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Abstract: It is difficult for traditional algorithms to remove cloud edge contours in multi-cloud
scenarios. In order to improve the detection ability of dim and small targets in complex edge
contour scenes, this paper proposes a new dim and small target detection algorithm based on
local multi-directional gradient information energy perception. Herein, based on the information
difference between the target area and the background area in the four direction neighborhood blocks,
an energy enhancement model for multi-directional gray aggregation (EMDGA) is constructed to
preliminarily enhance the target signal. Subsequently, a local multi-directional gradient reciprocal
background suppression model (LMDGR) was constructed to model the background of the image.
Furthermore, this paper proposes a multi-directional gradient scale segmentation model (MDGSS) to
obtain candidate target points and then combines the proposed multi-frame energy-sensing (MFESD)
detection algorithm to extract the true targets from sequence images. Finally, in order to better
illustrate the effect of the algorithm proposed in this paper in detecting small targets in a cloudy
background, four sequence images are selected for detection. The experimental results show that
the proposed algorithm can effectively suppress the edge contour of complex clouds compared with
the traditional algorithm. When the false alarm rate Pf is 0.005%, the detection rate Pd is greater
than 95%.

Keywords: small target detection; reciprocal gradient; multi-directional gradient information;
background suppression; energy perception

1. Introduction

In recent years, infrared small target detection in the spatiotemporal domain has
attracted much attention, as it has important significance for achieving early warning in
the spatial domain, spatial surveillance, and so on [1,2]. However, due to the fact that
small and weak targets are photoelectric signals for long-range imaging often accompanied
by atmospheric turbulence and variable clouds, the targets are often submerged by these
interferences [3–6], resulting in the target signal being too weak to be detected by the
detector and ultimately leading to detection failure. Therefore, improving the detection
efficiency of algorithm models and ensuring detection accuracy has become a key and
difficult point in algorithm design research. In infrared image processing, images are often
divided into background regions, target regions, and noise regions [7]. How to suppress
the background and noise of images and preserve the target signal has become the main
research direction. In the past decade, the detection of infrared small targets has mainly
been divided into two major directions, namely detection before tracking and tracking
before detection [8,9]. Due to the fact that pre-detection requires prior knowledge of the
target’s motion parameters and mode, and the computational process requires a significant
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amount of time, pre-detection tracking algorithms do not require prior knowledge of the
target’s motion parameters and are widely used due to their simple operation. At present,
methods for detecting small and weak targets can be divided into traditional filter detection
models, visual saliency-based detection models, low rank sparse recovery theory-based
detection models, and deep learning models.

Several background modeling algorithms use traditional filtering, such as top hat filter-
ing [1,10–13], anisotropic filtering [14–17], TDLMS filtering [18–21], bilateral filter [22–24],
gradient reciprocal weighted filtering [25–27], etc., and significant background modeling
effects have been achieved. These preprocessing algorithms mainly suppress the image
background to obtain differential and background images, but they perform poorly in im-
ages with more fluctuating clouds and lower signal-to-noise ratio (SNR) in the background.
For instance, the anisotropic filtering infrared moving point target detection algorithm
based on spatiotemporal fourth-order diffusion proposed by Hu et al. processes images [17].
This algorithm obtains the corresponding directional gradient size by taking derivatives of
the three-dimensional coordinates x, y, and z, expanding the gradient difference between
each element and the background. It is then combined with an adaptive kernel diffusion
function to obtain the corresponding gradient, and the gradient difference is used for
image background prediction suppression, effectively solving the problem of traditional
anisotropy not being able to predict the background of images with severe background
fluctuations. Deng et al. proposed a top hat infrared small target detection algorithm
based on an adaptive M-estimation loop [1], which has a good suppression effect on the
image background and uses a new local weighted entropy function to obtain local image
features to enhance the target signal. Overcoming the limitations of top hat filtering in
filtering structural elements, it has achieved good results in combining local entropy to
enhance target signals. In addition, for complex backgrounds with large areas, the gradient
reciprocal weighted filtering proposed by Li Zhengzhou et al. [26] achieved good results in
background suppression by utilizing the gradient differences between pixels, which is suit-
able for large-scale background suppression. However, its use of fixed filtering coefficients
results in the suppression of the target as the background when processing scenes with
complex cloud backgrounds, resulting in detection loss. Zhang et al. proposed a multi-
scale gradient correlation filtering (MGCF) detection method based on non-parametric
regression [28]. This method calculates the grayscale gradient of a single pixel in the image
and designs a multi-scale gradient correlation template to distinguish targets based on the
uniqueness of gradient features of weak and small targets, completing the background
modeling of the image. This effectively utilizes the local correlation characteristics in the
imaging process of small and weak targets, improving the information utilization rate of
the target and thus improving the detection rate of the model. However, due to the weak
perception of edge contours in nonlinear regression, there are still obvious spatial contours
retained in the differential image after background modeling, resulting in a high false alarm
rate of the model and low target discrimination.

A detection model based on visual saliency has been proposed to improve the de-
tection rate of the algorithm based on the singularity of the target grayscale in the image:
for example, the LCM model [29], ILCM model [30], TTLCM model [31], RLCM model [32],
MPCM model [33], WSLCM model [34], etc. This type of algorithm is highly sensitive to
grayscale and can effectively suppress background clutter while enhancing the target signal,
thereby improving the effectiveness of background modeling. However, there are still many
significant false alarm targets in the difference plot, which causes difficulties in target ex-
traction. Therefore, in order to reduce false alarms in detection and improve the depth of
complex background suppression, the research on background modeling using low rank
sparse recovery theory is currently the main research direction for weak and small target
detection. Classical algorithms include the RPCA model [35,36], IPI model [37], TV-PCP
model [38], Joint Spatio-Temporal Filtering and L1 Norm Regularization model [39], MF-
STPT model [40]. They divide the original image into two parts: target and background.
In addition, they transform object detection into optimizing the sparse pixel matrix and
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low rank moment matrix in the original image, overcoming many detection limitations
such as discrete image grayscale distribution and unstable detection performance of tra-
ditional algorithms. Gao et al. proposed an infrared small target detection model (IPI
model) for a single frame image [37], which divides the original image into two parts:
target and background. The algorithm transforms target detection into optimizing the
sparse pixel matrix and low rank moment matrix in the original image, overcoming many
detection limitations such as the discrete distribution of image grayscale values and un-
stable detection performance of traditional algorithms. Sun et al. proposed a low-rank
sparse detection model with multiple subspaces and spatiotemporal block tensors [41].
This method constructs norm tensors of multiple subspaces, effectively synergizing the
intrinsic connections between spatial and temporal information of pixels in the image for
low-rank analysis. The background modeling effect is significant, and the target signal
is obvious. Fan et al. [35] proposed principal component analysis to analyze the pixel
components of images and obtain low-rank sparse components for background modeling,
achieving good background suppression effects. Furthermore, Rawat et al. proposed a
new non-convex weighted kernel norm to enhance the robustness of principal compo-
nent analysis detection models [42]. This method utilizes an adaptive weight operation
approach, based on the generation of different weight norms for each pixel, to carry out
background modeling operations for images and effectively suppress sharp contours in
complex scenes. However, due to its high computational complexity and long cycle, this
method is mainly used for single-frame image detection and sequence image detection. It
has a low efficiency in processing complex background scenes with clouds, and it also has
algorithmic shortcomings for the real-time detection and tracking of small targets.

With the development of science and technology, weak and small object detection
methods based on deep learning [43–47] have become popular in object detection, and such
algorithms can effectively improve the accuracy of detection. However, due to its close
connection with the training data, it is necessary to continuously update the database for
data training to adapt the algorithm framework to new scenarios, resulting in a longer
computational cycle and poor real-time performance. Combining SSD as proposed by
Huang et al., the MobileNetV2 network and feature pyramid structure are used to suppress
the background of images [43], which effectively preserves the feature information of
weak targets while suppressing the background. However, due to the need for a large
dataset support, the detection rate of the algorithm is low, which is not conducive to
real-time detection and tracking. The combination of Faster R-CNN and GAN proposed
by Bai et al. for dim and small target detection [44] also requires a large amount of data
training and calculation to achieve the background modeling of images. In order to improve
the timeliness of deep learning detection models, Liu et al. proposed a heterogeneous
parallel network with similar object enhancement to complete the detection of weak and
small targets [48]. This model first obtains target features by calculating the target local
area and background local area on the constructed dataset, greatly reducing the model’s
computational time and improving detection efficiency. Similarly, Xu et al. proposed a
network model for feature extraction with multi-scale and multi-level features [49], which
effectively improves target saliency by fusing target features through resampling, and the
real-time detection effect of the model is outstanding.

This article combines traditional filtering detection models with visual saliency de-
tection models to construct a dim and small target detection based on the energy sensing
of a local multi-directional gradient information model. In response to the problem of
significant cloud contours and weak target signals in multi-cloud scenarios, which results in
poor background modeling performance, this paper first proposes an energy enhancement
model for multi-directional gray aggregation (EMDGA) to weaken sharp cloud contours
and preliminarily enhance the saliency of the target. Subsequently, in the background
modeling process, using gradient reciprocal modeling has the advantage of suppressing the
background in a large area, while only using a single pixel for background analysis results
in incomplete background suppression. This article improves the processing method of a
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single pixel to a local neighborhood and proposes a region block gradient reciprocal filtering
model that integrates the local multi-directional gradient reciprocal background suppres-
sion model (LMDGR). Furthermore, considering the presence of noise in the differential
image after background modeling, it poses a difficult problem for target discrimination.
This article mobilizes the scale information during the target imaging process and proposes
a multi-directional gradient scale segmentation model (MDGSS) combined with a dual
window segmentation model to highlight the target and enhance its saliency in the image.
Finally, to adapt to practical engineering applications, this paper proposes a multi-frame
energy-sensing detection model (MFESD) to achieve target tracking and detection by utiliz-
ing the prominent features of target grayscale. The main contributions can be summarized
as follows:

(1) Construct an energy enhancement model for multi-directional grayscale aggregation,
perform secondary energy aggregation operations on the original image, and en-
able the grayscale fusion of edge contours and noise in a multi-cloud background. In
addition, adjust the enhancement strategy of the grayscale aggregation enhancement
model based on the first energy aggregation, and perform a second grayscale aggre-
gation processing on the target neighborhood to highlight the target and smooth
the background.

(2) Taking advantage of the advantages of traditional gradient reciprocal filtering al-
gorithms with good background suppression, a region block gradient reciprocal
filtering model integrating multi-directional information is proposed to model the
background of sequence images with multi-cloud fluctuation interference, obtain
differential images containing target information, and improve the utilization of local
pixel information.

(3) On the basis of background modeling, combined with the uneven distribution of
target energy, a multi-directional and multi-scale segmentation model is constructed
to segment the differential image to remove some noise. We enhance the saliency of
the target in the image again and improve the detection rate of the algorithm.

(4) Construct a multi-frame energy-sensing detection model for sequence images and per-
form real target determination operations on candidate targets based on the singularity
of the target grayscale to improve the detection accuracy of the model.

After relevant experiments, the proposed local multi-directional gradient information
energy perception dim small target detection model in this article achieves a structural
similarity index (SSIM) over 99% for background restoration after background modeling,
an average background suppression factor (BSF) of 373.1591, and a signal gain (IC) of
37.3615 dB. The organizational structure of this article is arranged as follows: Section 2
introduces the mathematical principles and overall algorithm flow of the model constructed
in this article; Section 3 conducts energy aggregation analysis on the selected sequence of
infrared images; Section 4 conducts experimental comparative analysis on the aggregated
infrared sequence images to demonstrate the effectiveness of the proposed algorithm; and
Section 5 provides a summary.

2. Materials and Methods

This section mainly provides a detailed introduction to the mathematical principles of
the proposed energy enhancement model for multi-directional gray aggregation (EMDGA),
local multi-directional gradient reciprocal background suppression model (LMDGR), multi-
directional gradient scale segmentation model (MDGSS), and multi-frame energy-sensing
detection model (MFESD). The relevant details are shown below.

2.1. Energy Enhancement Model for Multi-Directional Gray Aggregation (EMDGA)

This section mainly provides a detailed introduction to the energy enhancement model
for multi-directional gray aggregation (EMDGA) proposed in this article, aiming at the
problem of small pixels occupied by weak targets in the imaging process and low target
identification. This article uses the neighborhood of pixels to construct a multi-directional
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grayscale energy aggregation model for region blocks to enhance the signal of the target and
improve its discrimination. Firstly, the model for energy aggregation is defined as follows:

As shown in Figure 1, the central blue 3 × 3 pixel block is used to build the 3 × 3
area of the pixel neighborhood upwards, downwards, leftward and rightward to form the
energy aggregation model. The model is used to preprocess the image with gray energy
aggregation so as to improve the contrast of the target in the image and enhance the target
signal. In order to make the target signal enhancement obvious, three multi-directional
energy aggregation schemes are defined in combination with the above model to achieve
signal enhancement. The specific aggregation form is shown in Figure 2.

Figure 1. Energy aggregation filling model.

Maximum pixel gray 

aggregation matrix

Average pixel gray 

aggregation matrix

Aggregation mode A Aggregation mode B

Aggregation mode C

Figure 2. Schematic diagram of gray energy aggregation mode.

As shown in Figure 2, three different energy aggregation modes are defined in this
study. When the average pixel value of the blue area block in the middle of the aggregation
model is at the maximum, it indicates that this area belongs to a candidate area including
targets. Then, the maximum gray value in this area is extracted and formed into a 3 × 3
maximum gray value matrix, and the maximum gray value matrix is replaced by the blue
pixel area in the model. The four direction blocks in the model are filled with their pixel
gray mean value to enhance the target signal, as shown in aggregation mode A in Figure 2.
When the average pixel value of the blue area block in the middle of the aggregation model
is at the minimum, it indicates that this area does not meet the characteristics of the isolated
protrusions formed in the figure when small and weak targets are imaged, and this area
belongs to the background area. Therefore, at this time, the average pixel value of the
blue area block in the model is filled into the whole model to weaken the background
effect, as shown in Figure 2. If the average pixel value of the middle blue area block in the
aggregation model is not at the maximum or minimum, it indicates that the aggregation
model may be at the edge contour of the background at this time, and the average pixel
value of each area block in the aggregation model has little difference, which belongs to
the background part. At this time, the two directions with the lowest mean value in the
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four directions of up, down, left, and right are selected for pixel summation to obtain the
mean value, and the results are filled into a new 3 × 3 area block to form the average pixel
gray-level aggregation matrix as shown in the above figure. Then, as shown in the above
figure, aggregation mode C is used to replace the entire aggregation model with the pixel
gray-level aggregation matrix to weaken the edge contour.

According to the energy aggregation model defined above, the detailed mathematical
model is as follows: 

∆ fU3×3 =
1

R× R

µ

∑
−µ

ρ

∑
−ρ

f 1(x + µ, y− ρ− K)

∆ fD3×3 =
1

R× R

µ

∑
−µ

ρ

∑
−ρ

f 1(x + µ, y + K + ρ)

∆ fT3×3 =
1

R× R

µ

∑
−µ

ρ

∑
−ρ

f 1(x + µ, y + ρ)

∆ fL3×3 =
1

R× R

µ

∑
−µ

ρ

∑
−ρ

f 1(x− K + µ, y + ρ)

∆ fR3×3 =
1

R× R

µ

∑
−µ

ρ

∑
−ρ

f 1(x + K + µ, y + ρ)

(1)

where f 1 represents the whole energy aggregation model area selected from the input
image f , and ∆ fU3×3, ∆ fD3×3, ∆ fT3×3, ∆ fL3×3, and ∆ fR3×3, respectively, represent the
regional mean values of the upper, lower, center, left and right in the aggregation model.
R = 3 represents the value of the regional size. (x, y) indicates the pixel position within the
region, (µ, ρ) represents the pixel position and µ = f ix(R/2), ρ = f ix(R/2), where f ix is a
function of Matlab R2012b. K = 3 represents a parameter that controls the scale of pixel
movement. For enhancing the grayscale signal of the local region of interest, this article
compares the grayscale difference T between individual pixels and the mean difference T1
between the two largest regions in Figure 2 with the set constant parameters S1 and S2 to
determine the final filling strategy. The specific mathematical model is as follows:

i f max(∆ fU3×3, ∆ fD3×3, ∆ fT3×3, ∆ fL3×3, ∆ fR3×3) = ∆ fT3×3 ∧ T ≥ S1∧ T1 ≥ S2
up = ∆ fU3×3
down = ∆ fD3×3
le f t = ∆ fL3×3
right = ∆ fR3×3
Center = max( f 1(:))× x1
fCenter = Center
F(µ, ρ) = fCenter
i f min(∆ fU3×3, ∆ fD3×3, ∆ fT3×3, ∆ fL3×3, ∆ fR3×3) = ∆ fT3×3
up = ∆ fT3×3
down = ∆ fT3×3
le f t = ∆ fT3×3
right = ∆ fT3×3
Center = ∆ fT3×3
fCenter = Center
F(µ, ρ) = fCenter
others
up = down = le f t = right = Center = Data
F(µ, ρ) = fCenter

(2)

where f 1 represents the area occupied by the energy aggregation model, and ∆ fU3×3,
∆ fD3×3, ∆ fT3×3, ∆ fL3×3, and ∆ fR3×3 represent the regional mean values of the upper,
lower, center, left, and right in the aggregation model, respectively. up, down, le f t, right,
and center represent the upper, lower, left, right, and center 3× 3 regions in the aggregation
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model of Figure 2, respectively. f _Center refers to the central area corresponding to the
original image of the same size as the selected f 1 area. Data refers to the pixel gray value
after the sum and average of the two least mean values in the four directions after sorting,
and F(µ, ρ) refers to the image that completes the energy aggregation processing.

A = [∆ fU3×3, ∆ fD3×3, ∆ fL3×3, ∆ fR3×3, ∆ fT3×3]
data = sort(A, ′descend′)
Data = [data(1) + data(2)]/2

(3)

where A refers to the top, bottom, left and right three 3 × 3. The matrix is composed of
regional mean values. data represents the sorted matrix. sort and descend are the sorting
and descending functions of Matlab R2012b. data(1) and data(2) represent the values in
the 2 directions with the highest grayscale mean of the pixel in the 4 directions.

The target signal enhancement can be completed by combining the above Equations (1)–(3).
The model has preliminarily achieved the target signal enhancement. Aiming to further
achieve the regional fusion of target energy to highlight the significance of the target, on the
basis of the preliminary enhancement, the target signal is enhanced twice by combining
Equation (1). The specific mathematical model is as follows:

∆ fU13×3 =
1

R× R

µ1

∑
−µ1

ρ1

∑
−ρ1

f f 1(x1 + µ1, y1 − ρ1 − K)

∆ fD13×3 =
1

R× R

µ1

∑
−µ1

ρ1

∑
−ρ1

f f 1(x1 + µ1, y1 + K + ρ1)

∆ fT13×3 =
1

R× R

µ1

∑
−µ1

ρ1

∑
−ρ1

f f 1(x1 + µ1, y1 + ρ1)

∆ fL13×3 =
1

R× R

µ1

∑
−µ1

ρ1

∑
−ρ1

f f 1(x1 − K + µ1, y1 + ρ1)

∆ fR13×3 =
1

R× R

µ1

∑
−µ1

ρ1

∑
−ρ1

f f 1(x1 + K + µ1, y1 + ρ1)

(4)

In the formula, f f 1 represents the energy aggregation area selected in the preliminary
enhancement image F. ∆ fU13×3, ∆ fD13×3, ∆ fL13×3, ∆ fR13×3, and ∆ fT13×3 represent the
mean values of the upper, lower, central, left, and right regions in the aggregation model. R
represents the value of region size, with a value of 3 in the text, (x1, y1) represents the pixel
position within the region, (µ1, ρ1) represents the sequence number of pixels, K represents
the parameter that controls the scale of pixel movement, and the value in the text is 3.

Due to the initial aggregation and enhancement of the target signal, some noisy signals
were enhanced during the initial aggregation, resulting in detection confusion. This energy
aggregation set a constant parameter S3 to compare with the grayscale difference T2 of a
single pixel in the enhanced image F in Formula (1) in order to extract the enhanced region
of interest. Correspondingly, in the selection of enhancement strategies, as preliminary
enhancements have been made, the grayscale difference between the target and the back-
ground has been highlighted, and there is no need to fill the middle neighborhood to the
surrounding neighborhood. Therefore, the secondary energy aggregation mode is only
completed using mode A and mode C in Figure 2, and its corresponding mathematical
expression is as follows:
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i f max
(
∆ fU13×3, ∆ fD13×3, ∆ fT13×3, ∆ fL13×3, ∆ fR13×3

)
= ∆ fT13×3 ∧ T2 ≥ S3

up = ∆ fU13×3
down = ∆ fD13×3
le f t = ∆ fL13×3
right = ∆ fR13×3
Center = max( f f 1(:))× x2
else
up = down = le f t = right = Center = Data
FF(µ, ρ) = Center

(5)

In the formula, f f 1 refers to the energy aggregation area selected in the preliminary ag-
gregation image F, FF refers to the image that completes the secondary energy aggregation,
and x2 is the set constant parameter, with a value of 1.5 in the text.

A1 =
[
∆ fU13×3, ∆ fD13×3, ∆ fL13×3, ∆ fR13×3, ∆ fT13×3

]
data1 = sort(A1,′ descend′)
Data1 = max(data1(:));

(6)

A1 represents a set composed of the mean values of four 3× 3 regions by ∆ fU13×3,
∆ fD13×3, ∆ fL13×3, and ∆ fR13×3, data1 represents the sorted matrix, and sort and descent are
functions of sorting and descending in Matlab, respectively. Data1 represents the maximum
value in the four directions.

In conclusion, after the preliminary verification as shown in Figure 3, the multi-
directional gray level energy aggregation model proposed in this paper has been able to
enhance the target signal and improve the target significance.
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Original Image Preliminary Energy Aggregation Results Result of secondary energy polymerization

Figure 3. Effect of energy aggregation.

2.2. Improved Gradient Reciprocal Background Suppression Model Based on Region
Information Fusion
2.2.1. Reciprocal Gradient Related Work

In the optical signal system of long-distance imaging, small and weak targets occupy
few pixels and are often submerged by the undulating clouds, which makes the target often
suppressed as the background, causing target detection failure. Therefore, the normalized
gradient reciprocal filtering can suppress the edge contour of a complex background while
retaining the target signal. This filter makes full use of the steep amplitude signal presented
by the target in the image to calculate the gradient of the neighboring pixel and normalize
it. Therefore, the gradient normalization at the target and strong noise points presents a
two-stage phenomenon, which makes the weight coefficient obtained after normalization
processing for the pixel with large difference (such as the target pixel) small, and the pixel
with large difference can be well retained in the difference map. On the contrary, for pixels
with little or no difference (such as background pixels), the weighting coefficient obtained
after normalization processing is large, which can effectively weaken the pixels with little
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difference in the difference map, so as to suppress the background and highlight the target.
The traditional gradient reciprocal background modeling model is as follows [26]:

i f f (x + m, y + n, k) 6= f (x, y, k)
Tx,y(m, n, k) = 1/| f (x + m, y + n, k)− f (x, y, k)|
i f f (x + m, y + n, k) = f (x, y, k)
Tx,y(m, n, k) = θ

(7)

where (x, y) represents the center position of the selected neighborhood pixel, (m, n) repre-
sents the current neighborhood location, and Tx,y(m, n, k) represents the reciprocal gradient
of the pixel at the (m, n) position in the neighborhood, generally r × r select 4 × 4. θ refers
to the gradient reciprocal value given when the adjacent pixel is the same as the center
pixel, which is generally greater than 1. k refers to the frame number of the currently
processed image.

The processed image needs to be normalized to obtain the gradient weighting coeffi-
cient between pixels. The specific weighting model is as follows [26,27]:

i f f (m, n, k) = f (0, 0, k)
Hx,y(m, n, k) = 1/θ
else

Hx,y(m, n, k) =
(

1− 1
θ

)
×
[

Tx,y(m, n, k)
∑r

f (m,n,k) 6= f (0,0,k) Tx,y(m, n, k)

] (8)

where f (m, n, k) is the position (m, n) of a point in the k-th frame image, Hx,y(m, n, k)
represents the gradient weighting coefficient between pixels in the image, Tx,y(m, n, k) is
the reciprocal gradient of the pixel, and r is the radius of the selected calculated neighbor-
hood. Then, combining the gradient between pixels and the corresponding normalization
coefficient, the inverse gradient value is output to obtain the predicted background image.
The specific output formula is as follows [26]:

fp(x, y, k) =
r

∑
m=−r

r

∑
n=−r

Hx,y(m, n, k)× f (x + m, y + n, k) (9)

Finally, the difference image is obtained by subtracting the background image from
the original image. The specific calculation formula is as follows [26]:

fD(x, y, k) = f (x, y, k)− fp(x, y, k) (10)

where fD(x, y, k) represents the difference image, f (x, y, k) represents the original image,
and fp(x, y, k) is the pixel prediction value.

Through relevant research, it is found that the gradient reciprocal filtering algorithm
uses the singular property between the background and the target point to filter the
selected area (generally r = 4 and the matrix is 9× 9) to complete the background modeling.
The algorithm achieves good results in sequential scenes with small background fluctuation.
It shows that the gradient reciprocal model has certain advantages in suppressing the image
background, but it is found through research that because of the filtering parameters of
the gradient filtering model of a single pixel, θ is a fixed parameter value, which results
in a poor detection effect for multi-edge sequence images [50], and there are many false
alarms in the differential image. Therefore, in document [50], References [26,27] use the
correlation function R(x, y, k) to improve the filter parameters so that it can adaptively
adjust the corresponding filter parameters to suppress the background, and the suppression
effect is more obvious. The specific model is as follows [50]:

R(x, y, k) =
r

∑
m=−r,m 6=0

r

∑
n=−r,n 6=0

{
1 i f | f (x + m, y + n, k)− f (x, y, k)| ≥ T T ≥ 0
0 others

(11)
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In the formula, after comparing the difference between the current pixel f (x+m, y+ n, k)
and the central pixel f (x, y, k), the image is binarized using the segmentation threshold
T determined by CFAR criteria. If the pixel value of the current pixel is greater than the
pixel value of the selected neighborhood center position, the area is filled with a number
value of 1; otherwise, θ [26] is filled, and finally, all the filled values are summed as the
output of the correlation function R(x, y, k). However, the value of correlation function
R(x, y, k) in Reference [26] is determined by the segmentation threshold determined by
CFAR, which cannot achieve adaptive effect in complex scenes. Finally, the improved
correlation function and the given defined constant are multiplied to determine the filtering
parameters θ output in [50], as shown in the following formula:

θ = E× R(x, y) (12)

In the formula, E represents the defining constant, which is a fixed value, and R(x, y)
is the correlation function in the above formula.

To sum up, the improved gradient reciprocal filtering can be summarized as fol-
lows [50]: 

i f | f (x + m, y + n, k)− f (x, y, k)| ≤ c
Tx,y(m, n, k) = θ
other
Tx,y(m, n, k) = 1/| f (x + m, y + n, k)− f (x, y, k)|

(13)

where Tx,y(m, n, k) represents the reciprocal of the pixel gradient, f (x + m, y + n, k) and
f (x, y, k) represent the pixel values of the current pixel and the center pixel, respectively,
and the filter coefficient θ is determined by the difference between them. Based on this,
we determine the normalized weighting coefficient of the pixel after and complete the
background modeling of the image in combination with Equations (3) and (4) finally.
The improved normalized model is as follows [50]:

i f m = 0, n = 0
Hx,y(m, n, k) = 1/θ
other

Hx,y(m, n, k) =
(

1− 1
θ

)
×
[

Tx,y(m, n, k)
∑r

m=−r ∑r
n=−r Tx,y(m, n, k)

] (14)

The relevant definitions in the formula are shown in Formula (8).
All things considered, traditional gradient reciprocal background modeling mod-

els mainly perform neighborhood calculations on a single pixel of the image to achieve
background suppression, which cannot fully utilize the detailed information of the im-
age. As a result, the model has poor background modeling performance and maintains
a high false alarm rate when facing complex scenes, causing significant difficulties for
target detection. Therefore, this article constructs a local multi-directional gradient recip-
rocal background suppression model (LMDGR) to achieve image background modeling,
as detailed in the following section.

2.2.2. Local Multi-Directional Gradient Reciprocal Background Suppression Model (LMDGR)

The traditional gradient reciprocal only utilizes a single pixel’s information to complete
background modeling in the background modeling process, resulting in severe weakening
of the target signal in the differential image. This article proposes a local multi-directional
gradient reciprocal background suppression model (LMDGR) based on the energy ag-
gregation model mentioned above to achieve image background modeling. This model
improves the traditional model of gradient reciprocal calculation between individual pixels
to a model that performs operations on local area pixels to achieve background suppression.
We enable the retention of target information as regional blocks, enhance the saliency of the
target, and lay the foundation for subsequent target detection. The specific model is shown
in the following Figure 4.
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Figure 4. Schematic diagram of local area block background modeling model.

As shown in the Figure 4, the model proposed in this article can fully utilize the
information around the central pixel for gradient operation in background modeling, and it
has good performance in suppressing large areas of background. On the basis of secondary
energy aggregation, based on the strong correlation between the background and the small
correlation between the target and the background, the region of interest is first extracted by
comparing the grayscale difference L = |FF(i, j)− FF(i− 1, j)| between a single pixel with
the set constant parameter Q, and the average value of the region is calculated. This lays
the foundation for a background modeling model with a local multi-directional gradient
reciprocal. The specific mathematical model definition is as follows:

i f (L ≥ Q)

∆ fU1 =

[
1

R× R

[
T1

∑
−T1

T2

∑
−T2

FF(x + T1, y− T2 − K)

]

∆ fD1 =

[
1

R× R

[
T1

∑
−T1

T2

∑
−T2

FF(x + T1, y + K + T2)

]

∆ fL1 =

⌊
1

R× R

[
T1

∑
−T1

T2

∑
−T2

FF(x− K + T1, y + T2)

]

∆ fR1 =

[
1

R× R

[
T1

∑
−T1

T2

∑
−T2

FF(x + K + T1, y + T2)

]

∆ fc1 =

[
1

R× R

[
T1

∑
−T1

T2

∑
−T2

FF(x + T1, y + T2)

]
else

∆ fU1 = ∆ fD1 = ∆ fL1 = ∆ fR1 = ∆ fc1 = 0

(15)

where FF represents the image that completes the secondary energy aggregation in For-
mula (5), and ∆ fU1, ∆ fD1, ∆ fL1, and ∆ fR1, ∆ fc1 represent the mean gray level of the local
area, respectively. Corresponding to the aggregation model, R = 3 represents the size of the
neighborhood region. (T1, T2) indicates the sequence number of pixels and T1 = f ix(R/2),
T2 = f ix(R/2), where f ix is a function of Matlab. (x, y) represents the pixel of interest
whose gray-level gradient meets L ≥ Q, and K represents the pixel moving step. FF(x +
T1, y− T2−K), FF(x + T1, y+K + T2), FF(x−K + T1, y+ T2), FF(x + K + T1, y + T2), and
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FF(x + T1, y + T2), respectively, represent the upper, lower, left, right, and center region
blocks in the model in Figure 4, and K is the movement step parameter of the pixel, which
is set to 3.

On the basis of extracting regions of interest, fixed filtering coefficients are used for
traditional gradient reciprocals θ to determine the final background modeling weight of
the gradient reciprocal model, resulting in poor modeling performance and an incomplete
utilization of target signals. This article improves the filtering coefficients in Formula (12)
and proposes gradient reciprocal filtering coefficients for region blocks θ, enabling the
model to adaptively update the corresponding filtering coefficients between each region
block θ to complete background modeling and increase the utilization of image detail
information. This allows the region blocks containing target information to be given higher
weights and retained during background modeling, achieving the goal of background
modeling. The specific mathematical model is as follows:

A2 = [∆ fU1, ∆ fD1, ∆ fL1, ∆ fR1, ∆ fc1]
i f max(A2(:) == ∆ fc1)
markup = markdown = markle f t = markright = 0
markCenter = 1
else
markup = markdown = markle f t = markright = markCenter = 0

(16)

where A2 is the set of pixel mean values in the 5 regional blocks in Figure 4, ∆ fU1, ∆ fD1,
∆ fL1, ∆ fR1, and ∆ fc1 represent the mean gray level of the local area, markup, markdown,
markle f t, markright, and markCenter represent the empty matrix corresponding to the five
blocks, which is used to fill θ and 1 to determine the filter coefficient θ. Similar to the
mathematical model determined in Reference [25], combined with constant parameter E
(set to 10), the mathematical model determined by the filter coefficient in this paper is
as follows: {

G = sum(mark(:))
θ = E× G

(17)

According to traditional gradient reciprocal filtering, combined with filtering coeffi-
cient θ, the background modeling of the image can be completed. However, the local region
block gradient reciprocal filtering model proposed in this article processes images based on
region block information, while the traditional gradient reciprocal reflects the information
of a single pixel in the image, and the target information cannot be fully utilized. Therefore,
this article redefines the gradient reciprocal background modeling model as follows:

A2 = [∆ fU1, ∆ fD1, ∆ fL1, ∆ fR1, ∆ fc1]
i f max(A2(:) == ∆ fc1)
FF(X + ω1, y−ω2 − K) = FF(X + ω1, Y + K + ω2) =
FF(X− K + ω1, Y + ω2) = FF(X + K + ω1, Y + ω2) =
FF(X + ω1, Y + ω2) = 1/θ
else
FF(X + ω1, Y + ω2) = 1/L

(18)

where A1 is defined as Formula (16), and FF(X +ω1, Y−ω2−K), FF(X +ω1, Y +K +ω2),
FF(X− K + ω1, Y + ω2), FF(X + K + ω1, Y + ω2), and FF(X + ω1, Y + ω2) represent the
upper, lower, left, right, and center area blocks in the model in Figure 4, respectively. FF
represents the image after grayscale aggregation in Formula (5). (X, Y) represents the pixel
coordinates in FF, θ represents the filtering coefficient determined in Formula (17), and K
represents the step size of pixel movement, while (ω1, ω2) represents the sequence number
of pixels in an FF image. L = |FF(i, j)− FF(i− 1, j)| is the gray difference between the
above individual pixels, and (i, j) represents the pixel coordinates in image FF. According
to the gradient reciprocal background modeling model, the normalization function of the
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local multi-directional gradient reciprocal background modeling model proposed in this
article is redefined as follows:

i f (∆ fU1 ∧ ∆ fD1 ∧ ∆ fL1 ∧ ∆ fR1 ∧ ∆ fc1 6= 0)
g = (1− 1/θ)/(∆ fc1/((∆ fU1 + ∆ fD1 + ∆ fL1 + ∆ fR1 + ∆ fc1)/5))
else
g = 1− 1/θ

(19)

where ∆ fU1, ∆ fD1, ∆ fL1, ∆ fR1, and ∆ fc1 represent the mean gray level of the local area, θ is
the filtering parameter and g is the normalized coefficient. Using Equations (18) and (19),
the background modeling of the image can be completed to obtain the differential image D,
and the formula is as follows:

D = (FF(X + ω1, Y−ω2 − K) + FF(X + ω1, Y + K + ω2) + FF(X− K + ω1, Y + ω2)

+FF(X + K + ω1, Y + ω2) + FF(X + ω1, Y + ω2))× g
(20)

In the equation, D represents the differential image, FF represents the calculation
result in Formula (18), g represents the normalization coefficient in Formula (19), and K is
the movement step parameter of the pixel, which is set to 3.

2.3. Multi-Directional Gradient Scale Segmentation Model (MDGSS)

In the process of detecting small and weak targets, there are still some noise points
and residual edge contours in the differential image after background modeling, which
leads to the problem of target confusion. This article proposes a multi-directional gradient
scale segmentation model (MDGSS) to eliminate the noise and edge contours of targets
in differential images, thereby increasing the saliency of the targets and improving their
discrimination. The dim and small multi-objective image segmentation method based on
the circular window proposed by Jiang et al. [46] has been widely applied. This method first
defines the size of the inner and outer windows of the circular window, then, it calculates
the average gray value of the pixels in the corresponding window, and finally, it compares
the difference between the average gray value of the two windows and the set threshold to
complete image segmentation. The specific computational model is as follows [46]:

PI = ∑ω
i=−ω ∑

η
j=−η f (α + i, β + j)

PO = ∑ω+h
i=−(ω+h) ∑

η+h
j=−(η+h) f (α + i, β + j)

PIAvg = PI
ω×η

POAvg = PO−PI
ω×η

(21)

where PI , PO represents the mean value of pixels in the inner and outer windows of
the looping window, respectively. f (α, β) represents the grayscale value of pixels in the
neighborhood, (i, j) denotes the row and column numbers of pixels in the neighborhood,
ω, η represent the length and width of the return window, h denotes the neighborhood
size of the window outside the circular window, and PIAvg and POAvg represent the mean
value of the pixels in the inner and outer windows of the circular window, respectively.
The average value of the current outer window pixel is POAvg and that of the inner window
pixel mean value is PIAvg. When the difference value of POAvg and PIAvg is greater than
the set threshold Th, the current pixel f (α, β) position is filled with 1 element, and the
other pixel positions that do not meet the conditions are filled with 0 elements to complete
image segmentation.

However, it is found in the research that the simple contour window segmentation
algorithm is only applicable to the target segmentation of a single pixel, which is inconsis-
tent with the feature that the target is distributed in blocks. After segmentation, the target
usually occupies only 1–2 pixel positions, which will cause the loss of target detection
when the segmentation threshold is properly raised. Therefore, combined with the de-
tection idea of the area block research in this paper, the contour window is improved in
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this paper. A segmentation model with multi-directional gradient scale is proposed to
segment the target points. This model combines the uneven distribution of target signals
in the imaging of small and weak targets, integrates the double window segmentation
model with multi-scale, segments the target by adjusting different window sizes, retains
the information of the target in multiple directions, and improves the target’s attention.
The defined computational model is as follows:

PupI = ∑ω
i=−ω ∑

η
j=−η D(α + i− l, β + j)

PupO = ∑ω+h
i=−(ω+h) ∑

η+h
j=−(η+h) D(α + i− l, β + j)

PdownI = ∑ω
i=−ω ∑

η
j=−η D(α + i + l, y + j)

PdownO = ∑ω+h
i=−(ω+h) ∑

η+h
j=−(η+h) D(α + i + l, β + j)

Ple f tI = ∑ω
i=−ω ∑

η
j=−η D(x + i, y + j + l)

Ple f to = ∑ω+h
i=−(ω+h) ∑

η+h
j=−(η+h) D(α + i, β + j + l)

PrightI = ∑ω
i=−ω ∑

η
j=−η D(x + i, y + j− l)

Prighto = ∑ω+h
i=−(ω+h) ∑

η+h
j=−(η+h) D(α + i, β + j− l)

(22)

where PupI , PdownI , Ple f tI , PrightI , PupO, PdownO, Ple f tO, and PrightO represent the sum of
the pixels in the upper, lower, left, and right inner and outer window areas of a single
pixel, respectively, and l represents the scale range defined by the segmentation area.
D represents the difference image modeled by the gradient reciprocal background in
Formula (20). D(α, β) represents the pixel grayscale, and (i, j) denotes the row and column
numbers of pixels in the neighborhood. The size of the inner and outer windows is adjusted
by setting the pixel scale to l, which conforms to the characteristics of uneven energy
distribution when imaging weak targets. According to the traditional loopback window
segmentation principle, this paper proposes segmentation models corresponding to each
direction according to multi-scale characteristics, and the specific models are as follows:

PupIAvg =
PupI

ω× η
, PupOAvg =

PupO − PupI

ω× η
R = abs

(
PupIAvg − PupOAvg

)
PdownIAvg =

PdownI
ω× η

, PdownOAvg =
Pdown
ω× η

R1 = abs
(

PdownIAvg − PdownOAvg

)
Ple f tIAvg =

Ple f t

ω× η
, Ple f tOAvg =

Ple f tO

ω× η

R2 = abs
(

Ple f tIAvg − Ple f tOAvg

)
PrightIAvg =

PrightI

ω× η
, PrightOAvg =

Prighto

ω× η

R3 = abs
(

PrightIAvg − PrightOAvg

)

(23)

where PupIAvg, PdownIAvg, Ple f tIAvg, PrightIAvg, PupOAvg, PdownOAvg, Ple f tOAvg, and PrightOAvg
represent the pixel mean value of the inner and outer window areas of the upper, lower,
left and right regions of the pixel, respectively, and R, R1, R2, R3 represent the pixel mean
difference of the inner and outer window areas of the upper, lower, left and right regions,
respectively. The image segmentation is completed by comparing the mean difference
with the set threshold T. According to the principle of multi-scale gradient, the final
segmentation result should be determined by summing up the four differences. However,
considering that the target energy is distributed in regions, this paper determines the
segmentation result by performing or operating on the above four results to preserve the
target information and enhance the discrimination. The mathematical model is as follows:
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P = [R, R1, R2, R3]
i f P(i1, j1) ≥ T
Result(i1, j1) = 1
else
Result(i1, j1) = 0
Fg = Result(j1)|Result(j1 + 1)|Result(j1 + 2) | Result(j1 + 3)

(24)

where P represents the mean difference set of inner and outer window pixels in 4 directions,
(i1, j1) represents the sequence number in the set P, and Result(i1, j1) represents the result
of image filling 0 and 1 after segmentation in 4 directions, respectively. Fg represents
the binary image after segmentation. The comparison diagram of the two segmentation
algorithms is as follows.

As shown in the Figure 5, it can be observed that the traditional double window
segmentation algorithm can only segment the central target when segmenting the target
area, and the information after the target neighborhood segmentation is lost, which does not
achieve the goal of maximum target signal retention. The segmentation model proposed
in this article can segment targets based on different defined scales, with a complete
preservation of target information and significant improvement in target discrimination,
laying a good foundation for improving the model detection rate.

Target area to be segmented  Return window segmentation showing Proposed segmentation showing

Figure 5. Image of loop window segmentation and multi-dimensional scale segmentation.

2.4. Multi-Frame Energy-Sensing Detection Model (MFESD)

Intending to successfully extract the target and achieve multi-frame object detection
in the sequence to output the target’s trajectory, this paper combines the idea of pipeline
filtering to construct a multi-frame energy-sensing detection model (MFESD) to extract
the target. First, we calculate the number of times that the target appears in the sequence
of a binary image, and we calculate the average gray value of the target in each frame
after segmentation according to the number of times. Next, we calculate the grayscale
correlation value of the average grayscale, and finally, we average the grayscale based on
the number of occurrences. The obtained value is the similar grayscale value of the target.
The defined mathematical model is as follows:

Ms =
M
∑

t=1
Mov

(
Fg(x, y, t)

)
Lb(x, y, t) =

m1
∑
−m1

n1
∑
−n1

Fg(x + m1, y + n1, t)× f (x + m1, y + n1, t)

Lb(x, y, t) = 1
M ×

M
∑

t=1
Lb(x, y, t)

HGS =

{
m1
∑
−m1

n1
∑
−n1

[
M
∏
i=1

Lb(x + m1, y + n1, t)
]}

/Ms

(25)

where Ms represents the total number of moves of the target in the figure, M represents
the total number of frames, and Fg(x, y, n) represents the binary image that has been
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segmented in Formula (24). (x, y) and t represent the coordinate position of the target in
the image and the number of image frames, respectively. Lb(x, y, t) represents the gray
value within the local range of the target, and (m1, n1) represents the coefficient of pixel
position transformation, m1 = n1 = ε/2. ε represents the selection of neighborhood size for
calculating pixel grayscale, with a value of 3 in the text. Lb(x, y, t) represents the average
gray value of the image, and HGS represents the energy perception function, which is
obtained by calculating the ratio of the correlation of multi-frame image energy to the
number of target movements.

2.5. Overall Steps and Flow Diagram of Algorithm

To summarize, the pseudo-code of the overall steps can be summarized as follows in
Algorithm 1:

Algorithm 1 Overall steps of the algorithm
Input original image f ;
Initialization parameters;
Step 1. Choose the calculated region f 1 from original image f ;
Step 2. Use Formulas (1)–(6) to complete the initial aggregation and secondary aggregation
of image energy, respectively, and output the preprocess image FF;
Step 3. Finish the background suppression by Formulas (14)–(19), and output the difference
image D;
Step 4. According to the background constrict, remove the noise to complete the
segmentation by Formulas (21)–(23);
Step 5. Extract the target and output the trajectory result by Formula (24);

The algorithm flow chart of this paper is as follows Figure 6.

        

         

                      

        

         

                      

        

         

                      

……

。
。

。
。

Original ImageOriginal Image Second Enhanced Second Enhanced First Enhanced First Enhanced Background SupressionBackground Supression

 Image Segemention Image SegementionMulti frame detectionMulti frame detectionTarget Trajectory Target Trajectory Differential PlotDifferential Plot

Figure 6. Overall flow chart of algorithm.

2.6. Evaluation Indicators

In terms of background processing, in order to better reflect the effect of the algorithm
in this paper on the suppression of a multi-cloud background, the paper uses the signal
gain (IC), background suppression factor (BSF), and background structure similarity (SSIM)
of each algorithm to evaluate the prediction background of each algorithm. The specific
definitions of the above three indicators are as follows [51–53]:
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Tin = 1
l×l

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fin
(
mt + xg, nt + yg

)
Bin = 1

l1×l1

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fin
(
mt + xg1 , nt + yg1

)
Tout =

1
l×l

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fout
(
mt + xg, nt + yg

)
Bout =

1
l1×l1

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fout
(
mt + xg1 , nt + yg1

)
Cin = |Tin − Bin|/|Tin + Bin|
Cout = |Tout − Bout|/|Tout + Bout|
IC = Cout/Cin

(26)

In the equation, Tin, Bin and Tout, Bout represent the mean of neighboring pixels in the
input image and output image, respectively. (mt, nt) represents the target coordinate, l = 1,
l1 = 4 represents different neighborhood radi, and Cin and Cout represent the signal gain of
the target in the input and output images, while IC represents the signal gain of the target
before and after image processing.

BSF = σin/σout (27)

SSIM =
(2µRµF + ε1)(2σRF + ε2)(

µ2
R + µ2

F + ε1
)(

σ2
R + σ2

F + ε2
) (28)

where σin and σout are the mean square deviations of the input image and difference image,
respectively. µR represents the average of the pixels in the entire image; σR represents
the standard deviation of all pixels in the image; σRF represents the covariance between
the original image and the background image after modeling; and ε1 and ε2 are a set of
constant parameters.

2.7. Scenario Selection and Preliminary Analysis

In order to reflect the effect of this algorithm on target detection, this paper selects
4 sequence images under complex clouds for preprocessing, background suppression,
differential segmentation, and sequence target detection. The original image and the image
processed by the energy aggregation model proposed in this paper are shown as follows in
Figure 7.

As shown in the figure, in a multi-cloud scenario, the clouds fluctuate significantly and
the target differentiation is not high. However, traditional spatiotemporal filtering and low-
rank sparse recovery theories often suppress the target as a background in such scenarios,
and after background modeling, the edge contours of multiple clouds are preserved, which
will seriously affect the detection of the target. Therefore, this article proposes a local
energy aggregation model, which aggregates the energy distribution of targets in different
directions before conducting target detection. The detection rate of weak small targets in
such scenes has been greatly improved, and the first frame of the four selected sequence
scenes has the following effect after energy aggregation. The details of the four selected
sequence images are shown in the following Table 1.

Table 1. Detail of sequence image.

Scene Size Target Size Target Detail

Scene A 641 × 513 2 × 2 Moving birds in complex cloud backgrounds.

Scene B 641 × 513 3 × 3 Moving birds in complex cloud backgrounds.

Scene C 641 × 513 3 × 3 Moving birds in complex cloud backgrounds.

Scene D 180 × 180 3 × 3 UAV with complex cloud background motion.
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Scene A

Scene B

Scene C

Scene D

Figure 7. Original sequence diagram and original three-dimensional diagram.

3. Results
3.1. Analysis of Algorithm Background Suppression Results

Using the above four scenes, this paper applies the Anisotropic (ANI) model [54],
improved top hat filter [11], TDLMS filter [22], IPI model [37], NTFRA model [55], PSTNN
model [8], HMBLCM model [56], WSLCM model [34], MPCM model [33], RLCM model [32],
ADMD model [57] and the algorithm proposed in this paper to suppress the background of
the multi-cloud image, and then, it combines the multi-frame energy-sensing algorithm pro-
posed in this paper to extract the target. In this section, we will give the background map,
difference map and three-dimensional difference map of each algorithm on four sequences
to evaluate and compare the algorithms; then, we analyze the relevant experimental data.
The specific experimental results are as shown in Figures 8–11.

As shown in Figures 8–11, we can analyze the three-dimensional difference graph
obtained from the four sequences under the processing of the seven algorithms in this
paper. It can be seen from the figure that the algorithm proposed in this paper is superior
to other algorithms in image background suppression and weak target signal retention.
Among them are the background image, difference image, and three-dimensional image of
the difference image obtained by anisotropic algorithm (ANI) processing. It can be seen
from the figure that because the anisotropic algorithm uses the gradient information around
a single pixel in combination with the diffusion function to suppress the background, it
cannot effectively suppress the edge contour in the background, so the target points and
more edge noise points in the difference map are retained. From the three-dimensional
figure, it can be seen that the distribution of dendrites in the difference map is chaotic,
and weak targets cannot be highlighted. The top hat filter preprocesses the image back-
ground to obtain the background image, the difference image and the three-dimensional
structure of the difference image. As shown in the figure, it can be observed that the effects
of top hat filtering in different sequences are obviously different, which indicates that the
method of top hat filtering relies on the structural elements of the filter template to perform
background processing and has a large defect in the target detection image with large cloud
fluctuation and prominent edges. The method of using the relationship between adjacent
pixels to distinguish between targets and backgrounds to complete background suppres-
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sion is not applicable to images with strong edges. It will make the difference graph retain
more edge information stronger than the target signal, making it difficult to distinguish
between the target and the background. For images with large differences between image
pixels and structural elements, the algorithm has a poor processing effect and large adapt-
ability. Two-dimensional minimum mean square filtering (TDLMS) is used to process the
background image, difference image and three-dimensional image of the difference image.
This algorithm performs background processing on the information of adjacent pixels in
the X and Y directions in the neighborhood pixel matrix. The processing effect is ideal in
the image with a mild background, but the background processing is poor in the image
with a large fluctuation in background transformation. Only calculating the information
of adjacent pixels in two directions will cause confusion in distinguishing the target and
background when predicting the position of the point transformation. As shown in the
figure, this algorithm will sharpen the edge so that the energy of image edge information is
far greater than the energy of the target location, which makes the detection target receive
edge energy information, leading to target detection failure. The IPI model processes four
sequences of background images, differential images and three-dimensional images of
differential images. Similarly, the IPI model is also affected by the moving step size and
filtering window, and it cannot perform benign iteration to suppress the background of the
image, so that more false alarms remain in the image, and it is more sensitive to images
with uneven light distribution, which makes the image form a dark and bright distinct
fault, bringing difficulties to target detection. The NTFRA model combines the LogTFNN
model, local tensor model, and HTV model to improve the IPT model. However, based on
the scene difference 3D map, it was found that the model has a high false alarm rate and
poor background modeling performance.

Top-Hat TDLMS IPI NTFRA PSTNN

HMBLCM ADMD WSLCM MPCM RLCM Pro

ANI

ANI

Figure 8. Background modeling results in scenario A.
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Top-Hat TDLMS IPI NTFRA PSTNN

HMBLCM ADMD WSLCM MPCM RLCM Pro

ANI

Figure 9. Background modeling results in scenario B.

Top-Hat TDLMS IPI NTFRA PSTNN

HMBLCM ADMD WSLCM MPCM ProRLCM

ANI

Figure 10. Background modeling results in scenario C.
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Top-Hat TDLMS IPI NTFRA PSTNN

HMBLCM ADMD WSLCM MPCM RLCM Pro

ANI

Figure 11. Background modeling results in scenario D.

In the differential results of RLCM, WSLCM, and MPCM models, it can be observed
that using local significance operations can effectively enhance the target signal. This
provides a good theoretical basis for the research direction of visual saliency, such as the
ADMD model and HMBLCM model. The former constructs a local inner and outer window
discrimination mechanism to enhance the energy of the target, solving the difficulty of
AAGD detection in strong edge scenes. The latter first proposes an improved IHBF model
based on the HBF model to enhance the energy of the target. Then, on the basis of the
LCM model, an adaptable MLCM model is proposed to combine with IHBF, making
the target more energetic during background suppression processing. As shown in the
differential and three-dimensional diagrams in Figures 8–11, the background modeling
results of ADMD and HMBLCM still retain high false alarms and low target discrimination.
It can be seen from the figure that in the four sequences, the background modeling method
for local information calculation of area blocks proposed in this paper according to the
background suppression idea of traditional gradient algorithm has a remarkable effect,
which can be observed from the corresponding three-dimensional graph of the difference
image, and it can completely suppress the edge contour of the multi-cloud layer in the
scene, so that the protruding areas containing targets are enhanced and retained. It shows
that the algorithm in this paper has certain feasibility in background suppression in the
image with cloudy layer noise, and it can well retain the information of target points,
effectively highlighting target points, which provides a basis for subsequent target point
segmentation and extraction.

3.2. Analysis of Background Modeling Data of Each Algorithm

After background modeling, in order to accurately reflect the feasibility of the algo-
rithm proposed in this paper, this section uses the signal gain (IC), background suppression
factor (BSF), and background structure similarity (SSIM) defined above to show the perfor-
mance of the algorithm in target detection of complex cloud background images. The larger
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the index value, the more obvious the effect of the algorithm. The evaluation data of each
algorithm in different scenarios are shown in the Table 2.

Table 2. The indexes acquired from different methods.

Frame Scene A Scene B Scene C Scene D

Method\Index IC BSF SSIM IC BSF SSIM IC BSF SSIM IC BSF SSIM

ANI [54] 9.0203 91.3200 0.9939 25.8218 183.6795 0.9984 12.4826 169.9695 0.9982 1.1732 106.0274 0.9955
Top hat [11] 10.5927 94.4869 0.9802 107.1684 148.0800 0.9854 31.2586 204.7889 0.9913 0.3410 107.8749 0.9840
TDLMS [22] 45.1087 92.5729 0.9622 132.4805 123.1463 0.9872 33.1432 74.4022 0.9876 21.6857 93.8758 0.9630

IPI [37] 2.1981 128.8429 0.8830 0.4425 281.7852 0.8564 0.2368 184.9115 0.6771 0.7470 318.0104 0.8803
NTFRA [55] 12.5237 164.3357 0.9995 NaN 83.0662 0.9985 NaN 62.7185 0.9958 9.3106 139.4590 0.9992
PSTNN [8] 12.5237 181.5125 0.9999 NaN 350.7793 0.9999 NaN 452.772 0.7857 9.3106 423.6726 0.9979

HMBLCM [56] 10.9859 53.6475 0.9830 222.6875 66.5249 0.9892 66.5943 34.7095 0.9686 33.0000 69.8265 0.9899
ADMD [57] 10.9577 58.2625 0.9903 34.9862 240.4317 0.9993 22.6822 120.7594 0.9976 7.5804 63.8970 0.9944

WSLCM [34] 11.8859 54.8368 0.9998 222.6875 612.1966 0.9999 NaN 538.087 0.9999 51.0000 63.8913 1.0000
MPCM [33] 9.8687 19.5679 0.9673 222.6875 63.2017 0.9999 66.5943 123.2548 0.9972 51.0000 23.2017 0.9794
RLCM [32] 1.6760 53.3073 0.9830 49.5246 23.8160 0.9536 1.4083 15.3287 0.9161 11.4136 5.9400 0.9168
Proposed 43.5325 502.4472 0.9998 35.8208 482.0345 0.9999 56.1780 314.6325 0.9999 13.9145 193.5220 0.9997

As shown in the above table, the data obtained from differential image gain (IC),
background suppression factor (BSF), and structural similarity (SSIM) calculations on
four sequences of images can be observed to be outstanding in background modeling,
and the algorithm proposed in this paper performs well in background estimation and
reconstruction. Its background suppression ability reaches a maximum of 502.4472, and the
reconstructed background has a similarity of over 99% with the original image. In the
signal indicator IC, the maximum target signal gain can reach 56 dB, indicating that the
model proposed in this article can meet the target detection requirements.

3.3. Comparison and Analysis of Difference Graph Segmentation Results

In summary, some noise points are still preserved in the differential image after
background modeling in complex multi-cloud scenes. In order to enhance the visual
discrimination of the target while removing noise, this section uses the multi-directional
scale segmentation model proposed in this paper and the recurrent window segmentation
algorithm (RW) [58] to segment and compare the difference results of the above four scenes
on the basis of the same segmentation threshold to verify the effectiveness and feasibility
of the algorithm proposed in this paper. The specific segmentation results are shown in the
following Figure 12.

As shown in Figure 12, on the basis of the same segmentation threshold, the MDGSS
model proposed in this paper has a significantly higher saliency of the target after segment-
ing the difference map compared to the traditional double window segmentation algorithm.
The reason is that the algorithm in this article can control the corresponding segmentation
scale for image segmentation, which better adapts to the uneven energy distribution during
the target motion process. To some extent, it solves the problem of target confusion caused
by residual noise segmentation in traditional dual window segmentation models that only
use set windows and thresholds for image segmentation. The research idea of using the
multi-scale characteristics of targets for segmentation and extraction is feasible. It not only
enhances the saliency of the segmented targets but also improves the detection rate of the
model and reduces the false alarm rate.
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Figure 12. Comparison of segmentation results between the loop window segmentation algorithm
and the multi-directional scale segmentation algorithm.

3.4. Analysis of Multiple Frame Trajectory Detection Results in Differential Images

After the above energy enhancement, background modeling, and multi-directional
gradient segmentation, the feasibility and effectiveness of the proposed algorithm in de-
tecting weak and small targets are demonstrated. On the basis of the above experiments,
this section mainly conducts tracking research on the motion trajectories of weak and small
targets in the sequence of multiple frames after background modeling. The specific effects
are shown in the following Figures 13–16.

Top-HatANI TDLMS IPI NTFRA PSTNN

HMBLCM ADMD WSLCM MPCM RLCM Pro

Figure 13. Detection trajectories of algorithms in scene A.
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ANI Top-Hat TDLMS IPI NTFRA PSTNN

HMBLCM ADMD WSLCM MPCM RLCM Pro

Figure 14. Detection trajectories of algorithms in scene B.

ANI Top-Hat TDLMS IPI NTFRA PSTNN

HMBLCM ADMD WSLCM MPCM RLCM Pro

Figure 15. Detection trajectories of algorithms in scene C.

ANI Top-Hat TDLMS IPI NTFRA PSTNN

HMBLCM ADMD WSLCM MPCM RLCM Pro

Figure 16. Detection trajectories of algorithms in scene D.

As shown in Figures 13–16, the trajectories are, respectively, ANI filtering, top hat
filtering, TDLMS filtering, the IPI model, the NTFRA model, the PSTNN model, the
HMBLCM model, and the ADMD model. The four sequences of target motion trajectories
are output by the algorithm proposed in this paper. From the graph, it can be observed
that the algorithm proposed in this paper has a significant detection effect in scenes with
multiple cloud layers. It can not only output the running trajectory of the target more
completely but also completely suppress information such as edge contours, which has
good discrimination and achieves multi-frame detection of the target. Meanwhile, other
algorithms have obvious differences in detection results when facing the cloudy scenes
with complex backgrounds. ANI, TDLMS and top hat filter detection in traditional filtering
can detect targets in four sequences, but many background edge contours are still preserved
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in the following figure of the same threshold segmentation, which shows that the algorithm
model using only filtering is not applicable in the cloudy scenes with complex backgrounds,
and the background suppression is incomplete. There are many false alarm targets in
the image. In the low-rank sparse recovery theory, the detection effects of the IPI model,
NTFRA algorithm, and PSTNN model, which are compared in this paper in four scenarios,
reflect the advantages of the low-rank theory in background modeling. As shown in the
above figure, under the same segmentation condition, the cloud profile in the target track
output by such an algorithm is less than that of the traditional filtering model, which shows
that the low-rank theory is feasible in background modeling. However, in the face of a
cloudy scene, when the target shuttles through the clouds, it may often be suppressed as a
sparse component, while the cloud edge with a strong contour is retained, resulting in the
phenomenon of high false alarm detection. Meanwhile, in the HMBLCM model, ADMD
model, WSLCM model, MPCM model, and RLCM model of visual saliency, the local
multi-directional grayscale aggregation model constructed in this paper performs well
in preserving target signal processing. In the trajectory of sequence difference, it can
be observed that the background modeling model constructed on the basis of energy
aggregation in this paper has complete suppression of the background, and the target
signal is clearly preserved. After the background modeling, the target’s trajectory can be
output with lower false alarm detection.

3.5. Analysis of Multi-Frame Energy-Sensing Detection Results

In the above figure, although the algorithm in this article has achieved multi-frame
object detection in sequence images, there are still some false alarm target interferences
that confuse the extraction of real targets in the figure. In order to extract the real target
completely to output the real target track, this paper uses the gray energy perception of
the target motion between frames to extract the target, avoiding the phenomenon of target
loss caused by the pipeline limitation of traditional pipeline filtering. The specific detection
results are as follows:

As shown in Figure 17, after using the multi-frame energy-sensing detection model
(MFESD), the noise in scenes A, B, C and D in Figures 13–16 are removed, and the target
trajectories in the four sequence scenes are separately extracted, resulting in obvious target
motion trajectories. The overall detection rate of the sequence reaches over 95%, and the
target motion trajectory output is complete, indicating that the multi-frame energy-sensing
detection model (MFESD) proposed in this paper can effectively capture the temporal
information of target motion, and to some extent, it has met the requirements of multi-
frame target detection in the sequence.

Scene A Scene B Scene C Scene D
Figure 17. Target detection trajectories in 4 scenarios of the energy perception detection model.

3.6. Algorithm ROC Analysis

Intending to further reflect the detection effect of the algorithm in this paper from a
mathematical perspective, this section conducts statistical analysis on the detection rate and
false alarm rate of the above algorithms, and it draws the corresponding receiver operating
characteristic according to the data for corresponding analysis. Its mathematical calculation
model is as follows [59]:
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Pd =
NTDT

NT
× 100%

Pf =
NFDT

NP
× 100%

(29)

where Pd, Pf represents the detection rate and false alarm rate, respectively, NT represents
the total number of images containing target points in the sequence image, NTDT repre-
sents the total number of images containing targets detected in the actual situation, NP
represents the total number of all pixels in the calculated image, and NFDT represents the
total number of targets that cannot be detected in the actual situation. The ROC curves of
each algorithm in the four scenarios are as follows in Figure 18.
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Figure 18. ROC curves in 4 scenarios of each algorithm.

In Figure 18, the detection rate of the algorithm proposed in this paper in the detection
of small targets in the multi-cloud background has reached more than 90%, which shows
that the algorithm in this paper has a good edge grinding effect on the background of the
multi-cloud and multi-edge contour, and it can highlight the target while reducing the
sharp edge contour, reduce the appearance of false alarm targets, and reduce the false
alarm rate of detection. Its detection rate Pd in the four scenes has reached 91.3043%, 96%,
100%, and 100% respectively, and the maximum false alarm rate P f is 0.0024% (no more
than 0.01), indicating that the algorithm proposed in this paper has met the requirements of
small target detection, and the detection effect is outstanding in the multi-cloud layer scene.
It can be observed from the ROC diagrams of the four scenes that the detection rates of the
traditional filtered ANI, TDLMS and top hat filter are quite different. The highest detection
rates (Pd) of the three algorithms in the three scenes are 77.1739%, 89%, 100%, and 87.0129%
of the ANI algorithm, 53.2608%, 84%, 100%, and 45.4545% of the TDLMS, and 79.3478%,
89%, 100%, and 100% of the top hat filter, respectively. To some extent, this reflects the
poor effect of background modeling in complex cloud scenes through filtering and the high
target loss rate. It can be seen from the figure that the false alarm rate associated with the
traditional algorithm is relatively high, and the P f of the three algorithms is more than
0.01%, which also indicates that the traditional background modeling algorithm needs to
be constantly improved to better adapt to complex scenes.
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On the other hand, the low-rank sparse recovery theory also has poor performance in
object detection in complex scenes with multiple cloud layers. In scenes A and B with sharp
and prominent edge contours, such algorithms have lower detection rates and higher false
alarms. When performing low-rank recovery, the strong edge contour is sparse processed as
the target, while the real target is restored as the low rank part, resulting in the phenomenon
of target detection loss. Among the visual saliency detection models, the highest detection
rates for scene A and scene B are 89.58% and 99% of the MPCM model. In scenario C and
scenario D, the detection rate of the visual saliency class model can reach 100%, reflecting
the superiority of the model.

3.7. Comparison of Computational Model Complexity

In order to enable the algorithm in this article to adapt to practical engineering appli-
cations, this section conducts statistical analysis of the running time of the above models in
four scenarios. The specific experimental data are shown as follows.

As shown in Table 3, ANI filtering, top hat filtering, TDLMS filtering, the NTFRA
model, the HMBLCM model, the ADMD model, the WSLCM model, and the MPCM model
have relatively short running times, with an average running time of no more than 2 s,
and have great potential in practical applications. However, based on the above research, it
has been found that the background modeling effect of these models is not ideal, and the
detection false alarm rate is high. The PSTNN model, due to its excellent low-rank inversion
operation, greatly reduces the operation time of the model while ensuring the detection rate.
The mean operation time of the four scenarios is 1.2758 s. It can be clearly observed from the
table that the detection time of the IPI model, the RLCM model, and the model proposed in
this article is relatively long. The average running time of the algorithm in this article is
38.6120 s, indicating that while suppressing complex backgrounds, the optimization of the
model’s computational time still needs to be urgently addressed.

Table 3. Calculation of background modeling complexity in different scenarios of each model
(unit: frames/second).

Model/Scene Scene A Scene B Scene C Scene D

Time consumption

ANI [54] 1.5682 1.3824 1.1728 1.1622
Top-Hat [11] 0.0806 2.3197 2.1920 2.168
TDLMS [22] 0.7323 3.1451 2.9622 2.9862

IPI [37] 20.1913 25.5687 21.5469 22.6102
NTFRA [55] 7.4413 7.7037 9.3783 9.4596
PSTNN [8] 1.3455 0.7817 1.5313 1.4449

HMBLCM [56] 0.0951 0.0621 0.0642 0.0617
ADMD [57] 0.1818 0.1235 0.1655 0.1220

WSLCM [34] 5.0788 6.6469 5.1151 5.2533
MPCM [33] 0.3727 0.3762 0.3716 0.3757
RLCM [32] 41.0290 52.0089 37.5410 41.5173

Pro 38.4084 40.0951 37.5508 38.3938

4. Discussion

To sum up, the feasibility and adaptability of the algorithm proposed in this paper
for object detection in multi-cloud backgrounds can be demonstrated. After the above
experiments, the detection model proposed in this paper can be discussed as follows:

(1) Firstly, the energy enhancement model of multi-directional grayscale aggregation
proposed in this article can effectively enhance the signal of the target based on the
small correlation between the target and the target, and the enhancement of the
target signal-to-noise ratio is evident. In addition, the model implements different
enhancement strategies for different regions, significantly narrowing the grayscale
difference of strong edge contours, making the background relatively flat and the
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target singular and prominent in the form of regional blocks, improving the grayscale
value and discrimination of the target in the original image. To some extent, it has
changed the phenomenon of target detection failure caused by weak target signals in
detection using only original imaging. However, this model still retains some of the
noise, which affects the identification of the target during background modeling. In the
later stage, a corresponding region interest extraction algorithm can be constructed
based on the prominent characteristics of the target grayscale to obtain the target area,
increasing the adaptability of the algorithm.

(2) Based on the research work in (1), this paper proposes a background modeling model
based on region blocks based on a gradient reciprocal to complete image background
modeling. Transforming the traditional gradient reciprocal background modeling
model processed by a single pixel into regional pixels for local imaging improves the
utilization of target signals and the detection rate of algorithms. However, in the exper-
iment, it was found that due to the complexity of local region operations, the modeling
time for background modeling is longer than that of traditional gradient reciprocal
background modeling models, and further optimization of the algorithm is still
needed in the later stage.

(3) In target extraction, this paper proposes a multi-directional and multi-scale segmenta-
tion model to segment candidate targets in the difference map to obtain real targets.
After experiments, it was found that the effect was good because the segmentation
model proposed in this article can adapt to the irregularity of energy distribution
during target imaging based on the scale of the target imaging. In comparison with
traditional double window segmentation models, it was found that the proposed
segmentation model in this paper can improve the discrimination of the target while
removing noise. The target area is significantly larger than the target area after double
window segmentation, achieving the goal of target segmentation.

(4) In order to fully output the motion trajectory of the sequence target, this paper pro-
poses a multi-frame energy perception detection model to complete the detection of
multiple frames. The experimental results show that the model effectively outputs
the motion trajectory of the target, and the overall detection rate of the sequence
image can reach over 90%. Introducing a pixel grayscale into multi-frame detection
can reflect the significance of the local signal of the target, improve the accuracy of
determining real targets between sequence frames, and achieve target detection and
tracking. After research, it was found that the model is closely related to the back-
ground modeling algorithm. Due to the fact that the background modeling algorithm
proposed in this article requires a lot of computation time on the selected sequence
scenes, the algorithm takes a longer time for multi-frame detection. Therefore, future
researchers can try to combine different background modeling methods to achieve
the multi-frame detection of targets.

5. Conclusions

In order to improve the detection capability of dim target detection systems, this paper
proposes a dim and small target detection based on the energy sensing of local multi-
directional gradient information. After the above experimental verification, the model
proposed in this paper is summarized as follows:

(1) In background modeling for complex backgrounds with multiple cloud layers, the en-
ergy aggregation model EMDGA can effectively utilize local information of the image to
aggregate and enhance the target signal, highlighting the target signal, and improving
the target signal-to-noise ratio by an average of 3.12 dB. In addition, the model fuses
sharp cloud edges with background information to achieve a preliminary smooth image
effect, laying the foundation for the background modeling of subsequent images.

(2) Based on the energy aggregation model EMDGA, the traditional filtering background
modeling in multi-cloud scenarios is not effective. The LMDGA background modeling
model constructed in this article has an SSIM index of over 99% for the structural
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similarity between the reconstructed background and the original image, and it has
an average background suppression factor BSF of 373.1591. The average target signal
gain IC in the differential plot reaches 37.3615 dB, indicating that the constructed
local region background modeling model has certain applicability and innovation in
multi-cloud scenarios.

(3) To address the issue of detection failure caused by the uncertainty of the threshold
during the target extraction process, the MDGSS model proposed in the article can
amplify the target signal while segmenting the image, improve the saliency of the
target, and effectively eliminate the interference of noise in the differential image.

(4) Considering the instability of the moving target signal in the time domain space,
there is still some noise left in the binary image after segmentation, resulting in low
target discrimination. The MFESD model constructed in this article is based on the
local grayscale singularity characteristics of the target for research. Through the
characteristics of grayscale accumulation and target motion, the real target is detected,
and the target’s trajectory is output. The overall detection rate of the sequence scene
is over 95%.
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EMDGA Energy Enhancement Model for Multi-Directional Gray Aggregation
LMDGR Local Multi-Directional Gradient Reciprocal
MDGSS Multi-Directional Gradient Scale Segmentation
MFESD Multi-Frame Energy-Sensing Detection
ANI Anisotropy
PSTNN Partial Sum of Tensor Nuclear Norm
NTFRA Non-Convex Tensor Fibered Rank Approximation
NRAM Non-Convex Rank Approximation Minimization
HB-MLCM High-Boost-Based Multi-Scale Local Contrast Measure
ADMD Absolute Directional Mean Difference
WSLCM Weighted Strengthened Local Contrast Measure
MPCM Multi-Scale Patch-based Contrast Measure
RLCM Relative Local Contrast Measure
RW Recurrent Window
SSIM Structural Similarity Image
SNR Signal-to-Noise Ratio
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