing images. In Section 5, we
compare the classical object detection algorithms and the visualization of the results of
small object detection algorithms. In Section 6, We analyze the problems and challenges
faced by remote sensing image small object detection from multiple perspectives and clarify
the future development trends and directions. Finally, we conclude the research work
in Section 7.

2. Datasets and Evaluation Methods
2.1. Datasets

(1) DIOR dataset [26]: This is a public dataset for large-scale benchmarking of optical
remote sensing image object detection. The dataset contains 20 types of objects, such
as airplanes, stadiums, bridges, dams, ports, etc. Its total number is 23,463 images.

(2) RSOD dataset [30,31]: This dataset contains much smaller types and images than the
DIOR dataset. The dataset includes only four types of objects: aircraft, oil drums,
overpasses, and sports fields—a total of 976 images.

(3) NWPU VHR-10 dataset [32–36]: The NWPU-RESISC45 dataset was proposed by re-
searchers at Northwestern Polytechnical University, with a total of 45 categories and
a total of 31,500 images. The experimental results were not entirely satisfactory due
to the low resolution of the images. As a solution, the NWPU VHR-10 dataset was
created. The images of this dataset are VHR images with a total of 10 categories,
which are widely used in object detection tasks. The disadvantage of this dataset is
that there are no small-sized objects marked, so the recognition effect in small object
detection algorithms could be better.

(4) DOTA dataset [37]: This dataset has a total of 2806 images, and it contains 15 types of
objects with various scales, orientations, and shapes, so the detection algorithm using
this data is more stringent.

(5) VEDAI dataset [38]: This dataset contains a large number of vehicles and is mainly
used for remote sensing image vehicle identification. Compared with tubing, sports
fields, etc., vehicles are small objects so this dataset can be used for remote sensing
image small object detection.

(6) ITCVD dataset [39]: This dataset contains images used for remote sensing image
vehicle detection, with a total of 23,678 images. It contains 23,543 test images with
many vehicle objects, and each vehicle is manually labeled.

(7) COCO dataset [40]: This dataset is one of the most commonly used datasets for object
detection, especially small object detection. The dataset contains a large number
of small objects, a total of 91 types of objects, and the number of images is as high
as 328,000.
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(8) UCAS-AOD dataset [41]: This dataset contains 2819 car images and 3210 aircraft images.
(9) RSC11 dataset [42]: This dataset contains 11 similar scene classes, so the classification

of scenes becomes difficult.

The Horizontal Bounding Box (HBB) is commonly used to represent objects oriented
horizontally in the labeling of datasets. Objects that do not rotate are typically depicted
using the Oriented Bounding Box (OBB) method.

The HBB (Hierarchical Bounding Box) requires the box to be oriented perpendic-
ular to the coordinate axis. This orientation restricts the box from fully encompassing
partially distorted large objects. The orientation and scale of the box are determined by
OBB, which considers the object’s shape. The box is not necessarily perpendicular to the
coordinate axis. The generated inclusive box is comparatively more compact than the
oriented bounding box.

Regarding the creation methods of OBB, the Principal Component Analysis (PCA)
method [43] is the dominant method. OBB first uses PCA to obtain the three principal
directions of the point cloud to obtain the center of mass and calculate the covariance. The
covariance matrix is then obtained, and the eigenvalues and eigenvectors of the covariance
matrix are found. Among them, the eigenvectors are the principal directions. In the second
step, OBB converts the input point cloud to the origin using the principal directions and
the center of mass.

The principal direction coincides with the coordinate system direction to build the
enclosing box of the point cloud transformed into the origin. Finally, OBB sets the principal
direction and enclosing box to the input point cloud and achieves the final effect by the
inverse transformation of the input point cloud to the origin point cloud transformation.

As shown in Table 1, the composition of a benchmark dataset, including the number
of objects, classes, instances, and annotation style, significantly affects the training and
testing of a model. The effective training of the model can be facilitated by using rich
instances, diverse classes, and a suitable annotation style. In Table 1, the classes of DIOR
and DOTA are 20 and 15, respectively, and their number of instances is much higher than
other datasets. In addition, the annotation style of OBB helps to improve the detection of
rotating objects. DIOR uses a combination of both HBB and OBB annotation styles, whereas
RSOD and NWPU VHR-10 solely employ the HBB annotation style. Furthermore, DOTA
incorporates all OBB. The distinctive characteristics of DIOR and DOTA differentiate them
from other remote sensing datasets.

Table 1. Comparison of classical datasets.

Dataset Amount Classes Instance Annotation Style Description

DIOR [26] 23,463 20 192,472 HBB + OBB Aircraft, stadiums, bridges, dams, ports, etc.
RSOD [30] 976 4 6950 HBB Aircraft, oil drums, overpasses, sports fields

NWPU VHR-10 [32] 800 10 3775 HBB Aircraft, ships, stadiums, ports, bridges, etc.
DOTA [37] 2806 15 188,282 OBB Aircraft, vehicles, stadiums, etc.
VEDA [38] 1210 9 3640 OBB Vehicles
ITCVD [39] 173 1 29,088 OBB Vehicles

UCAS-AOD [44] 910 2 6029 HBB + OBB Airplane, car
RSC11 [42] 1213 11 - Scene Class Dense forests, grasslands, buildings, ports, etc.

2.2. Evaluation Methods

In this section, We focus on five evaluation metrics commonly used to evaluate object
detection performance, including Intersection over Union (IoU), Precision, Recall, Average
Precision (AP), and mean Average Precision (mAP).

(1) IoU: a detection frame is generated when detecting an object. IoU is the ratio of
overlap and union of a priori frame and real frame area. Generally, the threshold is set
to 0.5, which is also the threshold for the cross-union ratio. When the value is more



Remote Sens. 2023, 15, 3265 6 of 29

significant than 0.5, the detected object is considered to be detected. The crossover
ratio is defined as follows:

IoU =
A ∩ B
A ∪ B

. (1)

(2) Precision: Precision represents the ratio of the model finding the correct sample to
the total sample in the prediction result. When the intersection-union ratio is greater
than the threshold, the result is classified as True Positive (TP), and vice versa as False
Positive (FP). If the detector does not detect an object in the detection frame labeled
with the sample, the object is classified as False Negative (FN). Accuracy is defined
as follows:

Precision =
True Positive

True Positive + False Positive
=

True Positive
All Observations

. (2)

(3) Recall: Recall rate indicates the number of positive samples recovered by the model in
the total positive samples, which is an important indicator to measure whether the
model is “found all”. Recall is defined as:

Recall =
True Positive

True Positive + False Negative
=

True Positive
All Ground Truth

. (3)

(4) AP [45]: Average Precision is the precision averaging on a [0, 1] recall. The higher the
AP value, the better the detector’s detection performance for a certain type of object
in the dataset. Average Precision is defined as follows:

APu =
1

Ωu
∑

i⊂Ωu

∑j⊂Ωu h
(

puj < pui
)
+ 1

pui
, (4)

where Ωu denotes the Ground Truth result, puj denotes the location of object j,
and puj < pui denotes that object j is ranked before item i in the recommendation list.

(5) mAP [45]: mAP averages the average accuracy of each class of objects detected by
the detector. Higher mAP values indicate better detector performance for the entire
dataset. The mean average accuracy is defined as:

mAP =
∑u∈U APu

|U| . (5)

(6) FPS: FPS is used to evaluate the target detection speed, i.e., the number of images that
can be processed in each second. The higher the FPS, the faster the detection speed of
the model.

(7) FLOPs: FLOPs refers to the number of floating point operations, which can also
be interpreted as computations coming. The smaller the FLOPs, the smaller the
complexity of the model.

(8) Params: Params represents the number of parameters required by the model. The smaller
the Params, the less parameters the model needs and the lighter it is.

3. Object Detection

Object detection has been researched and refined for over two decades. Object identifi-
cation, considered one of the key directions and fundamental challenges of computer vision,
is currently developing along with the requirements of many applications. Throughout its
development history, object detection can be divided into two main periods, i.e., traditional
object detection algorithms and deep learning-based object detection algorithms.

Deep learning-based object detection algorithms are further divided into several
technical branches. A diagram of the method development history is shown in Figure 3.
This section mainly discusses the different branches of traditional and deep learning-based
object detection algorithms.



Remote Sens. 2023, 15, 3265 7 of 29

20042001 2006 2008

VJ Det HOG Det DPM

2012

...
+AlexNet

Anchor Free
2018 2019 2020 2021 2022

CornerNet 

CenterNet 

FSAF

FCOS

CPNDet

SAPD
Oriented-Reppoints

Anchor Based

One-stage

Two-stage

2016

YOLOv1
SSD

2017

YOLOv2

2018

RetinaNet

YOLOv3

2019 2020

YOLOv4

2021

YOLOv5

2022

YOLOv6

YOLOv7

2014

RCNN

2015

SSPNet
Fast RCNN

Faster RCNN

2016 2017

Mask RCNN
FPN

2018

Cascade RCNN 

2019

Libra RCNN 

Grid RCNN 

2020

CenterMap

2021

ReDet

2022

DODet

Object Detection Milestones

Traditional Detection 

Methods

Deep Learning based 

Detection Methods

Figure 3. The development history of object detection.

3.1. Traditional Object Detection Methods

In this section, we discuss the Viloa–Jones, HOG, and DPM detectors. The Viloa–
Jones detector was proposed in 2001 and is mainly used for face detection. It com-
bines techniques such as integral images, cascade classifiers, and other methods with
outstanding performance.

The HOG detector was introduced in 2005. The functionality extends beyond facial
recognition. The process is centered on the extraction of features from the object. The DPM
detector was conceptualized in 2009 using the detection principle of the HOG detector.
The system can detect discrete components of the object and enhance its precision.

The performance of object detectors is inadequate to meet experimental requirements
when faced with a large number of images and objects to be detected. The advent of deep
learning techniques has led to the emergence of numerous new detectors that outperform
traditional object detectors by a significant margin.

3.2. Anchor-Based Object Detection Methods

The Anchor-based object detection methodology aims to produce a multitude of
discrete candidate frames for a given pixel, followed by applying filtering, classification,
and regression techniques to these frames. This solution offers a partial resolution to the
problem of inconsistent object sizes and occlusion.

This technology has the potential to effectively enhance its recall rate when used for
the detection of small objects. On the other hand, the approach has the drawback of relying
on an extremely high number of manually designed components. In addition, the process of
training the test takes a significant amount of time, which results in reduced efficiency [46].

The Anchor-based object detection method contains a one-stage detector and a two-
stage detector. The two-stage detector is divided into two steps: (1) extracting the image
candidate frames and (2) making corrections for the selected regions to obtain the monitor-
ing point results.

Two types of detectors are used in the Anchor-based object identification method: a
one-stage and a two-stage. The two-stage detector comprises two stages, the first of which
is the extraction of the picture candidate frames, followed by the second stage, which is
making corrections for the selected regions to obtain the monitoring point results. The flow
chart for it is presented in Figure 4.

The two-stage detectors mainly include R-CNN, SPPNet, etc. R-CNN is the pioneer in
using neural networks to solve object detection problems. However, it has many limitations,
such as individually distributed training, independent data storage, and a large number of
redundant candidate regions. This can result in a significant time and space overhead [14].

For example, SPPNet [15] solves the problem of object variant or loss due to object
scaling. It proposes a spatial pyramid pooling layer (SPP), which allows an image to be
convolved only once, avoiding the time overhead due to repeated computations. SPP-
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Net has the same limitations as RCNN. Its network cannot achieve end-to-end detection.
The schematic diagram of SPPNet is shown in Figure 5.

Input CNN Feature Extraction Output

Proposals

Figure 4. Framework for two-stage object detection.

Input image Conv5

Spatial pyramid pooling 

256-d

4*256-d

16*256-d

Fixed-length 

representation

Fully-connected layers

Figure 5. SPPNet Network Structure [15].

The Fast RCNN approach employs a softmax classifier as a means to address the issue
of classification synchronization. Additionally, RoI layers are used to facilitate the mapping
of multi-scale features, thereby addressing the challenge of scale variation. The multitask loss
function of Fast RCNN enables end-to-end training for multitask purposes. Detection is slow
due to the intricate algorithm employed by Fast RCNN for selecting candidate regions [16].

Faster RCNN inherits the advantages of Fast RCNN. It innovatively proposes using a
region selection network to extract candidate frames, which improves the computational
speed. However, it has inaccurate localization frames and cannot effectively identify
small objects [17].

FPN extracts multi-scale features of images by constructing feature pyramids at differ-
ent scales, which significantly improves the network accuracy. Because the network can
only be trained for a specific single resolution, it can be contradictory to the multi-scale in-
ference [18]. The Cascade RCNN approach employs a cascade detector to select thresholds
merit-based. The proposed solution effectively addresses the issue of overfitting that may
arise from implementing high thresholds. However, it should be noted that this approach
does not facilitate real-time detection [47].

R-FCN adds a position-sensitive score map to improve the sensitivity of the convo-
lutional network to object position. It solves the problem of object location insensitivity,
but there is no improvement in computational speed [48]. Mask RCNN solves the prob-
lem of simultaneously localizing, classifying, and segmenting objects. It introduces an
instance segmentation branch in order to achieve pixel-level object detection. However,
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the performance is also lower than the real-time performance due to the high cost of
instance segmentation [19].

In extracting multi-scale objects, TridentNet differs from the multi-scale feature pyra-
mid of FPN. It uses a multi-branch structure with different perceptual fields and shares
multi-branch structure weights, improving detection accuracy. However, it cannot be
monitored in real-time due to its slow detection speed [49].

The one-stage detector can obtain the final detection result directly after only one stage,
which is faster than the two-stage detector. Its flow chart is shown in Figure 6. The YOLO
series, which is a one-stage detector, has been evolving.

Input CNN Feature Extraction Output

Figure 6. Framework for one-stage object detection.

YOLOv1 is the first to turn the object detection problem into a regression problem.
It has a more straightforward network structure and fast detection speed. However, its
accuracy of object localization could be significantly higher. When the object is small,
or there are multiple objects, the detection effect of YOLOv1 is not good [20].

YOLOv2 further improves detection accuracy and detection speed. However, it does
not improve the limitations of YOLOv1 [21]. To address the issue of insufficient detection
of small objects, YOLOv3 employs a multi-scale feature map extraction method and an
improved classification network. It is ineffective, however, at detecting medium and
large objects. [22].

YOLOv4 uses Mosaic and self-adversarial training strategies for data enhancement. It
integrates FPN, PAN, and so on, to improve the model performance further [23]. Yolov5 has
a slightly worse performance compared to Yolov4. However, it is flexible, fast, and better
at rapid model deployment. Yolov6 further improves accuracy and speed. It achieves the
highest accuracy so far in real-time detection [50].

SSD [24] uses multi-scale feature map extraction and convolutional feature detection.
It is faster and has higher accuracy. However, SSD relies more on manual experience and
requires the manual setting of parameters for pre-selected boxes. Therefore, SSD has poor
detection accuracy for small objects and multiple objects.

RetinaNet [51] uses the Focal loss function, which solves the problem of category
imbalance. However, it cannot perform real-time detection and has poor detection results
for small and multiple objects.

EfficientDet [52] proposes a weighted bidirectional feature pyramid network. It is
simpler and faster in multi-scale feature fusion. EfficientDet proposes a composite scaling
method that simultaneously scales the backbone network’s resolution, depth, and width.
However, it has a slower detection speed.

3.3. Anchor-Free Object Detection Methods

Anchor-free object detection methods do not require a predetermined anchor. They
locate the object by multiple key points or centroids and detect it directly. Specifically, it
can be further divided into centroid-based and keypoint-based Anchor-free algorithms.

The centroid-based algorithm couples classification and regression into two subgrids
and directly detects the central region and boundary of the object. Specifically, it can be
divided into Anchor-free algorithms based on central points and key points. The center
point-based algorithm couples classification and regression into two subgrids. It directly
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detects the central area and boundary of the object. Representative algorithms include
Centernet [53], FCOS [54], and TTFNet [55], to name a few.

For example, CenterNet [53] uses a keypoint detection algorithm. It treats detection
objects as points and uses center pooling and cascaded corner point pooling. CenterNet is
unsuitable for small object and multi-object detection due to the computationally intensive
nature of the model.

FCOS uses a fully convolutional network to perform regression operations on the
distance from each location of the feature map to the border. Similar to the principle of FCN,
it treats each position of each point as a training sample. Compared with the Anchor-based
algorithm, FCOS [54] saves a significant amount of memory space during training, which
is suitable for instance segmentation.

TTFNetk can be seen as an improved version of Centernet. It uses an elliptical Gaussian
kernel to generate negative sample supervised signals and sampling regions around the
centroid. While maintaining the performance, TTFNetk [55] reduces the preprocessing
operations on the data, thus improving the learning efficiency and the quality of the
supervised signal.

Key point-based algorithms are also called corner point-based algorithms. At the
object’s top left and bottom right two-point positions, the detection frame is formed.
Representative algorithms are Cornernet and Extremenet algorithms, among others. They
are prone to FP due to the lack of information within the object [56].

Compared with Cornernet, Extremenet [57] uses the top, bottom, left, right, and center
five points of the object as key points. Extremenet extracts local information with less noise
and more robust features, enabling better detection performance.

3.4. Transformer-Based Object Detection Methods

The Transformer paradigm has experienced a noteworthy proliferation in recent years.
In its early stages of development, the Transformer model was primarily subjected to
testing with a focus on its application in the field of Natural Language Processing (NLP).
The utilisation of the method in the rapidly expanding field of computer vision in modern
times is commonly known as Vision Transformer (ViT).

The main Transformer-based object detection algorithms are DETR and YOLOS.
The idea of DETR is similar to the traditional object detection methods, but the presentation
has significant differences. The traditional Anchor-based method classifies the predefined
anchors and regresses the edge coefficients. In contrast, DETR treats object detection as an
ensemble to predict. That is, an image sequence is transformed into an ensemble sequence [58].

YOLOS redesigned the detector by combining the encoder–decoder part of DETR with
the encoder-only backbone of ViT. YOLOS aims to demonstrate the powerful migration
capability of ViT precisely. With only minor modifications, ViT demonstrates excellent
flexibility and generalization [59].

For instance, the Swin transformer offers a remedy to the traditionally widespread
issue of excessive computational complexity. In contrast to the 16× downsampling offered
by ViT, the Swin transformer offers three different feature sizes: 4, 8, and 16×.

In terms of computational effort, the Swin transformer introduces the W-MSA concept.
The 4× and 8× downsampling techniques divide the feature map into multiple regions
that do not intersect. The MSA operation is carried out within the window so that data can
be transferred between windows [60].

4. Remote Sensing Images

The problems concerning object detection of remote sensing images can be divided
into two parts: (1) object detection methods and (2) remote sensing image processing.

In Section 3, we thoroughly discussed object detection methods. This section discusses
object detection in remote sensing images and related problems.
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4.1. Remote Sensing Images Processing
4.1.1. Limitations of Remote Sensing Images

Affected by many factors, the objects in remote sensing images have certain defects in
shape, size, occlusion, resolution, and pixels, which can affect the object detection results.
Some of the major limitations are as follows:

(1) The resolution of the images in the dataset is different. The object frequently changes
at different scales, which affects the object detection effect.

(2) In high-resolution images, the relative size of the detected object is small. After the
sample has been reduced several times, it may lead to the absence of crucial informa-
tion for small objects. This makes it impossible for the model to detect small objects.

(3) From Section 2.1, it can be seen that the dataset currently accessible contains a limited
amount of labeled data. The available methods are not sufficient to demonstrate opti-
mal object detection performance. To achieve optimal outcomes, gathering additional
images and providing annotations necessitates a significant investment of time.

4.1.2. Image Enhancement Methods

Objects with irregular scales and irregular shapes reduce detector performance. There-
fore, how to use geometric changes to process training images has become an urgent prob-
lem. To date, there have been many constructive schemes for image enhancement [61–64].
However, based on the specified requirements, they do not meet the necessary criteria.
Presently, a novel mode of cognitive processing has emerged. The compression of training
images can reduce storage space for high-resolution images while also decreasing the en-
coding time. The utilization of this technique enhances the performance of object detection.

The best image enhancement methods are image denoising [65], image filtering [66],
edge sharpening [67], image rotation [68], image scaling [69], and image compression [70].

4.2. Irregular Object Detection in Remote Sensing Images

In remote sensing images, many objects are closely arranged and irregularly oriented,
which affects the object detection performance to different degrees. This section discusses
the solutions for the object irregularity problem in remote sensing images.

4.2.1. Directional Object Detection

Recent object detection methods mainly introduce directional regression tasks in
classical object detectors. Among them, SCRDet [71], CADNet [72], DRN [73], R3Det [74],
ReDet [75], and Oriented RCNN [76] improve the performance by predicting the rotation
angle of the border. GlidingVertex [77] and RSDet [78] improved performance by returning
to the quadrilateral.

For example, Yang et al. [79] used an angle classification task [80] to solve the problem
of boundary discontinuity in angle-direction estimation. All of the above methods improve
the estimation of orientation based on the rotation angle representation, thus improving
the detection performance of rotating objects.

4.2.2. Non-Axial Feature Learning

Object detection methods such as YOLOv1 [20], Faster RCNN [17], FCOS [54], Rep-
Points [81], APD [82], FAN [83], CenterNet [53], etc. are oriented to upright or axially
aligned objects. They are poor at detecting densely distributed objects and are not axi-
ally aligned.

To solve this problem, Han et al. [84] designed a feature alignment module to alleviate
the misalignment between axially symmetric and non-axially symmetric objects.

Ding et al. [85] took a spatial transformation of the axially symmetric Rols. It enables
the model to learn non-axially symmetric representations with supervision under a rotat-
ing border. SCRDet++ [86] obtained higher object responses in the training network by
enhancing non-axisymmetric features.
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Guo et al. [87] introduced a convex hull representation to train the perception of the
shape and distribution of irregular objects. Learnable feature adaptation is also used to
avoid feature confounding.

DRN [73] uses a feature selection module to aggregate non-axisymmetric object infor-
mation of different shapes, directions, and core sizes. It also uses a dynamic filter generator
to regress this information. The above methods are aimed at improving the detection
performance of non-axisymmetric features.

4.2.3. Sample Allocation for Object Detection

When setting the IoU threshold, most assays opt to establish a threshold that enables
the selection of positive samples. The reliability of training samples is not guaranteed
because of variables such as noise. The object directions in remote sensing images are
diverse and densely dispersed. Therefore, the selection of high-quality samples is essential
for training directed detectors. Recently, several illustrative assignment strategies have
been proposed for this issue.

ATSS [46], FreeAnchor [88], PAA [89], OTA [90], and other methods use matching
optimization strategies to select the best samples.

For instance, Ming et al. [91] proposed a matching measure method using matching
sensitivity loss to evaluate spatial object alignment. This measurement method can effec-
tively enhance the correlation between directional objecting and classification. All of the
above techniques can optimize the sample allocation for object detection, which helps solve
the problem of object irregularities.

4.3. Small Object Detection in Remote Sensing Images

With the continued development of deep learning technology, the evolution of object
detection technology has accelerated. Research on the detection of medium and large
objects has made significant advances. Among them, the most popular detectors have
outstanding medium- and large-object detection performance.

The term “small objects” lacks a universally accepted definition; however, existing
academic definitions can be categorized into two overarching classes. The first classification
pertains to the comparative magnitude. The definition is established based on the relative
proportion between the object and the image. In accordance with the definition provided by
Chen et al. [92], small objects are characterized by a relative area that falls within the range
of 0.08% to 0.58%. This relative area is determined by calculating the median of the ratio
between the bounding box area and the image area for all object instances belonging to the
same category. Additionally, there exist alternative definitions. For example, the width–
height ratio of the object bounding box is less than 0.1, and the open square of the ratio of
the object bounding box’s area to the image’s area is less than 0.03. The second category
is defined by the absolute scale, which determines the size of small objects based on
the absolute pixel size of the object. The general dataset MS COCO for object detection
defines a small object as an object with a resolution of less than 32 pixels × 32 pixels.
The experimental dataset DOTA in this paper defines objects with pixel values in the
range of [10, 50] as small objects. However, due to the small number of pixels, small scale,
and easy-to-occlude shadows, small object detection still faces significant challenges.

This is mainly reflected in the few available features, high requirements for position-
ing accuracy, a small number of small objects in popular datasets, unbalanced samples,
and object aggregation, which are particularly serious in remote sensing images. In recent
years, many excellent small object detection methods have been proposed. They have
made significant progress in remote sensing image datasets. In this section, we discuss the
excellent small object detection methods available.

4.3.1. Multi-Scale Prediction

Multi-scale prediction aims to predict the coordinates and classes of objects on feature
maps at different scales. In the machine learning era, image pyramids are the representative
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method of constructing multi-scale features. The technique aims to scale the images to
different resolutions and then extract the features separately. It uses a sliding window-based
approach to detect objects, detecting small objects at the bottom of the pyramid.

For example, MTCNN [93] uses this idea and better recognizes small objects. However,
its detection time is relatively long due to the need to extract features of multiple resolutions.
With the development of deep learning techniques, CNN multi-scale feature extraction
replaced image pyramids, and SSD [24] was proposed. However, it was found that SSD is
not effective for small objects during detection.

Aiming at the problem of a single small object feature layer in SSD, DSSD [94] uses
Resnet-101 as the backbone network for extracting features, which combines the semantic
information of the higher-level features with the bottom-level information. This results in
richer semantic features and better detection in the small object layer.

FPN is similar to the idea of DSSD. Its bottom-up and top-down branching fully
integrates the high-level and bottom features, making each layer feature rich in semantic
information, which is beneficial for small object detection. PANet [95] improves on the
FPN by using fewer convolutional layers to build the path enhancement module, which
can retain more information on the underlying layers. It adds an adaptive feature pooling
module to make the region of interest contain multiple layers of features, further improving
the performance of small object detection.

FPN introduces information from other layers, causing conflicts when detecting in a
single layer. To address this problem, ASFF proposes an adaptive spatial feature fusion
approach. It uses a learning weight approach to fuse the features of each layer for the final
detection, which further improves the small object detection performance.

Therefore, the authors of AugFPN [96] argue that FPN does not take into account
the semantic differences between features at different levels. This makes the top-down
feature fusion process lose features at higher levels, resulting in regions of interest in each
layer without feature information from other layers. To this end, the AugFPN proposer
reduces semantic differences by adding the same supervision information to each layer
before feature fusion.

A residual structure combines other layer features with the top-level features, which
enhances contextual information. In addition, by fusing the elements of the candidate
boxes pooled in different layers, it is ensured that the area of interest of each layer has the
feature information of the other layers. Its small object detection performance is further
improved. The current backbone networks used for feature extraction are trained on the
ImageNet dataset, while the COCO dataset is used for testing.

The authors of SNIP [97] concluded that the difference between the two datasets affects
the small object detection performance. During training, SNIP only calculates the gradients
of regions of interest close to the object scale in the ImageNet dataset. In this way, the scale
differences between different datasets are reduced.

For the problem of scale variation in object detection, the authors of TridentNet [49]
found that the perceptual field is positively correlated with the object scale. The larger
the perceptual field, the better the detection of large objects; the smaller the perceptual
field, the better the detection of small objects. The algorithm controls the perceptual
field by controlling the parameters of the null convolution. It generates three parallel
convolutional layers to detect objects at different scales and improves the small object
detection performance.

RTMDet [98] comprehensively improves the current single-stage object detector. It
uses CSPDarkNet as a baseline and performs multi-scale feature fusion using CSPPAFPN.
In terms of training strategy optimization, it uses a dynamic soft label assignment strategy
to make the matching results of classification cost more stable and accurate. In the data
enhancement stage, RTMDet introduces a caching mechanism, significantly improving
operation efficiency.

Hang et al. [99] improved small object detection performance by modifying the first-
level detector YOLOv5. They added new feature fusion layers and detector heads from
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shallow layers to maximize the retention of feature information. In addition, they replaced
the original convolutional prediction heads with Swin transformer prediction heads SPHs
to reduce the computational complexity. Finally, the normalization-based attention module
HAM was integrated into YOLOv5 to improve attention performance in a normalized manner.

Guan et al. [100] proposed a deep neural network DNN based on high-quality object
locations. Small object detection performance is improved by computing multiple layered
segments with superpixels to derive gap-quality object locations and perform classification.

Fang et al. [101] proposed an improved method S2ANet-SR based on S2ANet. The
model sends both the original image and the restored image to the detection network and
then designs a super-resolution enhancement module for the restored image to enhance
the feature extraction of small objects and proposes perceptual loss function and matching
texture loss as supervision. The feature network design of part of the method is shown
in Figure 7.
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Figure 7. Feature network design. (P3–P7) Multi-scale features from level 3 to level 7. The different
color dot represents different feature layers. (a) FPN [18] uses top-down paths to fuse multi-scale
features. (b) PANet [95] adds additional bottom-up paths to the FPN. (c) NAS-FPN [102] uses neural
architecture search to obtain irregular feature network topologies, then applies the same blocks
repeatedly. (d) BiFPN [52] introduces a feature fusion mechanism with weights to extract features,
then uses the same blocks repeatedly.

4.3.2. Enhanced Feature Resolution

The method can promote detection accuracy by increasing the accuracy of high-level
feature maps or transforming the feature representation of the small object into a middle or
big object representation approximately. STDN [103] applies this idea using a scale transfer
module to increase resolution.

GAN-based PGAN [104] and SOD-MTGAN [105] inherit the generator and discrimina-
tor. Firstly, features containing enough small object information after the first convolution
layer are fed to the generator and are then enhanced by adding residual representation.
Secondly, the discriminative network has an adversarial branch and a perceptual branch.
The network is trained with instances of large objects first. The generator and discriminator
are trained in an iterative manner using a set of instances of both large and small objects,
to enhance the detection accuracy of small objects.

The GAN adversarial network framework diagram is shown in Figure 8. ViTAE-
B+RVSA_ORCN [106] uses the MAE [107] generative self-supervised pre-training method.
It extracts the image features of non-masked regions and predicts the image contents of
masked areas by an asymmetric network structure. The algorithm uses ViTAE as the
backbone network and replaces the MHSA module in Plain ViT with RVSA to adapt MAE
pre-training to remote sensing downstream tasks. Images generated by the Enhanced
Super Resolution GAN (ESRGAN) model, which is based on the Generative Adversarial
Network GAN, usually miss high-frequency edge information. This can seriously affect
the detection of small objects in remote-sensing images. Inspired by this, the new edge-
enhanced super-resolution adversarial network (EESRGAN) [108] uses different detector
networks in an end-to-end manner to propagate detector loss directions into EESRGAN as
a way to improve detection performance.
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Figure 8. The GAN adversarial network framework.

4.3.3. Contextual Information

This method aims to exploit the relationship between objects in the image, i.e., contex-
tual relationship, to improve the accuracy of small object detection.

Tang et al. [109] used a priori frame-based context-assisted methods to detect faces at
different scales (mainly small-scale faces). During detection, many priori boxes related to
faces will be helpful as auxiliary information to learn the supervision information of the
context characteristics of small-scale and blocked faces.

Hu et al. [110] proposed a module for extracting association relationships between ob-
jects to leverage object correlations. The module partitions the characteristics of individual
objects into two categories: shape and geometric features. It then combines the features of
multiple objects to create detection features.

At the same time, Chen et al. [111] introduced image-level and object-level contextual
information to describe the object-to-whole and object-to-object relationships, respectively.
Different from the description method, CoupleNet [112] obtains contextual information
related to the object by expanding the feature map of the region of interest to reduce the
chance of false identification.

4.3.4. Data Enhancement

Data enhancement increases the training samples by panning, rotating, and resampling.
Kisantal et al. [113] increased the training samples by resampling images containing small
objects and copying and pasting small objects.

Zoph et al. [114] applied Neural Architecture Search (NAS) [115] to data augmentation
to search for optimal strategies to improve RetinaNet performance.

4.3.5. Novel Backbone Network and Training Strategy

However, differences between classification and detection datasets can interfere with
small object detection. Researchers have proposed novel backbone networks and training
strategies for dealing with this problem. He et al. proposed a scratch-trained detection
model for precise localization.

Guan et al. [116] proposed an efficient regionalized network. They treated object
detection as a dual problem, divided into object proposal generation and object classifica-
tion. One of the frameworks aims to generate high-quality proposals and then import the
proposals and input images into the network to learn convolutional features.

Wang et al. [117] combined a pre-trained model with a training-from-scratch approach.
The SSD network is used as the backbone network, and the LSN auxiliary network is used
to compensate for the loss in feature extraction from the backbone network. This extracted
the mid-bottom feature information more efficiently and helped detect small objects.

Li et al. proposed DetNet-59 [118], a backbone network dedicated to object de-
tection. It designs the number of feature layers used for prediction according to the
task characteristics.
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Compared with ResNet-50 [119], its small object detection performance is better.
Qiao et al. [120] proposed the DetectoRS algorithm, which feeds information from the FPN
layer to the backbone network. The recursive structural feature reuses the information
twice, greatly improving the small object detection performance.

DEA-net [121] proposed a dynamically improved anchor network to solve the issue of
small object labels being easily lost or mislabeled. In order to provide qualifying samples,
the network employs sample discriminators to carry out interactive sample screening
between anchored and unanchored units.

GGHL [122] is suitable for object detection in arbitrary directions. It uses an adaptive
label assignment strategy (OLA) for unanchored objects based on a two-dimensional
oriented Gaussian heat map to define positive candidate objects. This enables the adaptive
fitting of features of unused objects after feeding to the neural network CNN learning.

APE adaptive period embedding is a method for representing oriented objects in
remote sensing images. The process is based on the angular periodicity of the oriented
object. The angle is represented by two two-dimensional feature vectors with different
periods. The vectors are continuous during the change of shape.

The CFC-Net [123] key feature capture network focuses on feature representation, pre-
defined anchor points, and label assignment. The network constructs robust key features
suitable for the respective tasks by polarizing the attention module. It also extracts dis-
criminative regression features to refine the pre-defined anchor points and uses a dynamic
anchor learning strategy to select high-quality anchor points adaptively.

Li et al. proposed a novel backbone network Large Selective Nuclear Network
(LSKNet) [124]. It can dynamically adjust the spatial receptive field to better simulate
the distance environment of various objects in the remote sensing scene.

Pang et al. [125] proposed a unified self-reinforcement network R2CNN. The network
consists of a backbone Tiny-Net, an intermediate global attention module, and classifiers
and detectors. As a lightweight residual structure, the Tiny-Net allows fast extraction of
rich features from the input. The global attention module is used to suppress false positives.
The classifier predicts the targets in each PATCH. If the object is available, the classifier
tracks the detector to locate the object. The classifier and detector are trained end-to-end to
speed up the detection process further and avoid false positives.

The TRD proposed by Li et al. [126] is a combination of CNN and a multilayer
transformer with an encoder and decoder. To detect objects in remote sensing images,
they designed an improved converter to aggregate multi-scale features and model the
interaction between instances. Considering the difference between the remote sensing
image dataset and the source dataset (ImageNet), they proposed the TRD with transmitted
CNN (T-TRD) based on the attention mechanism due to the limited samples in the remotely
sensed images and the large number of training samples required by the transformer.
To avoid overfitting, data enhancement in the model is combined with the transformer to
improve the detection performance.

4.3.6. Boundary Discontinuity Problem

The boundary discontinuity problem affects the object detection effect to some extent.
PP-YOLOE-R [127] significantly improved the object rotation recognition. It introduces
ProbloU loss to avoid the boundary discontinuity problem. PP-YOLOE-R also uses rotation
task alignment learning for rotating object detection. It obtains more accurate predicted
angles by angle prediction head and DFL loss.

For the boundary discontinuity problem, DCL is designed to replace the existing
sparse-coded labels with densely coded labels (DCL). It achieves great improvement in
training speed and detection accuracy. The angular distance and aspect ratio sensitive
weighting method in DCL makes the detector more sensitive to these two aspects of the
object. This improves the detection performance and makes the DCL particularly suitable
for detecting square objects.
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5. Comparison and Analysis of State-of-the-Art Models
5.1. Experimentation and Analysis of Typical Algorithms

The YOLO series is an example of a regression algorithm based on deep learning.
The YOLO series have developed into big representative algorithms in object detection.
On the other hand, the YOLO series are hardly ever employed in the research being done
now to test remote sensing images. As a result, we began by selecting four YOLO series to
be trained on the DOTA dataset so that we could evaluate how well they performed.

The results are presented in Figure 9. As a result of analyzing the available data, we
have concluded that YOLOv3 has the highest mAP up to 0.495 when judged by the criterion
of having 100 iterations of training. However, we did not anticipate this result at all. As a
result, the traditional YOLO series performs poorly when applied to remote-sensing images.
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5.2. Comparison of Advanced Object Detection Methods in Remote Sensing Images

In order to make the effect of the object detection algorithm on remote sensing images
meet our expectations, we compared the more recent excellent algorithms on the DOTA
dataset. The results are shown in Table 2.

In this paper, we further classified the DOTA dataset according to its object categories.
Large objects include baseball diamonds, tennis courts, basketball courts, ground track
fields, roundabouts, and soccer ball fields. Medium objects include planes, storage tanks,
harbors, bridges, and swimming pools. Small objects include large vehicles, small vehicles,
helicopters, and ships. The mAP of each method on the DOTA dataset for objects with
different sizes are shown in Table 3.

As shown in Table 3, the mAP, APL, APM, and APS of AO2-DETR are the highest
among similar models in the first-stage detectors. Among the two-stage detectors, LSKNet-
S* has the highest APL and APS, and its detection performance is the best for large and
small objects. The APM of CAD-Net is the highest, and its detection performance is the
best for medium targets. Taken together, LSKNet-S* also has the highest mAP among the
two-stage detectors, with up to 81.85%. For Anchor-free Methods, the Oriented RepPoints
with Swin-T-FPN backbone network has the best detection performance for large and small
objects, with high APL and APS of 77.90% and 75.43%. For medium-sized objects, Oriented
RepPoints with R-101-FPN have the best performance with APM as high as 76.72%. Collec-
tively, the Oriented RepPoints with the Swin-T-FPN backbone network has the highest mAP
and the best results. Traversing the whole table and comparing the three types of methods
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together, LSKNet-S* has higher mAP, APL, APM, and APS than AO2-DETR and Oriented
RepPoints using R-101-FPN. Therefore, LSKNet-S* has the best detection performance.

Table 2. Comparison of state-of-the-art methods on DOTA dataset.

Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

One-stage Methods

R3Det-DCL [80] R-152-FPN 89.78 83.95 52.63 69.70 76.84 81.26 87.30 90.81 84.67 85.27 63.50 64.16 68.96 68.79 65.45 75.54
R3Det [74] R-152-FPN 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74
S2A-Net [84] R-50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.20 69.31 57.94 74.12
RetinaNet-O [51] R-50-FPN 88.67 77.62 41.81 58.71 74.58 71.64 79.11 90.29 82.18 74.32 54.75 60.60 62.57 69.67 60.64 68.43
RSDet [78] R-152-FPN 90.10 82.00 53.80 68.50 70.20 78.70 73.60 91.20 87.10 84.70 64.30 68.20 66.10 69.30 63.70 74.10
DAL [91] R-101-FPN 88.61 79.69 46.27 70.31 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78
CFA [87] R-152 89.08 83.20 54.37 66.87 81.23 80.96 87.17 90.21 84.32 86.09 52.34 69.94 75.52 80.76 67.96 76.67
DAFNet [128] R-101 89.40 86.27 53.70 60.51 82.04 81.17 88.66 90.37 83.81 87.27 53.93 69.38 75.61 81.26 70.86 76.95
SASM [129] RX-101 89.54 85.94 57.73 78.41 79.78 84.19 89.25 90.87 58.80 87.27 63.82 67.81 78.67 79.35 69.37 79.17
AO2-DETR [130] R-50 89.95 84.52 56.90 74.83 80.86 83.47 88.47 90.87 86.12 88.55 63.24 65.09 79.09 82.88 73.46 79.22

Two-stage Methods

Oriented R-CNN [76] R-101-FPN 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28
ReDet [75] ReR-50-ReFPN 88.79 82.64 53.97 74.00 78.10 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25
CenterMap [131] R-50-FPN 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74
MaskOBB [132] R-50-FPN 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33 74.86
Gliding Vertex [77] R-101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.64 70.86 57.32 75.02
RoI-Trans [85] R-101-FPN 88.65 82.60 52.53 70.87 77.93 76.67 86.87 90.71 83.83 82.51 53.95 67.61 74.67 68.75 61.03 74.61
FAOD [133] R-101-FPN 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28
SCRDet [71] R-101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
CAD-Net [72] R-101-FPN 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
Faster RCNN-O [17] R-50-FPN 88.44 73.06 44.86 59.09 73.25 71.49 77.11 90.84 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.50
CSL [79] R-152 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
DODet [134] R-50-FPN 89.96 85.52 58.01 81.22 78.71 85.46 88.59 90.89 87.12 87.80 70.50 71.54 82.06 77.43 74.47 80.62
AOPG [135] R-50-FPN 89.88 85.57 60.90 81.51 78.70 85.29 88.85 90.89 87.60 87.65 71.66 68.69 82.31 77.32 73.10 80.66
LSKNet-S * [124] LSKNet 89.69 85.70 61.47 83.23 81.37 86.05 88.64 90.88 88.49 87.40 71.67 71.35 79.19 81.77 80.86 81.85
LSKNet-S [124] LSKNet 89.57 86.34 63.13 83.67 82.20 86.10 88.66 90.89 88.41 87.42 71.72 69.58 78.88 81.77 76.52 81.64

Anchor-free Methods

Oriented RepPoints [136] R-50-FPN 87.02 83.17 54.13 71.16 80.81 78.40 87.28 90.90 85.97 86.25 59.90 70.49 73.53 72.27 58.97 75.97
Oriented RepPoints [136] R-101-FPN 89.53 84.07 59.86 71.76 79.95 80.03 87.33 90.84 87.54 85.23 59.15 66.37 75.23 73.75 57.23 76.52
Oriented RepPoints [136] Swin-T-FPN 89.11 82.32 56.71 74.95 80.70 83.73 87.67 90.81 87.11 85.85 63.60 68.60 75.95 73.54 63.76 77.63
DRN [73] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
PIoU [137] DLA-34 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50
CenterNet-O [53] DLA-34 81.00 64.00 22.60 56.60 38.60 64.00 64.90 90.80 78.00 72.50 44.00 41.10 55.50 55.00 57.40 59.10

* O indicates a detection effect with a oriented bounding box. The extreme values of AP and mAP for each type of
object are marked in red.

Following are some of the conclusions that can be reached through comparison:
(1) At the moment, Resnet-FPN serves as the backbone network for most of the object
detection methods used on remote sensing images. By analyzing their mAP, it can be
found that the performance of these methods is more stable, i.e., medium level. (2) The
overall performance level of the first method is better than that of the second method
when comparing the Anchor-based method with the Anchor-free method. (3) The newly
proposed LSKNet backbone network shows significant advantages on the DOTA dataset,
including various categories of accuracy (AP) and mAP.

By analyzing the above-related information, we can observe that, on the one hand,
object detection methods on remotely sensing images are constantly evolving and improv-
ing in performance. On the other hand, the proposal of new backbone networks helps
to improve object detection performance significantly. Therefore, the design of backbone
networks can be a major focus of future research.
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Table 3. Average precision for different types of objects on DOTA dataset.

Methods Backbone mAP APL APM APS

One-stage Methods

R3Det-DCL [80] R-152-FPN 75.54 76.13 73.09 73.09
R3Det [74] R-152-FPN 73.74 74.82 72.45 71.65

S2A-Net [84] R-50-FPN 74.12 75.44 71.53 70.94
RetinaNet-O [51] R-50-FPN 68.43 70.69 67.41 69.13

RSDet [78] R-152-FPN 74.10 76.88 72.80 70.48
DAL [91] R-101-FPN 71.78 73.59 70.77 68.49
CFA [87] R-152 76.67 74.48 77.16 77.73

DAFNet [128] R-101 76.95 74.05 77.45 78.83
SASM [129] RX-101 79.17 74.28 78.51 78.17

AO2-DETR [130] R-50 79.22 77.45 79.47 80.16

Two-stage Methods

Oriented R-CNN [76] R-101-FPN 76.28 78.20 74.79 70.95
ReDet [75] ReR-50-ReFPN 76.25 76.24 74.51 73.46

CenterMap [131] R-50-FPN 71.74 70.68 74.02 69.06
MaskOBB [132] R-50-FPN 74.86 75.76 73.60 71.18

Gliding Vertex [77] R-101-FPN 75.02 77.09 74.44 68.58
RoI-Trans [85] R-101-FPN 74.61 74.93 73.42 74.10
FAOD [133] R-101-FPN 73.28 74.84 72.85 69
SCRDet [71] R-101-FPN 72.61 76.58 72.68 65.53

CAD-Net [72] R-101-FPN 69.90 72.55 85.46 65.95
Faster RCNN-O [17] R-50-FPN 69.50 68.91 68.86 66.46

CSL [79] R-152 76.17 79.21 75.30 72.22
DODet [134] R-50-FPN 80.62 81.13 79.05 79.02
AOPG [135] R-50-FPN 80.66 80.99 79.61 78.60

LSKNet-S * [124] LSKNet 81.85 81.89 79.9 82.50
LSKNet-S [124] LSKNet 81.64 81.77 80.15 81.65

Anchor-free Methods

Oriented RepPoints [136] R-50-FPN 75.97 76.93 74.64 72.61
Oriented RepPoints [136] R-101-FPN 76.52 76.62 76.72 72.74
Oriented RepPoints [136] Swin-T-FPN 77.63 77.90 76.23 75.43

DRN [73] H-104 73.23 73.80 72.15 69.69
PIoU [137] DLA-34 60.50 63.60 58.88 57.15

CenterNet-O [53] DLA-34 59.10 62.42 57.32 53.75
The mAP, APL, APM , APS extremes of the three types of methods are marked in blue. *: With EMA finetune.

5.3. Results and Discussion

We selected six efficient object detection methods to visualize our experimental results
on the remote sensing image datasets. We presented the visualization results to visualize
and comprehensively represent their applications on remote sensing images.

For the dataset, we re-cropped part of the DOTA dataset and generated 217 images
of 1204× 1024, which were tested using a pre-trained model. The mAP, floating point
operations (FLOPs), number of parameters (Params), and frames per second (FPS) of these
methods were measured using a correlation evaluation method. This is used to evaluate the
performance of the six methods. For the experimental environment, we chose Python 3.8,
PyTorch 1.8.0, and CUDA 11.3. All models were tested with two Nvidia 3090 graphics
cards with 24G of video memory each.

There are six object detection methods shown in Figure 10 for large object detection
on remote sensing images. In facing the large object detection task, the difference between
the six methods is not significant. However, the detection performance of LSKNet-S and
Oriented-RepPoints is higher than the other four methods in facing the significant object
inclusion problem.

There are six object detection methods shown in Figure 11 for large and small object
detection on remote sensing images. The performance of Oriented-RepPoints is poor when
facing the detection images with the coexistence of large and small objects. Among them,
the larger object features mask the features of small objects, making detecting small objects
less effective. In contrast, the detection results of the other five methods do not differ much
and are better.

There are six object detection methods shown in Figure 12 for the small object detection
of remote sensing images. In the face of dense small objects, the detection effect of the six
methods is not much different. However, it is worth noting that the objects at the boundary
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of image segmentation cause missing detection due to incomplete objects. Thus, it can be
seen that the object incompleteness problem caused by image segmentation of images can
significantly affect object detection performance.

(a) (b) (c)

(d) (e) (f)

Figure 10. Visualization results of different object detection methods on the DOTA dataset:
(a) LSKNet-S [124], (b) Oriented-RepPoints [136], (c) R3Det [74], (d) S2A-Net [84], (e) CSL [79],
(f) CFA [87].

In order to compare the above six methods more comprehensively, we measured the
FLOP, Params, FPS, and mAP evaluation metrics of the six methods on our own partial
DOTA dataset. The specific data are shown in Table 4. In terms of the number of floating-
point operations, LSKNet-S [124] is the smallest, followed by Oriented-RepPoints [136],
CFA [87], S2A-Net [84], R3Det [74], and CSL [79], and in terms of the number of parameters,
LSKNet-S [124] is the smallest, followed by Oriented-RepPoints [136], CFA [87], R3Det [74],
CSL [79], and S2A-Net [84].

It can be seen from these two metrics that LSKNet-S [124] is the lightest method among
the six methods with its smaller number of parameters and computations. In terms of
the number of frames per second transmitted, Oriented-RepPoints [136] is the largest,
followed by LSKNet-S [124], R3Det [74], CFA [87], CSL [79], and S2A-Net [84]. This
metric shows that Oriented-RepPoints [136] has the fastest computation speed, followed
by LSKNet-S [124]. In terms of average precision mean value, LSKNet-S [124] is the largest,
followed by CFA [87], S2A-Net [84], Oriented-RepPoints [136], CSL [79], and R3Det [74],
in that order. LSKNet-S [124] tops the list with a very high average precision value.
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By comparison, we conclude that LSKNet-S [124] has the best performance, followed by
Oriented-RepPoints [136], CFA [87], S2A-Net [84], R3Det [74], and CSL [79], in that order.

(a) (b) (c)

(d) (e) (f)

Figure 11. Visualization results of different object detection methods on the DOTA dataset:
(a) LSKNet-S [124], (b) Oriented-RepPoints [136], (c) R3Det [74], (d) S2A-Net [84], (e) CSL [79],
(f) CFA [87].

Table 4. Performance comparison of object detection methods.

Method FLOPs Params FPS mAP

LSKNet-S [124] 173.59 G 30.98 M 17.70 94.36
S2A-Net [84] 197.62 G 38.60 M 6.85 81.61

R3Det [74] 232.67 G 37.18 M 16.30 73.41
Oriented-

RepPoints [136] 194.32 G 36.61 M 21.93 79.25

CSL [79] 236.29 G 37.35 M 8.45 74.77
CFA [87] 194.32 G 36.61 M 10.45 86.23
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(a) (b) (c)

(d) (e) (f)

Figure 12. Visualization results of different object detection methods on the DOTA dataset:
(a) LSKNet-S [124], (b) Oriented-RepPoints [136], (c) R3Det [74], (d) S2A-Net [84], (e) CSL [79],
(f) CFA [87].

6. Current Challenges and Future Directions

This paper presents models and methods for achieving outstanding results in remote
sensing image object detection. These models and methodologies have contributed to the
development of object detection techniques for remote sensing images, as demonstrated
by their experimental outcomes. Furthermore, the exposition of the latest object detection
methodologies illustrates that this is a promising field of research.

Despite significant progress, the field of image object recognition continues to face
numerous issues and obstacles. Remote sensing images pose unique challenges for appli-
cations, particularly in comparison to natural images. These challenges include diverse
application scenarios, a large number of objects, and diverse directions that can be dif-
ficult to locate. Additionally, external factors such as weather and illumination can also
significantly impact remote sensing images.

This section outlines some promising future approaches for advancing object identi-
fication applications, particularly small object identification remote sensing images. We
have a strong conviction that these paths will entice additional outstanding academics to
focus their attention on the study of remote sensing picture object detection and contribute
their efforts.
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6.1. Image Processing

As an important element affecting the quality of object recognition in remote sensing
images, image quality faces certain challenges. Due to the large cost of large-area high-
resolution remote sensing images and the high capital cost consumed in the practical
application, new schemes are needed to solve the detection of small objects in low-resolution
remote sensing images.

To address this problem, remote sensing image super-resolution technology has great
research potential. As a classical computer vision task, image super-resolution techniques
aim to reconstruct low-resolution images into high-resolution images. In this way, the influ-
ence of external factors, such as the environment, on remote sensing images is mitigated.

Compared with low-resolution images, high-resolution images are richer in object
features, which will help improve the performance of object detection models.

6.2. Learning Strategy

A reasonable learning strategy can effectively improve the object detection perfor-
mance of remote-sensing images. On the one hand, most current object detection models
use IoU functions. Although many new loss functions, such as GiOU and DiOU, have been
proposed, their applications in small object detection in remote sensing images have yet to
produce satisfactory results.

The most suitable loss function for small object detection in remote sensing images
still needs to be investigated. On the other hand, batch normalization is widely used in
the field of object detection in order to accelerate the model training speed. The impact of
the aforementioned technique on the detection of small objects in remote-sensing images
needs to be improved. Further investigation is required to determine the appropriate
normalization techniques for small object detection tasks in remote sensing images.

6.3. Network Design

Excellent network frameworks not only have higher evaluation metrics, but their effi-
cient learning requires less runtime and computational resources. Therefore, more efficient
and lightweight networks are still a significant research hotspot. However, many current
deep network models have excellent performance and good results on benchmark datasets.

However, network frameworks for small object detection are still very scarce. There-
fore, there is a need to develop more objected, lightweight, and efficient network architec-
tures for small object detection to improve detection performance.

In the future, network design as a major research hotspot will attract a large number
of researchers to continue to innovate on the basis of the old network. Meanwhile, its
application to remote sensing images will also boost the development of small object
detection applied to remote sensing images.

6.4. Dataset Construction

Remote sensing images are subject to inherent constraints and require significant time
and resources to generate within the dataset. In comparison to natural images, the data
volume of these images is limited. Remote sensing images of various regions and scenes
exhibit noticeable differences owing to the impact of topography and vegetation. This
leads to a limited representativeness and generalisation of the dataset. The generation of
remote-sensing images remains a significant obstacle.

6.5. Multiple Data Fusion

In addition to using remote sensing images, other types of data sources can be com-
bined with remote sensing images, such as LiDAR, GIS, etc. The rich sample information
can boost the development of small object detection and provide more reliable support for
practical applications.
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7. Conclusions

This study presents a comprehensive review of object detection methods, particularly
methods for detecting small objects. This article discusses the use of common datasets,
evaluation methodologies, various classification criteria, the limitations of remote sensing
images, and challenges related to detecting irregular objects. Furthermore, we discussed
the diverse applications of object detection techniques in remote sensing imagery.

Finally, although the research on object detection methods in remote sensing im-
ages has made significant progress in recent years, there are still many problems, such
as low model inference efficiency and unsatisfactory object detection results. Therefore,
we propose promising research directions, such as better applications of image process-
ing techniques, more efficient and lightweight backbone networks, and more reasonable
learning strategies.

We hope the review in this paper can help researchers gain a deeper understanding
of object detection methods, especially the application of small object detection methods
in remote sensing images. It is expected to promote the development and progress of
remote-sensing image technology.
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