
Citation: Wang, J.; Ding, J.; Ran, S.;

Qin, S.; Liu, B.; Li, X. Automatic Pear

Extraction from High-Resolution

Images by a Visual Attention

Mechanism Network. Remote Sens.

2023, 15, 3283. https://doi.org/

10.3390/rs15133283

Academic Editors: Carlos Antonio

Da Silva Junior and

Luciano Shiratsuchi

Received: 2 June 2023

Revised: 24 June 2023

Accepted: 25 June 2023

Published: 26 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Automatic Pear Extraction from High-Resolution Images
by a Visual Attention Mechanism Network
Jinjie Wang 1,2,3, Jianli Ding 1,2,3,*, Si Ran 1,2,3, Shaofeng Qin 1,2,3 , Bohua Liu 1,2,3 and Xiang Li 1,2,3

1 College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 800046, China;
wangjj@xju.edu.cn (J.W.)

2 Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
3 Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University,

Urumqi 830046, China
* Correspondence: watarid@xju.edu.cn

Abstract: At present, forest and fruit resource surveys are mainly based on ground surveys, and
the information technology of the characteristic forest and fruit industries is evidently lagging. The
automatic extraction of fruit tree information from massive remote sensing data is critical for the
healthy development of the forest and fruit industries. However, the complex spatial information
and weak spectral information contained in high-resolution images make it difficult to classify fruit
trees. In recent years, fully convolutional neural networks (FCNs) have been shown to perform
well in the semantic segmentation of remote sensing images because of their end-to-end network
structures. In this paper, an end-to-end network model, Multi-Unet, was constructed. As an improved
version of the U-Net network structure, this structure adopted multiscale convolution kernels to
learn spatial semantic information under different receptive fields. In addition, the “spatial-channel”
attention guidance module was introduced to fuse low-level and high-level features to reduce
unnecessary semantic features and refine the classification results. The proposed model was tested
in a characteristic high-resolution pear tree dataset constructed through field annotation work. The
results show that Multi-Unet was the best performer among all models, with classification accuracy,
recall, F1, and kappa coefficient of 88.95%, 89.57%, 89.26%, and 88.74%, respectively. This study
provides important practical significance for the sustainable development of the characteristic forest
fruit industry.

Keywords: fruit industry; convolutional neural networks; high-resolution remote sensing image;
semantic segmentation

1. Introduction

As a new global trend, precision agriculture is a system supported by information
technology in which field information is regularly and quantitatively collected to implement
technology and management systems. Precision agriculture mainly involves agriculture
and forestry-related global positioning systems, information-collecting systems, remote
sensing monitoring systems, geographic information systems, and other subsystems [1–3].
Among these methods, the remote sensing technique has become the key technology for
acquiring information in precision agriculture systems due to characteristics such as its
ability to obtain agricultural and forested planting areas, its ability to conduct repeated
monitoring in a short time, its low cost and its capacity to integrate a variety of remote
sensing data [4,5]. The combination of remote sensing techniques and modern information
technology, such as global positioning systems, can realize the rapid informatization of
agricultural land, as well as quantitative studies and analyses, to improve the yield and
profit of pear trees. However, complex surface types greatly increase the difficulty of
extracting object information in remote sensing applications and using high-resolution
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remote sensing data to obtain information for use in feature classification has become an
important research direction in the fields of remote sensing science and computer vision [6–8].

In agriculture research, remote sensing techniques are mainly applied to investigate
and plan forest resources, monitor the water use efficiency of farmland, conduct dynamic
monitoring and analyses, monitor and develop early-warning systems for disasters, assess
disasters, etc. [9,10]. With the continuous progress of remote sensing techniques, multispec-
tral and high-resolution remote sensing data have gradually appeared, providing potential
possibilities for information-extraction practices in the forest and fruit industries [11,12].
Hyperspectral images have the advantages of narrow bands and high spectral resolutions
and can accurately detect small spectral differences between different ground objects, thus
greatly improving the recognition accuracy of objects in forest and fruit research [13–17].
Hyperspectral remote sensing techniques have made great progress in recognition of tree
species in the forest and fruit industries, but these techniques cannot meet the statistical
accuracy requirements when analyzing spatial areas in forest resource surveys due to their
low spatial resolutions. Although unmanned aerial vehicles (UAVs) have rich spectral
information and spatial information, due to their small coverage areas and high acquisition
costs, it is difficult to use these technologies to meet the needs of large-scale forest and
fruit industry surveys [18,19]. Comparatively speaking, high-resolution remote sensing
images not only have obvious spectral characteristics but can also output prominent infor-
mation on ground object shapes, structures, and textures. As in-depth research on remote
sensing image processing and classification methods has progressed, it has been difficult
to meet the needs of high-precision remote sensing classifications by relying only on the
spectral information contained in images. Therefore, the rich spatial semantic information
contained in high-resolution remote sensing images plays an increasingly important role in
classification and recognition techniques [20–24]. However, it is difficult to extract semantic
information from high-resolution remote sensing images because differences in the shapes
and structures of different ground objects are multiscale in remote sensing images and
because of the high correlations and redundancies that occur between image texture fea-
tures. Therefore, effective feature extraction methods directly affect the classification and
recognition accuracies and are the key to investigating and extracting information of forest
resources, such as in area extractions of tree species in remote sensing, growth monitoring,
yield estimation, and pest control applications [25–32].

With the rapid development of artificial intelligence and big data, deep learning
has become a widely used method in the fields of computer vision, autonomous driving,
speech recognition and feature extraction by means of multilayer nonlinear information
processing, and an end-to-end application model has gradually been formed based on a
large number of samples [33–35]. In addition, deep learning also plays an important role
in processing remote sensing images [28,36–40]. In particular, after Long et al. proposed
the fully convolutional neural network (CNN) model [41], the CNN with the encoder-
decoder framework was used to extract specific image features by simulating the human
visual system to perform hierarchical abstract processing on original images. This method
has been widely used in remote sensing image classifications, target object detections,
scene recognitions, and other tasks and has gradually become a means by which the
semantic segmentation of remote sensing images can be performed [42,43]. Compared to
traditional object-oriented and pixel-oriented classification methods [44–46], CNN-based
networks typically achieve higher classification accuracy. For example, SegNet, FCN8s,
and U-Net utilize automatic feature learning to avoid complex feature design, improving
the automation and intelligence of remote sensing image segmentation [47]. Consequently,
CNNs are gaining increasing attention for feature information extraction in remote sensing
applications [7,48,49].

While CNNs have shown success in classifying high-resolution remote sensing im-
ages, several problems remain. Firstly, CNNs depend heavily on the number of input
training samples, which are limited for remote sensing images, making generalization
difficult [47,50]. Secondly, most models have been trained on natural image datasets and
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are not suitable for remote sensing images [51]. Finally, contextual information needs to be
combined for interpretation, but existing models have limited receptive neuron fields and
insufficient multiscale feature-learning abilities [52–54].

In this study, by improving the U-Net network, we proposed a multiscale CNN
model to extract the distribution area of pear trees. Specifically, convolutional kernels of
different sizes were used to expand the receptive field to obtain more context features
in the input images, and lower-level and higher-level features were fused by residual
means to reduce the transmission of redundant features in the network. On the other hand,
because the attention mechanism could effectively focus on useful information and ignore
redundant information in the network-training process by simulating the process of human
visual perception, the construction of a “spatial-channel” attention guidance module could
eliminate the semantic differences among different feature levels and assist in the selection
of important features to optimize the Multi-Unet classification results.

The rest of this paper is arranged as follows: In the second part, the research area
and data acquisition method are described. In the third section, we introduce detailed
information on the Multi-Unet method. In the fourth part, we test and analyze the avail-
ability of this method on the Gaofen (GF)-6 dataset. Finally, conclusions are drawn in the
fifth section.

2. Materials and Study Area
2.1. Study Area

Yuli County is located in the Bayingoleng Mongol Autonomous Prefecture of the
Xinjiang Uygur Autonomous Region and has geographical coordinates of 84◦02′E~89◦58′E,
40◦10′N~41◦39′N and a total area of 59,700 square kilometers. This region belongs to
a temperate continental desert climate zone. Great differences between heat and cold
conditions occur in this area, along with strong evaporation and sufficient light. The
average sunshine duration is 2975 h a year, and due to the unique climate conditions,
it is rich in crops, such as fragrant pear, cotton, and licorice. Pear trees are deciduous
fruit trees, and due to their need to drop their leaves and become dormant in winter,
for better observation and analysis, the remote sensing image data recorded by the GF-6
satellite on 15 May 2019 was selected in this study. After the images were corrected, fused,
and preprocessed, their spatial resolution was 2 m, and they included four bands, the
near-infrared, red, blue, and green bands, as shown in Figure 1.

Figure 1. Overview map of the study area. (a) location of Yuli County in China as well as in Xinjiang;
(b) range of GF-6 image acquisition; (c) training set; (d) test set.

2.2. Labeled Data Acquisition and Production

The production of representative training sample data is a crucial part of semantic
segmentation for deep learning applications. High-resolution remote sensing images
contain complex spatial textures and other information. When constructing a sample set, it
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is important to include all feature types in the study area and to distribute representatives
of each feature type as evenly as possible. This is necessary because the spatial, geometric,
and spectral features of different objects vary significantly in different regions, and the
“same subject with different spectra” and “same spectra with different subjects” phenomena
in remote sensing images present great challenges to the accuracy and performance of
feature recognition methods, which, in turn, highlights the importance of a well-constructed
sample set.

The process by which a dataset sample is generated mainly includes field sample site
tagging and the indoor production of label sets. To ensure the scientific validity of the
sample site selection process and the accuracy of pear tree identification, a field survey
was conducted in Yuli County to determine the distribution range of pear trees and the
actual conditions surrounding the captured images. The experimental area was chosen in
the region with the highest concentration of pear trees in Yuli County. GPS points were
used to mark all the experimental tags in the field. Based on the marked point data and a
vegetation-type distribution map of Yuli County, the region was subdivided using indoor
visual interpretation. Edge information was collected as accurately as possible, and the
experimental area images were divided into pear orchards and other areas to complete the
tagging process. After this process, the original images had the same sizes and dimensions
as the tagged images.

3. Methods

The reasonable and correct use of contextual information in remote sensing images
is the key to improving semantic segmentation. Currently, many scholars use the dilated
convolution method to expand the receptive field. However, this process leads to the loss
of local information, resulting in poor image segmentation. When there are too many layers
in a model, a large amount of redundant information can easily be transferred from the
lower layers to the deeper layers, thus affecting the credibility of the model.

3.1. Network Structure

The Multi-Unet encoder is mainly based on the improved U-Net network model
and can be divided into different feature blocks according to the output feature map.
The network structure is shown in Figure 2. The spatial sizes of the images range from
512 × 512 pixels to 32 × 32 pixels, and the features closer to the input layer contain more
bottom-level information. Conversely, the features closer to the output layer contain more
top-level information. Multi-Unet makes the following improvements to the original
U-Net network: First, the original two 3 × 3 convolution kernel operations are uniformly
replaced by a convolution block that consists of 1 × 1, 3 × 3, 5 × 5, and 7 × 7 convolutional
layers and cross-channel integration is performed by 1 × 1 to ensure the effectiveness
of feature information extraction while simplifying the computational complexity of the
model. Meanwhile, because feature extraction has a certain geospatial correlation, the
extraction of pear tree feature information can be further enhanced by expanding the
receptive field. Then, 3 × 3, 5 × 5, and 7 × 7 convolution kernels are used for further
in-depth feature extraction [55]. The purpose of this replacement is to learn the semantic
information of images at different scales at each feature-level stage.

In addition, a “spatial-channel” attention guidance module is added to the decoder
part of the U-net network. This link between channel and space is established to strengthen
important feature information and weaken nonimportant feature information to present
semantic information that is useful for feature extraction. The encoder part continuously
compresses the feature information of the image by convolution and pooling, while the
decoder recovers the feature map resolution by transposed convolution and upsampling
operations using the “spatial-channel” attention guidance module. A skip connection
exists between the encoder and the decoder. This connection fuses the shallow simple
features with the deep abstract features in the network to help the decoder better restore
the target details. The “spatial-channel” attention bootstrap of the entire network uses the
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sigmoid activation function, the output layer uses the softmax activation function, and all
the remaining convolutional layers use the ReLu activation function.

Figure 2. Multi-Unet network structure diagram.

3.2. “Spatial-Channel” Attention Guidance Module

The channel attention guidance module is a multilevel feature-fusion unit that is based
on the squeeze-and-excitation (SE) module and is mainly used to eliminate the semantic
differences between different feature levels and to extract important features [56,57]. In this
module, both high-level and low-level features participate in the feature-weighting process.

Specifically, the channel attention guidance module first converts high-level features Uc
into a one-dimensional weighted feature vector by “aggregation” using the following expression:

qc = Fsq(Uc) =
1

w/2× h/2

w/2

∑
i=1

h/2

∑
j=1

uc(i, j) (1)

where I is the low-level feature mapping, I ∈ Rh×w×C1 , U is the high-level feature mapping,
I ∈ Rh/2×w/2×C2 , qc denotes the average of all image elements contained in the cth channel
of the feature map q and is used to indicate the value distribution of the feature map
contained in this channel, i.e., its contextual information.

After the aggregation process, the next step is “expansion”, which is performed using
the following calculation:

s = Fex(q, W) = σ(g(q, W)) = σ(W2δ(W1q)) (2)

where δ and σ are the ReLu and sigmoid layers, respectively. By multiplying the q ∈ R1×1×C2

expression obtained in Equations (2)–(4) with W1 ∈ R16×C2 , a fully connected layer opera-
tion, W1q ∈ R1×1×16, can be obtained using the activation function δ. The data dimension
remains unchanged, and by again multiplying this expression with W2 ∈ RC1×16 in a fully
connected layer process, we get W1q ∈ R1×1×16. After applying the activation function σ,
the data dimensions remain unchanged. At this moment, the input data are first dimension-
ally reduced and then dimensionally expanded so that the input and output dimensions
remain the same.

The obtained weight s in the above equation is the core of the channel attention mech-
anism. By learning the feature information in the fully connected layer and the nonlinear
activation function layer to obtain the weights of the feature map and by multiplying the
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weight s with the input feature map U, it is possible to assign different weights to each
channel in the feature map with the following equation:

xc = Fscale(Uc, sc) = Uc × sc (3)

where x = [x1, x2, . . . , xc1 ] denotes the weighted fused features, as shown in Figure 3a, and
the weighted fused features are passed to the subsequent network after the convolution
operation.

Figure 3. (a) Spatialwise attention guidance module, (b) channel attention guidance module,
(c) “spatial-channel” attention guidance module.

In the spatialwise attention guidance module, as shown in Figure 3b, the multichannel
feature map I′ is compressed into a single-channel feature after the convolution of channel
number 11, and a spatial squeezing operation is realized as follows:

q = C× I′ (4)

where C is the convolution layer, C ∈ R1×1×c×1, I′, I′ ∈ RH×W×c, and q is the feature map
with channel number 1.

The weights are normalized to range from [0, 1] using the sigmoid function, and each
channel feature is multiplied with the corresponding weight to obtain a new feature channel:

x′c = Fsse
(
qc, I′c

)
= σ(qc)× I′c (5)

where x′ =
[
x′1, x′2, . . . , x′c

]
denotes the weighted fused features and σ is the sigmoid func-

tion. In this way, each obtained x′c value is associated with the spatial information contained
in the initial feature map, and this kind of spatialwise attention guidance module gives more
weight to the relevant spatial information and ignores the irrelevant spatial information.

In this paper, we took GF-6 for pear tree extraction. Due to the difference in the
response of vegetation to different bands of spectra, it has a strong sensitivity. In this way,
we combine the channel attention guidance module with the spatialwise attention guidance
module to obtain the “spatial-channel” attention guidance module, as shown in Figure 3c.
This module is then used to weight the spatial-dimension and channel-dimension features
to eliminate the semantic discrepancy problem in the images and to avoid the generation
of redundant features. Thus, the pear tree feature extraction in this way for high-resolution
images can speed up the model convergence speed and improve the classification accuracy
of the model.

3.3. Evaluation Index

To measure the pear tree identification effectiveness, we used four evaluation metrics,
precision, recall, the F1 score, and the kappa coefficient, to evaluate the Yuli County pear
tree dataset. Precision is a measure of the proportion of the number of samples that
were correctly predicted to be positively classified to the number of all samples that were
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predicted to be positively classified. When the predicted values of all samples exactly
match the true values of all samples, the precision is 1.0, and otherwise, the precision is 0.0.
Recall is the proportion of the number of samples that is correctly predicted to be positively
classified to the number of all positive samples. The F1 score is the combined precision and
recall score and is calculated by summing precision and recall. The kappa coefficient is often
used for consistency testing and for determining the classification accuracy. The kappa
coefficient is usually calculated based on a confusion matrix. The calculation formulas used
to obtain these metrics are as follows.

recallk =
TPk

TPk + FNk
(6)

precisionk =
TPk

TPk + FP′k
(7)

F1 =
(

1 + β2
)
− recall − precision

β2 − recall + precision
, β = 1 (8)

Kappa =
po − pe

1− pe
(9)

where TPk is the true positives (TPs) of class k, indicating the number of pixels whose
predicted pixel values agree with the true pixel values. FPk is the false positives (FPs) of
class k, indicating the number of non-k pixels incorrectly identified as class k pixels. FNk
is the false negatives (FNs) of class k, indicating the failure to identify class k pixels. FNk
and β are usually assigned a value of 1, representing the accuracy weight. po denotes the
number of correctly classified samples (diagonal values) in the confusion matrix divided
by the number of samples, and pe denotes the total number of samples divided by two
after multiplying the true values of each class and the predicted values of each class in the
confusion matrix.

4. Experiments and Results

This experiment was carried out on the Kaggle online website (www.kaggle.com),
the graphics processing unit (GPU) was the NVIDIA Nvidia Tesla P100-PCIE-16GB, the
programming language was Python, and the deep learning framework was compiled
with TensorFlow 2.0. The model was uniformly trained using the Adam optimizer. The
number of iterations of each model was 50. The verification accuracy was calculated once
per iteration. The model weight with the best accuracy was retained in each iteration,
and binary cross entropy was applied as the loss function. The training and test sets
were input to the network structure in the form of image data. To analyze and test the
impacts of different input image sizes on the classification results, two different image sizes,
256 × 256 pixels, and 512 × 512 pixels, were selected as inputs.

In our experiment, the current mainstream network models were selected for compar-
ison, SegNet [58], FCN8s [41,59,60], U-Net [61], Res-U-Net [37], PSPNet [62], RefineNet,
and DeepLabv3+ [63–65]. These models have been widely used in research on the semantic
segmentation of remote sensing images. All models are open-source and can be modified
according to the number of bands in the input images.

4.1. Single Module Functional Comparison

In this section, we tested the use of A: Spatialwise attention guidance module, B: Chan-
nel attention guidance module, and C: “Spatial-channel” attention Results of guidance
module in Unet. The experimental results are shown in Table 1. Because C combines multi-
scale feature information at the same time and adopts a channel attention mechanism to
suppress redundant feature information, the confidence of key features is greatly improved,
so it achieves the best performance. In addition, all indexes of B are higher than those of
A, which also indicates that increasing the channel attention mechanism can lead to better
performance in the network.

www.kaggle.com
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Table 1. Accuracy comparison table of the Single module.

Module Precision Recall Iou

A: Spatialwise attention guidance module 82.5 71.6 75.6
B: Channel attention guidance module 83.8 72.5 77.5

C: “Spatial-channel” attention guidance module 84.1 73.5 78.2

4.2. Pear Tree Extraction from GF-6 Data
4.2.1. Data Enhancement

Data augmentation is an essential step in deep learning tasks. In the actual production
process, it takes considerable time to manually construct samples. Generating new data
through data enhancement without changing the sample labels can effectively expand the
amount of data so that the model can enhance its generalization ability and classification
accuracy during training. Current deep-learning methods offer a large number of expansion
interfaces for data. However, due to the particularity of remote sensing images, it is
necessary to select a data enhancement method for use in the classification task according
to the actual situation to avoid generating too many redundant samples, which would
reduce the model classification accuracy and the model-training efficiency. Instead, we
choose an effective data enhancement method, superimpose another method on the basis
of one data enhancement method, and attempt to differentiate the transformed image from
the original image as much as possible. At the same time, a certain ratio is set for data
enhancement according to the number of each sample, and finally, the sample ratio of each
category reaches a balanced state. The data enhancement methods used in this process
include geometric enhancement and pixel enhancement. Geometric enhancement includes
the rotation, enlargement, reduction, and distortion of images. Pixel enhancement includes
the blurring, sharpening, noise addition, and saturation manipulation of images.

4.2.2. Result of the GF-6 Data

Figure 4 shows the classification results of different FCN models on the Yuli County
dataset. Compared with other models, whether the input size is 256 × 256 pixels or
512 × 512 pixels, the Multi-Unet network and DeepLabv3+ achieve the best results on
the dataset. The classification results of the SegNet and FCN8s network models both
showed an obvious “salt and pepper” phenomenon. The SegNet and FCN8s networks
had large areas of false negative pixels, and the number of pixels in which pear trees
failed to be identified was the largest. The network model had a 512 × 512 pixel size
class area and even more false negatives, indicating that improving the semantic image
segmentation performance by using shallower network layers and simple upsampling
convolution operations is difficult. U-Net also uses the upsampling convolution operation,
but it transfers feature information through a “jumping” connection between the encoder
and the decoder, and its classification effect is significantly better than those of SegNet and
FCN8s. However, obvious misclassifications and omissions still occur with this method,
and a large number of false positive pixels appear. For example, some water bodies and
Populus euphratica forests were mistakenly classified as pear trees, some pear trees were
not detected, and the pear tree detection was incomplete. When the input size of the Res-
U-Net was 256 × 256 pixels, the accuracy was significantly higher than 512 × 512 pixels,
especially between different fruit trees. DeepLabv3+ uses the “hole” convolution method
to obtain the contextual information of a relatively large receptive field, resulting in a better
recognition effect on pear trees. However, some false positive and false negative pixels
still occur.

Figure 5 shows the enlarged classification results of different FCN models in the
local area of the pear dataset in Yuli County. The Multi-Unet and DeepLabv3+ models
can accurately identify the distribution range of pear trees, and the boundary contour
information of pear trees is clear under these methods. When the input size was 256 × 256,
the accuracy of the Multi-Unet network was highest. DeepLabv3+ output some false
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positive and false negative pixels in the pear tree identification process. Compared with
the previous two models, the misclassifications and omissions performed by other models
were more obvious. The geometric characteristics of pear trees were similar to those of fruit
forests, such as jujube trees, causing the image resolution to affect the pear tree classification
accuracy. This phenomenon shows that the combined multilevel and multiscale feature-
extraction methods can improve the accuracy of the model.

Figure 4. Classification results of the GF-6 data.

Figure 5. Comparison of local area classification results of the pear tree dataset in Yuli County.
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Table 2 lists the classification accuracy of the FCN model on the GF-6 Yuli County
pear tree test dataset. The article uses four indicators to evaluate the classification accuracy
of the model, including the classification accuracy, recall, F1 score, and kappa coefficient.
When the input image size of the Multi-Unet network was 256 × 256, the classification
accuracy, recall rate, F1, and kappa coefficients were 88.95%, 89.57%, 89.26% and 88.74%,
respectively, representing the highest accuracy among all models. When the input image
size was 256 × 256, the F1 and kappa coefficients of the DeepLabv3+ model were 86.07%
and 85.42%, respectively, second only to those of Multi-Unet at the same input size. When
the input image size was 512 × 512, the kappa coefficient of Multi-Unet was slightly higher
than that of DeepLabv3+, and the F1 score of Multi-Unet was slightly lower than that
of DeepLabv3+. The classification accuracies of the Res-U-Net and U-Net models were
relatively close. When the input image size was 512 × 512, FCN8s had an accuracy of
90.53%, the highest accuracy among all models, but the kappa coefficient and F1 score were
only 68.39% and 69.51%, respectively, and the recall was only 56.41%. This poor extraction
performance indicates that the image classification results need to be improved. Among
many models, when the size of the images input to model was 256 × 256, the accuracy of
the model was generally better than when the input image size was 512 × 512.

Table 2. Accuracy comparison table of the pear test dataset in Yuli County.

Model Input Size Precision Recall F1 Kappa

FCN8s
256 × 256 83.97 59.96 69.96 68.77
512 × 512 90.53 56.41 69.51 68.39

SegNet 256 × 256 89.25 60.83 72.35 71.28
512 × 512 89.73 59.17 71.31 70.22

U-Net
256 × 256 81.43 75.42 78.31 77.31
512 × 512 80.62 72.27 76.22 75.14

Res-U-Net
256 × 256 86.28 73.11 79.15 78.23
512 × 512 69.02 87.16 77.04 75.80

PSPNet
256 × 256 82.73 76.96 79.74 78.82
512 × 512 80.40 76.76 78.54 76.01

RefineNet
256 × 256 75.37 81.94 78.52 77.44
512 × 512 75.73 73.17 74.43 73.25

DeepLabv3+ 256 × 256 88.27 83.97 86.07 85.42
512 × 512 79.17 87.12 82.96 82.10

Multi-Unet
256 × 256 88.95 89.57 89.26 88.74
512 × 512 90.28 76.64 82.90 82.15

4.2.3. The Impacts of Different Band Combinations on the Model Classification Accuracy

Figure 6 shows the accuracy evaluation results of Multi-Unet under different input
band combinations. In general, when using a combination of the four-band NIR-R-G-B
model, the best performance was achieved. Compared with R-G-B, the three-band recall
was 1.76% higher, and the F1 and kappa coefficients were slightly higher than those of
R-G-B. These results indicate that increasing the number of bands significantly affects the
pear tree classification results.

4.3. Tree Extraction from Potsdam Data

In order to further verify the universality of the model, we also conducted a compara-
tive analysis between Multi-Unet and other methods in Table 3, in which we only analyzed
the effect of tree in Potsdam data [66]. In general, the richer the spatial-spectral information
in the dataset, the higher the accuracy of the model. However, Figure 7 shows shallower
models, such as FCN8s, tend to produce fragmented information, and the predicted targets
are noisy and irrelevant. Multi-U-Net uses residuals to obtain image context information,
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which alleviates this phenomenon, making the predicted object boundary smoother and
more reliable. In addition [67], compared to other algorithms, FCN8 requires fewer comput-
ing resources, mainly due to the model using a shallower network structure. The required
parameters of DeepLabv3+ were relatively large because it uses the Xception block in the
encoding stage, thus greatly increasing the network complexity. Although Multi-Unet also
uses different convolution kernel sizes in the encoding and decoding processes, thanks to
the addition of a 1 × 1 convolution kernel, the number of model parameters was reduced,
and the model size required only 28.34 MB. PSPNet uses a pyramid pool module to obtain
multiscale spatial information, but this improvement also increases the complexity of the
network. Overall, Multi-Unet is more efficient than most other models.

Figure 6. The influence of different input band combinations on the classification accuracy of the
Multi-Unet network.

Table 3. Comparisons of network efficiency and accuracy among the deep learning models.

FCN8s Multi-Unet U-Net RefineNet SegNet Deeplabv3+ PSPNet101 Res-U-Net

F1 76.38 92.45 90.55 87.22 86.94 91.55 88.2 87.45
IOU 56.0 86.0 82.9 78.1 76.9 84.4 78.3 77.7

parameter 3,050,726 7,263,143 7,847,147 7,263,143 31,821,702 41,254,646 66,239,013 110,140,324
Model size (MB) 11.67 28.34 30.03 46.10 121.63 158.63 253.4 422.32

4.4. Model Analysis

The effective integration of features and feature-selection methods is very important
to improve the learning efficiency and classification accuracy of FCN models. Compared to
other models, the Multi-Unet network has the following advantages. First, Multi-Unet is
an improved version based on the U-net network in which the spatial dimension of the
pooling layer is reduced in the encoder stage. The decoder gradually repairs the details and
spatial dimensions of the object. However, as the number of layers gradually deepens, this
structure loses a large amount of its spatial feature information, resulting in abnormally
rough edges in the image classification results. When combined with the residual network
structure, Multi-Unet breaks the convention that the output of the n-1 layer in a traditional
neural network can take only n layers as the input. Thus, in Multi-Unet, the output of a
certain layer can directly cross several layers as the input of a subsequent layer. As the
number of network layers increases, the number of feature maps progressively increases
layer-by-layer, thus ensuring the expressive ability of the output features and allowing the
accuracy to be maintained even as the depth increases. At the same time, for most current
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network models, the filter size is relatively fixed when extracting feature information.
However, the sizes and shapes of similar objects in remote sensing images are often quite
different, and convolution kernels of different sizes are used to mine the spatial contextual
information of the images. Second, after fusing the low-level features with the high-level
features, the attention mechanism is used to weigh these features to reduce the semantic
differences among different levels. Such weighted features not only retain rich, detailed,
bottom-level spatial information but also effectively eliminate redundant information, thus
providing a good foundation for subsequent feature selection and classification accuracy
improvements. Therefore, Multi-Unet can handle the semantic segmentation problems
associated with high-resolution remote sensing images.

Figure 7. The part result of different models.

5. Conclusions

As an important machine-learning branch, deep learning is widely used in semantic
segmentation tasks involving high-resolution remote sensing images due to advantages
such as automatic feature extraction, high efficiency, and fitting of complex nonlinear
functions. Based on summarizing the status quo of high-resolution remote sensing im-
age classification methods, this paper constructs a high-resolution pear tree dataset and
proposes a new end-to-end network structure called Multi-Unet to extract pear trees from
these data. The “spatial-channel” attention guidance module was used to fuse the low-level
features and high-level features in the encoder and decoder to allow the fused features
to have higher category credibility and to reduce the presence of redundant information.
Second, by using different convolution kernels of different sizes to mine local and global
features, complex spatial contextual information can be effectively extracted. The results
show that Multi-Unet had a strong fruit tree extraction performance and could effectively
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monitor the distribution area of pear trees in Yuli County. This study provided a certain
reference basis for the dynamic monitoring of the crop area changes in the fruit industry.

In this paper, we have only focused on the feature extraction part, and there has
been no in-depth study on the jump connection of the upsampling part of the image [68].
Whether we can fully integrate the previous information with upsampling and increase the
restoration degree in the image restoration process through various forms of upsampling
connections is the focus of my future research. Although we have compressed the model,
we have not reached the ultimate level, and there is still room for further compression. In
the follow-up work, we can refer to other related work to further compress the overall
number of parameters of the model.
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