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Abstract: The pine wood nematode (PWN; Bursaphelenchus xylophilus) is a major invasive species in
China, causing huge economic and ecological damage to the country due to the absence of natural
enemies and the extremely rapid rate of infection and spread. Accurate monitoring of pine wilt
disease (PWD) is a prerequisite for timely and effective disaster prevention and control. UAVs can
carry hyperspectral sensors for near-ground remote sensing observations, which can obtain rich
spatial and spectral information and have the potential for infected tree identification. Deep learning
techniques can use rich multidimensional data to mine deep features in order to achieve tasks such
as classification and target identification. Therefore, we propose an improved Mask R-CNN instance
segmentation method and an integrated approach combining a prototypical network classification
model with an individual tree segmentation algorithm to verify the possibility of deep learning
models and UAV hyperspectral imagery for identifying infected individual trees at different stages of
PWD. The results showed that both methods achieved good performance for PWD identification:
the overall accuracy of the improved Mask R-CNN with the screened bands as input data was 71%,
and the integrated method combining prototypical network classification model with individual tree
segmentation obtained an overall accuracy of 83.51% based on the screened bands data, in which
the early infected pine trees were identified with an accuracy of 74.89%. This study indicates that
the improved Mask R-CNN and integrated prototypical network method are effective and practical
for PWD-infected individual trees identification using UAV hyperspectral data, and the proposed
integrated prototypical network enables early identification of PWD, providing a new technical
guidance for early monitoring and control of PWD.
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1. Introduction

Pine wilt disease (PWD) is the most dangerous and devastating forest disease caused
by the pine wilt nematode (PWN) [1]. The PWN is an international quarantine target and
is currently listed as an important quarantine pest in over 50 countries [2-7]. Since it was
first discovered in 1982 at Zhongshan Mausoleum in Nanjing, the disease has occurred in
742 county-level administrative regions in 19 provinces in China, mainly affecting conif-
erous species such as Japanese red pine, horsetail pine, yellow mountain pine, cedar, and
black pine. The number of pine trees lost to the disease has now accumulated to over
hundreds of millions nationwide, resulting in significant economic and ecological service
value losses to the country [8].

PWD control has been challenging due to its rapid onset and spread, as well as the
high mortality rate of pine trees [9]. At present, there are three main methods for accurate
monitoring of PWD: one is field survey, but it is intensive and inefficient due to the influence
of forest terrain and large area; another is UAV visible remote sensing monitoring: this
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method can solve the problems of difficult field survey and large personnel input, but it
only relies on manual visual discrimination; the last one is satellite remote sensing, which
breaks through the limitation of geographical area, but it is hard to detect PWD individual
trees because of the low resolution of images. In China’s efforts to prevent and control PWD,
most surveys for abnormal color-changing trees are conducted manually by field survey. It
is not only time-consuming and labor-intensive, but also impractical for monitoring disease
occurrence in mountainous areas with steep slopes and dense forests, where most pine
forests are located in China. As a result, it hinders timely and accurate monitoring and
effective prediction of PWD disaster spread, often delaying the best time for disease control
and causing unpredictable losses. Therefore, it is essential to explore methods for accurate
monitoring, especially early identification of PWD.

The spectral characteristics of pine trees change when affected by PWD, which can
be used to diagnose PWD infection stages [10]. There have been many studies using
multispectral remote sensing techniques for PWD monitoring [9,11,12]. However, the
spectral information obtained from multispectral remote sensing is not sufficient for early
identification of PWD due to the subtle spectral response between healthy and early in-
fected pine trees [13]. Through imaging or non-imaging spectral technology, hyperspectral
remote sensing technology can obtain continuous spectral information of very narrow
electromagnetic band features, which compensates for the shortage of multispectral remote
sensing. It has been shown that hyperspectral remote sensing has the potential for early
identification of PWD [14,15]. Therefore, the current hot issue in PWD monitoring is how
to use hyperspectral technology for effective early detection of PWD.

In recent years, UAV remote sensing technology and machine learning has been
increasingly applied in PWD monitoring [16-19]. UAV remote sensing technology has the
advantages of fine grained observation, wider coverage, and real-time data acquisition,
overcoming the limitations of ground surveys for PWD in terms of low efficiency, limited
coverage, and insufficient human resources [20]. UAVs equipped with hyperspectral
sensors can provide high-resolution and information-rich imagery while eliminating spatial
and temporal constraints, offering an effective solution for timely and accurate PWD
identification [21]. In the process of utilizing UAV remote sensing for PWD monitoring,
the most critical technical issue is how to efficiently, automatically, and accurately identify
abnormal color-changing PWD-infected trees from UAV imagery [10,22,23]. With the
emergence of deep learning target detection algorithms such as YOLO [24], R-CNN [25],
and SSD [26], deep learning techniques have been successfully applied to infection stage
classification and diseased tree identification [14,27,28]. This research has demonstrated the
capability of deep learning in accurately detecting trees infected with PWD and providing
location information, helping to control the source of infection, and cut off the transmission
route, thus curbing the spread of PWD to a certain extent [29]. However, there are still
challenges in using deep learning for the identification of PWD-infected individual trees,
such as effective differentiation between PWD-infected trees and crown discoloration
caused by other factors, and early detection of infected living trees from healthy ones,
resulting in limited detection accuracy and practical applications. Therefore, further novel
methodologies must be explored to augment the detection accuracy of PWD infection
stages, particularly the identification of early infected trees.

This study uses UAV hyperspectral imagery to first analyze the ability of the Mask
R-CNN instance segmentation algorithm for identifying PWD-infected trees based on RGB
synthetic imagery. Then, by adjusting the network input layer structure, the Mask R-CNN
was improved for using hyperspectral data to classify PWD infection stages and detect
early infected trees, and its performance when using all hyperspectral bands and screened
bands as inputs was compared. Then an integrated framework combining pixel-based
prototypical network classification model with an individual tree segmentation method
was proposed for achieving PWD individual trees identification at the different infection
stages. The accuracy of the two methods was finally evaluated, and the effectiveness of
the two methods for identifying PWD-infected individual trees was compared. The results
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indicate that early detection and infection stage monitoring of PWD based on the proposed
deep learning models can overcome the lag of manual visual observation and provide
technical support for early detection and control of PWD.

2. Materials and Methods
2.1. Study Area and Ground Survey

This study was carried out in Chaohu, located in central Anhui Province, China, with
geographical coordinates between 31°16'-32°N and 117°25'-117°58'E. It is a prefecture-
level city in Anhui Province, under the administration of Hefei City. Chaohu is situated in
the transitional zone from the Jianghuai hills to the Yangtze River plains. The topography is
complex and includes five types of landforms, including low mountains, hills, mesas, plains
(including lakeside plains and undulating plains), and waters. The topography is high in
the north-west and south-east and low in the center, forming a butterfly-shaped, basin-like
terrain. Chaohu has a distinctly subtropical humid monsoon climate characterized by four
distinct seasons, a mild climate, abundant rainfall, and plenty of sunshine.

Chaohu City is one of the epidemic areas of PWD in China. In recent years, there has
been a serious outbreak of PWD, and it is among the most affected areas of PWD occurrence
in Anhui Province. The study area location and sample plots are shown in Figure 1.
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Figure 1. Overview of the study areas. (a) The location of the study area. (b) The hyperspectral image
(in true color composition) and location of sample plots. (c) Images of healthy and infected pine trees
in the study area.

We carried out a field survey in November 2019. The study area is designated as a
priority area for PWD prevention. The dominant tree species is horsetail pine, accompanied
by some broadleaf evergreen trees. The color-changing pine trees have been tested by
the local forest pest control and quarantine agency and have all been confirmed to be
infected with PWD. We set up a total of six sample plots (25 m x 25 m) at the study site and
located each tree individually with a handheld differential GPS 5760 (SOUTH Surveying &
Mapping, Guangzhou, China). In each plot, we measured the canopy width with a tape
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measure, tree species, the color of needles, tree vigor, and the PWD infection stage of each
tree was also recorded. Healthy pine trees were also sampled and determined to be free of
PWD infection by morphological and molecular identification in the laboratory [30,31].

2.2. Drone Data Collection and Preprocessing

On 5 November 2019, hyperspectral imagery with a spatial resolution of approximately
5.7 cm was acquired using a DJI m600 pro UAV (DJI, Shenzhen, China) equipped with a
Nano-Hyperspec ultra-miniature airborne hyperspectral imaging spectrometer (Headwall
Photonics, Fitchburg, MA, USA) through two UAV take-off and landing sorties at an
altitude of approximately 120 m. The flight parameters of the DJI m600 pro UAV are listed
in Table 1, and the main parameters of the hyperspectral sensor are listed in Table 2.

Table 1. The flying parameters of DJI m600 pro UAV.

Parameters Values
Maximum take-off weight 155 kg
Flight load 6000 g
Hovering accuracy (P-GPS) Vertical: 0.5 m, Horizontal: £1.5 m
Rotational angular velocity Tilt axis: 300° /s, Directional axis: 150°/s
Maximum ascent speed 5m/s
Maximum descent speed 3m/s
Maximum flight speed 18 m/s
Maximum flight height Altitude 4500 m
Wheelbase 1133 mm

Table 2. Main parameters of the hyperspectral sensor.

Parameters Values
Wavelength range 400-1000 nm
Spectral channels 270

Spectral resolution (FWHM) 6 nm
Weight 0.5kg
Field of view 19°

Focal length 17 mm

Sampling interval 1.74 nm

Pre-processing of the raw hyperspectral data mainly includes: radiometric calibration,
atmospheric correction, geometric correction, topographic radiometric correction, and
image spatial resolution resampling.

In this paper, the radiometric calibration is based on the calibration file provided by
the Nano-Hyperspec ultra-miniature airborne hyperspectral imaging spectrometer, and
we convert the DN values of the raw hyperspectral data into radiation brightness values,
using the following formula:

L= calibration gain x [imageDN — Mean(darkDN) — FSSDN]| 1)

time

where calibration gain is the radiation correction factor; imageDN is the pixel brightness
value of the raw data; darkDN is the corresponding image element dark current data
recorded by the sensor; FSSDN is the brightness value of the scattered light; and L is the
radiation brightness with unit of pW/ (cm? - str - nm).

Atmospheric correction is a process to invert the true reflectance of features. The
main purpose is to remove the influence of factors such as light and atmosphere from
the reflectance of features to reflect the true reflectance of the features and to facilitate the
extraction of surface features. Compared to images acquired by remote sensing satellites,
UAV images are less affected by the atmosphere, and the correction process is relatively
simple. This study uses the QUAC fast atmospheric correction tool in ENVI 5.3 (Version 5.3,
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Exelis Visual Information Solutions, Boulder, CO, USA) for atmospheric correction of
hyperspectral data.

Geometric corrections were conducted by applying eight ground control points (corner
points of two sample plots) whose positions were measured with a handheld differential
GPS 5760 (SOUTH Surveying & Mapping, Guangzhou, China) with an accuracy of 2 m.

Terrain correction is an important pre-processing process for remote sensing im-
agery in order to obtain the true surface reflectance, which can eliminate the influence
of terrain factors on the spectral brightness values. In this study, topographic correction
was completed using the SCS + C topographic correction model [32], and the formula is

as follows:
cosfcosax +a/b

cosi+a/b @)

Ly = (a+ bcosi) -
where i is the angle of incidence, @ and b are the intercept and slope of the linear relationship
between the pixel luminance value and cos i before correction, respectively; 0 is the solar
zenith angle; « is the slope; and L, is the corrected luminance value.

2.3. Division of PWD Infection Stage and Data Processing
2.3.1. Division of PWD Infection Stage

Referring to previous studies [33,34], we combined the ground survey and the spectral
characteristics of UAV hyperspectral imagery in this study area to diagnose the infection
stages of diseased pine trees (Figure 2). Early PWD-infected trees (Early infected trees) have
no significant changes in ground characterization, loss of green in the crown of the UAV
imagery, and a decrease in the spectral profile compared to healthy pine trees in the green
wavelength range, i.e., the green attack stage. Middle PWD-infected trees (Middle infected
trees) have loss of green needles visible at ground level and a distinct yellowing of the
crown in the UAV imagery with an increase in the spectral profile compared to healthy pine
trees in the yellow wavelength range, i.e., the yellow attack stage. Late PWD-infected trees
(Late infected trees) have red needles visible from the ground, reddish-brown crowns on
UAV imagery, and a spectral profile that rises in the red light wavelength range compared
to healthy pine trees, i.e., the red attack stage. PWD-infected dead trees (Dead trees) have
dry needles visible from the ground, a greyish-purple crown on the UAV imagery, and a
spectral profile that rises in the blue light wavelength range compared to healthy pine trees,
i.e,, the grey attack stage.
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Figure 2. PWD infection stage diagnosis.
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As shown in Figure 2, there are some differences in the spectral profiles of broadleaf
trees and PWD-infected trees, with the mean reflectance values near 950 nm differing from
that of PWD-infected trees. We performed single wood spectral diagnostics on each tree in
the study area to remove the effect of discolored broadleaf trees in the process of labeling
PWD-infected trees in order to ensure the accuracy of sample labels. The spectral profiles
of different infection stages of PWD are shown in Figure 3.
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Figure 3. Spectral curves of different PWD infection stages.

Based on the above, the PWD infection stages of pine trees were classified and shown
in Table 3.

Table 3. Stages of PWD infection.

PWD Infection Stage Characterization
Early infected trees (E) Needles begin to turn yellow
Middle infected trees (M) Needles are yellow
Late infected trees (L) Needles are all red; but do not fall off
Dead trees (D) All leaves fall off

2.3.2. RGB Data Processing

In this study, true color imagery was generated by combining bands R: 640 nm,
G: 551 nm and B: 471 nm based on the pre-processed imagery from the UAV hyperspectral
data, as shown in Table 4.

Table 4. Wavelength bands used in RGB composite imagery.

Spectral Range Central Wavelength (nm) Band
R 640 109
G 551 69
B 471 33

2.3.3. Hyperspectral Feature Bands Filtering

Considering that the onset of the infected host plant is from late August to early
November and the influence of clouds in the study area, this paper established a hyper-
spectral feature preferred bands dataset through information enhancement and feature
bands selection based on the UAV hyperspectral imagery in October 2019.

Linear discriminant analysis (LDA), a linear projection technique proposed by Fisher [35],
is used to perform band screening of hyperspectral features. The features after dimensionality
reduction based on LDA can retain the valid classification information to the maximum extent.
The principle is to project the data points in the training dataset into a low-dimensional space
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at training time, so that the projected points for samples of the same category are as close
as possible and the projected points for samples of different categories are as far apart as
possible. In forecasting, the forecast data is projected onto the line above, and the category to
which it belongs is determined by the location of the projection point [36]. When modelling
with LDA, we conduct 10 experiments in order to eliminate, as much as possible, the errors
caused by sample set partitioning, in each of which the training and validation sets are
randomly assigned.

According to the research results of Li et al. [37], a linear discriminant analysis was
performed on each band of the UAV hyperspectral to filter out eight bands that were useful
for distinguishing healthy pine trees from early PWD-infected trees, as shown in Table 5,
and these eight bands were used to construct a feature preferred bands dataset for early
PWD-infected individual tree identification.

Table 5. Dataset of feature preferred bands.

Spectral Range Central Wavelength (nm) Band

Blue 486 40
Green 546 67
Red 642 110
Red-edgel 722 146
Red-edge2 758 162
Red-edge3 780 172
NIR1 840 199
NIR2 864 210

2.3.4. PWD-Infected Individual Tree Species Sample Set Construction

The Mask R-CNN dataset has a segmentation size of 512 x 512. Based on Labelme
data annotation software (Version 5.0.5, Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, Cambridge, MA, USA), the canopy profile of PWD-
infected trees was outlined in the RGB composite imagery using the polygon creation
function, and the spectral information was combined to diagnose the different infection
stages by assigning a specific label to each category, with different numbers indicating
different individuals under the same category. The annotation data was saved as a file in
JSON format. A total of 878 trees were labelled and divided into training and validation
sets in a ratio of 8:2. Table 6 shows the detailed information of the sample set.

Table 6. Number of samples in dataset for Mask R-CNN instance segmentation model.

PWD Infection Stage Training Set Validation Set
Early infected trees (E) 263 66
Middle infected trees (M) 227 57
Late infected trees (L) 159 40
Dead trees (D) 53 13
Total 702 176

The prototypical network sample dataset was generated from JSON tagged sample
mask files and vectorization based on the ArcGIS (Version 10.2, Esri, Redlands, CA, USA)
platform in order to ensure consistent tagging of PWD-infected tree samples with the Mask
R-CNN sample set. Since the prototypical network is a classification network and there
are other ground cover types in the experimental area besides pine forests, samples of
healthy pine trees, other woodlands, water bodies, and roads were also labelled to achieve
full coverage of the classification results. The training sample, validation sample, and test
sample were divided according to 2.5%, 2.5%, and 95% as shown in Table 7. The UAV
hyperspectral full bands and feature preferred bands data from the study area were used
as input data individually for classification and effect evaluation in order to compare the
efficacy of these two datasets in identifying different stages of PWD-infected trees.
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Table 7. Classification system and sample set for prototypical network model.

Sample Size (Pixels)

Categories
Training Set Validation Set Test Set
Early infected trees (E) 6924 6924 263,100
Middle infected trees (M) 17,117 17,117 650,450
Late infected trees (L) 13,134 13,134 499,077
Dead trees (D) 4365 4365 165,865
Healthy pine trees 429 429 16,286
Other woodlands 136 136 5166
Water bodies 101 101 3837
Roads 70 70 2653
Total 42,276 42,276 1,606,434
2.4. Methods

This study applied the Mask R-CNN deep learning instance segmentation algorithm as
the base model for identifying PWD infection stage of individual trees. Firstly, RGB imagery
was composited and input into Mask R-CNN for identifying PWD-infected individual
trees at different infection stages. Then the hyperspectral data were subjected to feature
band selection to screen out sensitive bands that could improve the accuracy of early
identification of PWD. Afterwards, by adjusting the network input layer structure, an
improved Mask R-CNN model was constructed to enable hyperspectral full bands and
screened bands data input and to verify the usefulness of rich spectral information for
the identification of PWD-infected individual trees at different infection stages. Finally,
an integrated framework was proposed combing a prototypical network classification
method and an individual tree segmentation algorithm for individual tree infection stage
identification, which was compared with improved Mask R-CNN to optimize the optimal
model for PWD identification based on UAV hyperspectral technology and deep learning
techniques. The technology flow chart of this research is shown in Figure 4.

2.4.1. Mask R-CNN

Mask R-CNN is a pixel-level multi-objective instance segmentation algorithm pro-
posed by He et al. [38]. Unlike traditional object detection models that can only output
the bounding box of a target, Mask R-CNN can output pixel-level segmentation results
for each target while retaining the target’s location and class information, which suggests
that the task of detecting the degree of PWD susceptibility and individual tree canopy
segmentation can be achieved simultaneously.

To further improve the performance of the model, Mask R-CNN utilizes a Feature
Pyramid Network (FPN) in conjunction with ResNet for feature extraction. Based on
the Rol Pooling layer, Mask R-CNN uses the Rol Align layer to solve the quantization
mismatch problem and improve the accuracy of the bounding box suggestions. In Mask
R-CNN, the Rol Align layer is able to generate a more accurate feature map of the region of
interest, improving the accuracy of instance segmentation. The network structure of the
Mask R-CNN is shown in Figure 5.

The loss function of Mask R-CNN consists of three components: target classification
loss (L), target bounding box regression loss (Lyeg) and target mask segmentation loss
(Lyask), as shown in Equation (3).

L=Lgys+ Lreg + Lyask (3)

where the Mask loss function represents the average binary cross-entropy loss of the
decoupled mask branch and the classification branch. For Rol belonging to the ky, class,
only the ky, mask is considered for calculation in the loss function. Such a definition allows
for a mask to be generated for each class and for there to be no inter-class competition.
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Figure 4. Technology flow chart of research.

2.4.2. Improved Mask R-CNN Model

RPN and Rol Align in Mask R-CNN networks are ordinary non-learning processes
that do not involve the updating of parameters. As the backbone feature extraction network
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of Mask R-CNN uses ResNet-50, the pre-trained ResNet-50 model was adapted to make
the model meet the input requirements of hyperspectral imagery, and the structure of the
improved Mask R-CNN model is shown in Figure 6.

Fully Convolutional Networks (FCN)

Rol Align

bbox re, R
)
softmax i
Category

.

ResNet-50, FPN
Backbone

FC Layers

S12 p1xel>< 512 pixel

Rol Align bbox reg

Coordinates

softmax
|

H

| ResNet-50, FPN
| Backbone

f
gl ﬁ/

Dl (x,224,229) i

FC Layers

RPN

Figure 6. Improved Mask R-CNN network structure.

ResNet-50 is a deep residual network with 50 layers of depth, consisting of multiple
convolutional layers, a batch normalization layer, an activation function, and a fully con-
nected layer. ResNet-50 has an input size of 3 x 224 x 224, i.e., 3 color channels (RGB),
224 pixels wide and 224 pixels high. Improving the number of input channels of Stage 0,
i.e., from 3 color channels (RGB) to x channels, enables the input of 270 bands of hyperspec-
tral imagery. ResNet already uses an adaptive pooling layer that is able to change the input
image size from x x 512 x 512 to x x 224 x 224. The specific structure of the improved
Mask R-CNN backbone feature extraction network is shown in Figure 7.

2.4.3. Integrated Framework Combing Prototypical Network Classification Model and
Individual Tree Segmentation Method

Mask R-CNN can achieve both PWD infection stage classification and individual
tree canopy segmentation simultaneously, as it requires a high level of input sample
labels, which may lead to identification accuracy that cannot meet the needs of PWD early
detection. Therefore, we propose an integrated method combining a prototypical network
classification model with an individual tree segmentation to improve the accuracy of early
PWD monitoring.
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Figure 7. Improved Mask R-CNN backbone feature extraction network.

In this study, a prototypical network structure is used to map sliced data with a win-
dow size of S x S into a low-dimensional embedding space by means of an embedding
function. The embedding function consists of multiple convolutional structures (Layer 1
... Layer N, Layer last), each consisting of a convolutional layer (Conv2d), a batch nor-
malization layer (Batch_norm), a non-linear activation function (Relu), and a maximum
pooling layer (Max_pool2d). The convolutional layer extracts features by convolving the
input data with a set of learnable filters, and the batch normalization layer normalizes each
feature map by mean and unit variance to speed up training and improve generalization
performance. The non-linear activation function increases the model representation capa-
bility by introducing a non-linear transformation, and the maximum pooling layer divides
each feature map into regions and selects the maximum value in each region as the output,
which is used to reduce the feature map size and improve translation invariance. In this
way, the prototypical network can efficiently extract features from imagery and perform
accurate classification.

At the end of the embedding function, the fully connected layer (Flatten) and the
softmax function process the F feature values in the prototypical network, allowing the
probability values of each category to be calculated as a basis for classification. Specifically,
the fully connected layer maps the embedding vectors to an F-dimensional vector space, and
the softmax function normalizes the values in that vector space to a probability distribution,
representing the probability of each category. The final classification result is the probability
value for each category based on the fully connected layer and the softmax function
processing. Therefore, we can classify the input data into one of these categories based on
these probability values. The classification process is shown in Figure 8.

The prototypical network identifies the infection pixels of the entire image by clas-
sification at pixel level, but does not provide the exact location and canopy edge of the
infected trees, i.e., it does not enable direct detection of PWD-infected individual trees. This
study uses eCognition’s object-oriented multi-scale segmentation algorithm for imagery
canopy extraction to construct an integrated method combining a prototypical network
classification model with an individual tree segmentation for PWD-infected individual
tree identification.
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Figure 8. Prototypical network classification framework.

2.4.4. Experimental Design

First, the experiment used Mask R-CNN, an instance segmentation model based
on deep learning algorithms, to input RGB synthetic imageries in order to achieve the
recognition of infected individual trees at different infection stages of PWD. Secondly, the
hyperspectral full bands and screened bands data are separately input into the improved
Mask R-CNN, and the results are compared with those of the RGB dataset to explore the
effect of the inclusion of hyperspectral information on optimizing the identification of PWD-
infected individual trees and also to verify the role of sensitive bands in improving the
accuracy of PWD early identification. ResNet-50 is used as the backbone feature extraction
network in the model, and the pre-trained ResNet-50 model is fine-tuned to reduce training
time and improve accuracy. In addition, we have optimized the anchor frame parameters.
The batch size is set to 1 and the epochs to 300. Using the same polynomial learning rate,
the initial learning rate is 0.001 and the learning rate at the end is 0.0001, decreasing at a
fixed rate of decay. Using SGD as the optimizer, the momentum and weight decay were set
to 0.9 and 0.0001, respectively.

Afterwards, the UAV hyperspectral imagery (3759 x 4061 x 270) and the feature
preferred bands synthetic imagery (3759 x 4061 x 8) were used as data sources for the
prototypical network classification. Based on the ground survey data, the mean north-south
canopy width of horsetail pine in the sample plots in the study area is 2.6 m, the mean east-
west canopy width is 2.5 m, and the mean canopy width is 2.55 m. Therefore, considering
the imagery resolution of 0.05 m, 51 pixels was taken as the sample window size. The
sample data with a final cropping window size of 51 x 51 was used as input data for the
prototypical network.

The prototypical network structure used in this study had a convolutional layer
output space dimension of 64 (F) and a convolutional kernel of size 3 x 3. The largest
pooling layer had a pooling core of size 2 x 2. Using the same embedding function for
the support and query sets and using them as input parameters for calculating loss and
accuracy, the model was trained through Adam-SGD with an initial learning rate of 0.0001,
which would be halved for every 2000 training sessions. The Euclidean distance was used
as the metric function, and the negative log-likelihood function was chosen as the loss
function for the training of the prototypical network. We adjusted the number of iterations
(epochs/iterations) to 60/100 so that the training accuracy was close to 1 as possible. Table 8
lists the specific parameters of the prototypical network structure.

For canopy segmentation, this study used eCognition’s object-oriented multi-scale
segmentation technique for imagery canopy extraction. eCognition (Version 9.0, Trimble,
Sunnyvale, CA, USA) is a remote sensing imagery analysis software based on object-
oriented analysis that can be used to segment and classify objects in images. The results
and accuracy of canopy segmentation after several trials showed that the best canopy
segmentation results were obtained when the scale parameter was set to 51, the shape
parameter was set to 0.8, and the compactness was set to 0.9 for multi-scale segmentation.
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We overlaid the prototypical network classification results with the individual tree canopy
segmentation results to obtain the final identification results of individual trees at the
different PWD infection stages.

Table 8. The specific parameters of the prototypical network structure.

Layer Name Output Size Parameters
Conv2d-1 [—1,64,51,51] 4672
BatchNorm2d-2 [—1,64,51,51] 128
ReLU-3 [—1,64,51,51] 0
MaxPool2d-4 [—1,64,25,25] 0
Conv2d-5 [—1,64,25,25] 36,928
BatchNorm2d-6 [—1,64,25,25] 128
ReLU-7 [—1,64,25,25] 0
MaxPool2d-8 [—1,64,12,12] 0
Conv2d-9 [—1,64,12,12] 36,928
BatchNorm2d-10 [—1,64,12,12] 128
ReLU-11 [—1,64,12,12] 0
MaxPool2d-12 [—1,64,6,6] 0
Conv2d-13 [—1,64,6,6] 36,928
BatchNorm2d-14 [—1,64,6,6] 128
ReLU-15 [—1,64,6,6] 0

We completed this study with the support of ArcGIS (Version 10.2, Esri, Redlands, CA,
USA), ENVI (Version 5.3, Exelis Visual Information Solutions, Boulder, CO, USA), eCognition
(Version 9.0, Trimble, Sunnyvale, CA, USA), Lableme (Version 5.0.5, Computer Science and
Artificial Intelligence Lab., Massachusetts Institute of Technology, Cambridge, MA, USA),
and Python programming based on the Pytorch framework. Windows 10 Professional and
Pycharm were chosen as the software runtime platform. The hardware platform was selected
with the appropriate GPU, CPU, and memory according to the computational volume, with
the following information: (1) GPU: NVIDIA GeForce RTX 3090; (2) CPU: Intel(R) Xeon(R)
W-2275 CPU @ 3.30 GHz 3.31 GHz; (3) Memory: 128 GB of RAM on board.

2.5. Evaluation Metrics

To assess the results of classification and segmentation, different assessment metrics
were used, including average accuracy (AA), overall accuracy (OA), and Kappa coeffi-
cient [39]. These metrics were calculated based on true positives (TP;), true negatives
(TNs), false positives (FPs), false negatives (FN;), and the total number of samples (N) in

the following manner:
TP

AA=Y" "% 4100% 4
Yo, 5. P, " 00% (4)
B TP, + TN, .
OA = TP, TN, + FP. + EN, " 100% ©®)
Kappa = NY g xii — Yioq (xiy X x44) ©)

N2 — Y (xiy X x4)
where r is the number of categories; x;; is the number of i category correctly classified; x;
is the number of true values of i category; and x; is the number of predicted values of
i category.
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3. Results
3.1. Recognition Results of PWD-Infected Individual Trees Using Improved Mask R-CNN

The recognition of PWD-infected individual trees based on the improved Mask R-CNN,
with different datasets input, was obtained as shown in Figure 9, where the percentages
indicate the probability of the detected individual tree results being that infection stage
of PWD, with early infected trees shown as E, middle infected trees shown as M, late
infected trees shown as L, and dead trees shown as D. As can be seen from Figure 9, using
only RGB for PWD-infected individual tree identification, the individual tree detection
and segmentation results are significantly inferior to those using the hyperspectral dataset.
Comparing the detection results of the improved Mask R-CNN using full hyperspectral
bands and feature preferred bands, it can be found that adding hyperspectral features
can detect PWD-infected individual trees more effectively, reducing the number of missed
detections and improving the individual tree detection accuracy.

RGB
recognition result

[
M 100

| 'Los%

Hyperspectral full bands
recognition result

Feature preferred bands
recognition result

— Early infected trees
B Middle infected trees
0 Late infected trees
) Dead trees

Figure 9. Identification results of PWD-infected individual trees based on improved Mask R-CNN.
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3.2. Detection Results of PWD-Infected Individual Trees Based on Integrated Prototypical Network

The results of the prototypical network classification experiments are shown in
Figure 10. By observing the classification map, it is clear that the UAV hyperspectral
imagery has a wealth of spectral information and is able to effectively differentiate between
feature classes with large spectral differences, such as water bodies and roads. The other
woodlands also have large spectral differences from the horsetail pine in the study area and
can be distinguished by hyperspectral data. In the PWD-infected trees classification, the
prototypical network based on a hyperspectral full bands dataset incorrectly classified some
healthy pine trees as early infected trees, and there was also significant misclassification of
late infected trees and dead trees. The reason is that the spectral distinction between early
PWD-infected trees and healthy pine trees is not obvious, and there may be a lot of redun-
dant information interference in the hyperspectral full bands dataset. Conversely, using
the feature preferred bands dataset as input data enables better differentiation between
healthy pine trees and early PWD-infected trees, and also enables better classification of
late PWD-infected trees and dead trees. In addition, the main objective of band screening
in this study was to distinguish healthy pine trees from early PWD-infected trees, and
feature preferred bands for middle PWD-infected trees were missing. Therefore, the clas-
sification of middle PWD-infected trees using only the feature preferred bands produced
more misclassifications than the hyperspectral full bands.

) Early infected trees
= Middle infected trees
@ Late infected trees

Dead trees
B Healthy pine trees
@8 Other woodlands
Water bodies

@8 Roads
Hyperspectral full bands Feature preferred bands
Prototypical Network Prototypical Network
classification result classification result

Figure 10. Prototypical network classification result map.

In this study, eCognition was used to perform individual tree canopy segmentation
on UAV hyperspectral imagery, combined with the results of prototypical network clas-
sification, to achieve the localization and extraction of individual trees at different PWD
infection stages. The results and accuracy of canopy segmentation after several trials
showed that the best canopy segmentation results were obtained when the scale parameter
was set to 51, the shape parameter was set to 0.8, and the compactness was set to 0.9 for
multi-scale segmentation.

During the field survey, we measured the canopy width (notated as Rgw and Rgy)
and position of the trees in the east-west and north—south directions in the sample plots,
and verified the single tree positions by combining the field survey data and the UAV
hyperspectral imagery. Due to the large number of trees in the validation sample site, we
randomly and evenly selected 50 single trees and used visual interpretation to determine
whether the marked trees had been successfully segmented. The results showed that
43 trees were correctly segmented with an accuracy of 86%. The results of the individual
tree canopy extractions are shown in Table 9, with an average relative error of 9.57% for
object-oriented multi-scale segmentation.
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Roads, water bodies, healthy pine trees, and other woodlands were removed from the
prototypical network classification result in order to obtain a distribution map of different
infection stages of PWD. It was then overlaid with the results of the individual tree seg-
mentation to produce an individual tree segmentation result map of the different infection
stages of PWD, as shown in Figure 11. Although there is some error in individual tree
canopy segmentation, the prototypical network classification can obtain higher accuracy
in early identification of PWD, which is better than that of Mask R-CNN, enabling more
timely detection of PWD, as well as better determination of the degree of infection in PWD
epidemic areas. In conclusion, the classification results of the prototypical network can
be overlaid with the results of the individual tree canopy segmentation in order to obtain
information on the location of infected trees at different stages of PWD. The proposed
combined prototypical network classification model and individual tree segmentation
method can support the detection of PWD and can effectively improve the efficiency of
epidemic prevention and control.

Table 9. Extraction results of individual tree canopies.

East-West North-South Measured Area Object-Oriented
No. Canopy Width Canopy Width (m2) Multi-Scale Segmentation = Relative Error
Rgw (m) Rgn (m) of the Canopy Area (m?)
1 2.6 24 491 4.56 0.07
2 2.2 2.1 3.63 3.77 0.04
3 1.6 1.8 2.27 2.18 0.04
4 15 14 1.65 1.54 0.07
5 1.7 1.4 1.89 1.67 0.01
6 1.6 1.8 2.27 2.13 0.06
7 2.6 24 491 4.64 0.05
8 2.5 23 4.52 4.33 0.04
9 2.8 2.6 5.72 5.65 0.01
10 2.7 29 6.15 5.89 0.04

Early infected trees
Bl Middle infected trees
B8 Late infected trees
Dead trees

Hyperspectral full bands Feature preferred bands
Integrated Prototypical Network Integrated Prototypical Network

result

result
Figure 11. Individual tree canopy segmentation combined with classification result map.
3.3. Comparison of the PWD Detection Results Using Improved Mask R-CNN and Integrated
Prototypical Network

The overall accuracy evaluation of the PWD-infected tree identification methods is
shown in Table 10. As can be seen, the feature preferred bands dataset obtained 71% and
83.51% overall accuracy (OA) on the improved Mask R-CNN method and the combined
prototypical network classification model and individual tree segmentation method, respec-
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tively. While the integrated prototypical network method was able to obtain higher early
identification accuracy (74.89%), an 11.39% improvement over improved Mask R-CNN,
the other infection stages also obtained higher recognition accuracy (83.29% for middle
infected trees; 87.86% for late infected trees; and 87.84% for dead trees). For the improved
Mask R-CNN method, we have verified that the hyperspectral full bands dataset (OA: 68%)
is better than the RGB dataset (OA: 64.60%) in distinguishing the PWD infection stages.
However, there is a large amount of redundant data in the hyperspectral data, and we also
verified that the feature preferred bands dataset has better PWD-infected individual tree
recognition accuracy than the hyperspectral full bands dataset based on both the improved
Mask R-CNN method and the prototypical network classification method. Based on the
improved Mask R-CNN method, the hyperspectral full bands dataset and the feature
preferred bands dataset obtained an overall accuracy of 68% and 71% for the PWD-infected
individual tree identification, respectively. The overall accuracy of the prototypical network
classification was 92.17% and 92.79% using the hyperspectral full bands dataset and the
feature preferred bands dataset, respectively. Ultimately, combined with the individual
tree segmentation results, the overall accuracy of individual infected tree detection reached
82.95% and 83.51%.

Table 10. Overall accuracy evaluation.

Mask R-CNN Prototypical Network Prototypical Ne'twork *
Segmentation
Categories Feature Feature Feature
RGB Hyperspectral Preferred Hyperspectral Preferred Hyperspectral Preferred
Full Bands Full Bands Full Bands
Bands Bands Bands
OA (%) 64.60 68 71 92.17 92.79 82.95 83.51
AA (%) 64.58 68 70.98 91.33 93.46 82.20 84.11
Kappa 0.574 0.582 0.596 0.889 0.898 0.800 0.808
E 54.30 62.90 63.50 82.17 83.21 73.95 74.89
M 73.10 72.70 77.50 93.87 92.54 84.48 83.29
L 62 64.50 68.40 95.82 97.61 86.24 87.85
D 68.90 71.90 74.50 93.71 97.6 84.34 87.84

Based on improved Mask R-CNN to identify PWD-infected individual trees, the
feature preferred bands dataset obtained good identification results on different infection
stages (63.50% for early infected trees; 77.50% for middle infected trees; 68.40% for late
infected trees; and 74.50% for dead trees). Based on the combined prototypical network
classification model and individual tree segmentation method to identify PWD-infected
individual trees, the feature preferred bands dataset obtained better identification results in
early, late, and dead stages (74.89% for early infected trees; 87.85% for late infected trees;
87.84% for dead trees), while the accuracy in the middle stage of infection (83.29% for
the feature preferred bands dataset) decreased by 1.19% compared to the hyperspectral
full bands dataset (84.48%). The reason is that the main objective of the band screening
conducted in this study was to distinguish healthy pine trees from early PWD-infected
trees, resulting in the absence of sensitive bands for middle PWD-infected trees. Therefore,
more bands can be added to the prototypical network to construct the optimal dataset
of different infection stage recognition to improve the classification accuracy of all the
infection stages. A comparative diagram of the different methods for identifying PWD
infection stages is shown in Figure 12.



Remote Sens. 2023, 15, 3295

18 of 22

Mask R-CNN RGB Hyperspectral full bands
recognition result Integrated Prototypical Network result
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Figure 12. Comparison chart of different methods to identify PWD infection stages.

4. Discussion
4.1. Detection Ability of Deep Learning Models Using RGB Image for PWD-Infected Trees

Previous research has employed deep learning target detection algorithms to detect
PWD-infected individual trees using UAV-based RGB imagery and multispectral imagery.
Xu et al. [12] employed the Faster R-CNN algorithm considering the influence of other
dead trees and red broadleaf trees for identifying PWD-infected trees using ultra-high
spatial resolution imagery from an unmanned aircraft equipped with a visible RGB digital
camera, and the accuracy of PWD-infected trees identification was 75.64%. Yu et al. [29]
conducted experiments utilizing UAV-based multispectral imagery and deep learning
algorithms for early detection of PWD in Yiwu, Zhejiang province. The overall accuracy
of YOLOv4 and Faster R-CNN reached 57.07% and 60.98%, respectively, and the optimal
recognition accuracy of early PWD-infected trees was 48.88% based on Faster R-CNN. In
this study, the Mask R-CNN method was introduced into the identification of PWD-infected
individual trees for differentiation of infection stages. Mask R-CNN was able to reduce
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the error of anchor frame misclassification and better identify PWD-infected individual
trees by segmenting the canopy boundary. The results showed that Mask R-CNN achieved
better recognition of PWD-infected trees (OA: 64.60%) on the basis of distinguishing PWD
infection stages, and the recognition of infected individual trees boundaries was better than
that of Faster R-CNN, which is conducive to PWD early prevention and control. Previously,
Li et al. [40] applied Mask R-CNN to tree species classification from UAV RGB images and
achieved an overall accuracy of 63.24%. In contrast, the PWD-infected individual trees in
this study were all horsetail pines, and the overall accuracy of Mask R-CNN based on RGB
imagery reached 64.60%, indicating that the sensitive bands of PWD were correlated with
RGB bands. In addition, the early recognition accuracy of Mask R-CNN for PWD-infected
trees in this study reached 54.30%, which is higher than the early recognition accuracy of
existing single-wood scale studies.

4.2. Comparison of Different Models for Identifying PWD-Infected Individual Trees

In this study, based on Mask R-CNN, the hyperspectral data input was achieved by
improving the Mask R-CNN input channel, and an overall accuracy of 71% was obtained
on the feature screened bands dataset, of which the PWD early recognition accuracy was
63.50%. The results show that the improved Mask R-CNN model achieves better individual
tree segmentation and effectively improves the recognition accuracy of early PWD-infected
trees based on hyperspectral data. However, due to the high input sample requirement
of Mask R-CNN, the early recognition accuracy obtained by this method cannot meet the
demand of PWD prevention and control.

The prototypical network model has the advantage of small sample learning, and its
simple network structure makes the classification process more efficient and achieves higher
classification accuracy [41,42]. Based on the prototypical network classification algorithm,
using the hyperspectral full bands dataset and the feature preferred bands dataset as model
inputs, this study achieved an overall accuracy of 92.17% and 92.79%, respectively, for all
stages of PWD detection, with early identification accuracy reaching 82.17% and 83.21%,
respectively. Previous studies have used 3D convolutional neural network models for
early detection of PWD based on UAV hyperspectral imagery [14] and obtained an overall
accuracy of 83.05% and an early identification accuracy of 59.76%. The constructed 3D-Res
CNN model obtained an overall accuracy of 88.11% and an early identification accuracy of
72.86%. However, this study was pixel-based classification and could not obtain accurate
locations of PWD-infected individual trees. In our study, the results of the prototypical
network classification were further combined with individual tree canopy segmentation,
which achieved an overall accuracy of 82.95% and 83.51% using hyperspectral full bands
dataset and the feature preferred bands dataset, respectively, with 73.95% and 74.89%
accuracy in the identification of early PWD-infected trees. The combined prototypical
network classification model and individual tree segmentation method outperformed
the Mask R-CNN model in terms of accuracy, especially for early identification of PWD.
Therefore, the method based on prototypical classification overlaying with individual tree
segmentation can support the detection of PWD, and the identification of early infected
trees can effectively improve the efficiency of epidemic control.

4.3. Existing Deficiencies and Future Prospects

In this work, the two proposed methods can provide new technical guidance for
early detection and monitoring of PWD infection stages. However, we also recognized
the deficiencies of this study in order to provide some ideas for improvement that will
be useful for future works. For the improved Mask R-CNN model, we only modified the
input layer structure and optimized the anchor frame parameters, which can be considered
to optimize the rest of the structure to improve the accuracy. Due to data constraints, we
did not validate the migratory potential of the improved Mask R-CNN. In later work, the
study area and sample datasets could be expanded. In this study, we only used LDA to
perform band screening of hyperspectral features and selected eight sensitive bands to
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construct a comparison dataset. In future work, other data reduction methods can be used
for dataset construction to improve the PWD identification accuracy. In addition, exploring
more accurate single-wood segmentation methods is also an effective means of improving
the accuracy of PWD-infected individual trees.

5. Conclusions

This study addresses the need for PWD prevention and control by using UAV remote
sensing technology and a deep learning model for intelligent identification of PWD-infected
individual trees, providing a feasible application solution for monitoring, prevention, and
control of PWD based on UAV remote sensing technology. UAV-based hyperspectral data
were applied to construct RGB, full bands, and feature preferred bands datasets, and
intelligent recognition of PWD-infected individual trees was achieved by improving the
input layer structure of the Mask R-CNN network model. Based on the improved Mask
R-CNN model, an overall accuracy of 68% was obtained for the input hyperspectral full
bands dataset, an improvement of 3.40% over the RGB dataset, in which the early accuracy
was improved by 8.60%. The results show that hyperspectral data can effectively improve
the accuracy of identifying PWD-infected individual trees and early infected trees that
are little different from healthy pine trees in spectral reflectance. In addition, LDA was
used for band screening, and eight sensitive bands were selected as the feature preferred
bands dataset for experiments. An overall accuracy of 71% was obtained, of which the early
identification accuracy reached 63.50%. The results show that the best identification results
were obtained with the feature preferred bands dataset, and the identification accuracy of
all infection stages was effectively improved. The results of this study provide a basis for
identifying PWD-infected trees based on sensitive bands of multispectral data.

The improved Mask R-CNN method enables simultaneous classification of PWD
infection stages and canopy segmentation of PWD-infected individual trees, but identi-
fication accuracy is limited by the high input sample requirement. To meet the needs of
early monitoring and control of PWD, we propose an integrated method combining a
prototypical network classification model with an individual tree segmentation algorithm
for the identification of PWD-infected individual trees at different stages. Based on the
prototypical network model, the UAV hyperspectral imagery was input for training to
obtain the pixel-level classification results at different infection stages, which were com-
bined with individual tree canopy segmentation to obtain PWD-infected individual tree
identification results. An overall accuracy of 82.95% was achieved using the hyperspectral
full bands dataset, with 73.95% accuracy for early infected trees identification. An overall
accuracy of 83.51% was obtained using the feature preferred bands dataset, with 74.89%
accuracy for early infected tree identification. Compared with the end-to-end Mask R-
CNN model for individual tree segmentation, the integrated method improved the overall
accuracy by 14.95% and 12.51% based on both the hyperspectral full bands dataset and
the feature preferred bands dataset, respectively, and the early identification accuracy by
11.05% and 11.39%, respectively. Meanwhile, the identification accuracy of the other three
infection stages was also improved, indicating that it is a feasible method for effective
PWD monitoring.
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