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Abstract

:

In recent years, convolutional neural networks (CNNs) have been widely used in the field of hyperspectral image (HSI) classification and achieved good classification results due to their excellent spectral–spatial feature extraction ability. However, most methods use the deep semantic features at the end of the network for classification, ignoring the spatial details contained in the shallow features. To solve the above problems, this article proposes a hyperspectral image classification method based on a Feature Embedding Network with Multiscale Attention (MAFEN). Firstly, a Multiscale Attention Module (MAM) is designed, which is able to not only learn multiscale information about features at different depths, but also extract effective information from them. Secondly, the deep semantic features can be embedded into the low-level features through the top-down channel, so that the features at all levels have rich semantic information. Finally, an Adaptive Spatial Feature Fusion (ASFF) strategy is introduced to adaptively fuse features from different levels. The experimental results show that the classification accuracies of MAFEN on four HSI datasets are better than those of the compared methods.
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1. Introduction


Hyperspectral Image (HSI) is a three-dimensional data cube composed of hundreds of continuous spectral bands, which contains rich spectral–spatial information and is very helpful for ground object recognition. Therefore, HSI classification has been widely applied in environmental monitoring [1,2], mineral exploration [3], precision agriculture [4,5] and other fields.



In the early stages of HSI classification research, most methods mainly focused on the utilization of spectral features, such as kernel-based support vector machines [6], polynomial logistic regression [7,8] and random subspaces [9,10]. However, these methods only consider spectral information and ignore spatial features, so it is difficult to obtain good classification performance.



As deep-learning-based methods became widely applied and achieved excellent results in image classification [11,12], semantic segmentation [13] and natural language processing [14], researchers began to introduce them into HSI classification [15,16,17], and proposed many classification methods based on Convolutional Neural Networks (CNNs) [18,19,20]. Hu et al. [21] proposed Deep Convolutional Neural Networks (DCNNs), which used multiple 1D-CNNs to extract spectral features and improve the classification performance. Li et al. [22] adopted 3D-CNNs to effectively extract spectral–spatial features, thereby improving the classification performance. Since then, more deep learning methods based on spectral–spatial feature extraction have been used for HSI classification. Zhong et al. [23] designed an end-to-end Spectral–Spatial Residual Network (SSRN), which used continuous residual blocks to learn spectral and spatial features separately, so as to extract more discriminative features. Roy et al. [24] proposed Hybrid Spectral CNN (HybridSN) by combining the characteristics of 3D-CNN and 2D-CNN, which reduced the model’s complexity and obtained satisfactory performance. Mu et al. [25] designed a U-shaped deep network model with principal component features as the model input and edge features of space as the model label, which realized the adaptive fusion of these two features. The fusion features were combined with the spectral features extracted by the Long Short-Term Memory (LSTM) model for spectral–spatial feature classification. To fully exploit the spectral–spatial features of HSIs, Huang et al. [26] proposed a Dual-Branch Attention-Assisted CNN (DBAA-CNN). This network could extract sufficient diverse information, achieving higher classification accuracy. Lu et al. [27] proposed a new dual-branch network structure, where each branch learned pixel-level spectral features and patch-level spectral–spatial features, respectively. The features from the two branches were then combined to further enhance classification performance.



In order to obtain more abundant local spatial information, various classification methods based on multiscale feature extraction have been proposed. Yu et al. [28] proposed a Dual-Channel Convolution Network (DCCN) to maximize the use of global and multiscale information from HSIs. Zhang et al. [29] proposed a Multiscale Dense Network (MSDN), which made full use of different scales of information in the network to realize deep feature extraction and multiscale feature fusion. To utilize the correlation information between different levels, Song et al. [30] proposed a Deep Feature Fusion Network (DFFN), which introduced residual learning to alleviate the overfitting problem and fused the features of different levels to improve the classification accuracy.



Recently, a large number of studies have shown [31,32,33] that different spectral bands and spatial pixels have different contributions to HSI classification tasks, and highlighting bands and pixels rich in effective information through the attention mechanism can significantly improve HSI classification performance. Sun et al. [34] proposed a Spectral–Spatial Attention Network (SSAN). Firstly, a simple Spectral–Spatial Network (SSN) was constructed to extract spectral–spatial features. Then, the attention module was embedded into the SSN to suppress the interfering pixels, which achieved good results on three classical datasets, but the low computational efficiency of the attention module made it time consuming to train the SSAN. Lei et al. [35] proposed a Local Attention Network (LANet) to improve the semantic segmentation of HSIs by enhancing the scene-related representation in the encoding and decoding stages, which greatly improved the semantic representation of low-level features and further improved the segmentation performance. In addition, Transformers have also begun to be used in HSI classification due to their ability to model global features of images. Hong et al. [36] used Transformers to rethink the HSI classification process from a sequence perspective and proposed a new backbone network, SpectralFormer, to achieve high performance for the HSI classification task. Sun et al. [37] proposed a Spectral–Spatial Feature Tokenization Transformer (SSFTT) to capture spectral–spatial features and high-level semantic features. The encoder module of the Transformer was introduced into the network for feature representation and learning, which achieved good classification results and greatly improved the computational efficiency.



HSI classification is a kind of pixel-level classification, and the detail information of edges and shapes is crucial to improving the classification accuracy. However, the general HSI classification model based on deep learning usually only focuses on the use of deep semantic features for classification, and ignores the shallow features, which is not conducive to further improvement of classification performance. The Feature Pyramid Network (FPN) [38] embedded high-level features rich in semantic information into shallow features rich in detail information through a top-down path, so that all levels of features had rich semantic information. It achieved good results in the application of object detection [39,40], instance segmentation [41] and other computer vision fields. Based on FPN, Wang et al. [42] proposed an FPN with dual-filter feature fusion for HSI classification. The enhanced multiscale features were obtained by embedding dual-filter feature fusion modules in each horizontal branch of an FPN, and then the final feature representation obtained by fusing features of each level from top to bottom was used for classification, which achieved good performance. Fang et al. [43] used a convolutional attention module in bottom-up feature extraction to extract effective information, and then used a bidirectional pyramid for instance segmentation of HSI. Chen et al. [44] introduced coordinate attention in each horizontal branch to obtain more HSI features, and then added and fused the features of each level of FPN to achieve effective HSI classification of small samples.



Inspired by the idea of the FPN, this article proposes a Feature Embedding Network with Multiscale Attention (MAFEN) to make full use of both deep and shallow features through bottom-up feature extraction and top-down feature embedding. Firstly, a Multiscale Attention Module (MAM) is designed to express rich information for different levels of features. MAM first uses convolutional kernels with different receptive field sizes to extract multiscale information, and then uses spectral–spatial attention to suppress redundant information at each scale, so as to highlight the bands and pixels rich in effective information. Secondly, the deep semantic information is embedded into the shallow features through the top-down channel to enhance the representation ability of the features at different levels. Finally, an Adaptive Spatial Feature Fusion (ASFF) [45] strategy is introduced to automatically learn the fusion weight of each feature map through the network, so as to realize the adaptive fusion of features at different levels.



The main contributions of this article are as follows:




	
The MAM is designed to enhance the representation ability of features at different levels. Firstly, multiscale convolution is used to obtain rich information representation, and then the attention mechanism is used to highlight important information.



	
The ASFF strategy is introduced for feature fusion in HSIs to adaptively fuse features of different levels and improve classification performance.



	
The MAFEN is proposed, where the deep features are embedded into the shallow features through the top-down channel to enrich their semantic information, and the shallow features are adaptively fused with features at other levels.








The rest of this article is organized as follows: The MAFEN method is described in detail in Section 2. Section 3 presents the experiments and analysis. Section 4 concludes the article.




2. The Proposed Method


In this section, our proposed MAFEN for HSI classification is described in detail, and its overall framework is shown in Figure 1. Firstly, the MAFEN backbone network uses 3D-CNN and 2D-CNN to extract the features of different depths from the dimensionality-reduced hyperspectral images. Secondly, MAM was designed to enhance the representation ability of different levels of features through multiscale convolution, and the spectral–spatial attention mechanism was used to highlight important information and suppress redundant information. Then, the high-level semantic information was embedded into the low-level local spatial information through the top-down channel to make the features at different levels have rich semantics. Finally, ASFF was introduced to adaptively fuse the features of different levels to obtain the final feature representation for classification.



2.1. Multiscale Attention Module


CNNs are limited by fixed-size receptive fields, which may result in insufficient local spatial features. To obtain richer local information of features at different levels, a multiscale approach can be used to control the sizes of convolutional kernels, thus obtaining different receptive fields. Moreover, the feature maps may contain redundant information that could degrade the representation performance, thereby affecting the final classification results. Therefore, we utilized spectral–spatial attention to extract crucial information from the features obtained using multiscale convolutions to enhance classification performance. We designed an MAM that utilized multiscale convolutions and spectral–spatial attention to obtain more rich and effective feature representations. Figure 2a,b illustrates the overall framework of the MAM and the structure of the spectral–spatial attention module, respectively, as described below.



As shown in Figure 2, firstly, the MAM convolved the features    F i    i = 1 , 2 , 3     of different levels with three convolutional kernels of different sizes to obtain multi-scale information, where the sizes of the convolutional kernels were   1 × 1  ,   3 × 3   and   5 × 5  , respectively, and    F 1   ,    F 2    and    F 3    represent the extracted low-level, mid-level, and high-level features, respectively. Then, the spectral–spatial attention modules were employed to extract effective information from the features extracted by each convolutional kernel, where spectral attention and spatial attention were cascaded. Finally, the three features were fused by element-wise summation.



2.1.1. Spectral Attention


The main purpose of spectral attention is to generate band weights    W  s p e     to recalibrate the importance of each spectral band. Considering that the patch block may contain pixels from other classes, using global average pooling may introduce interference to the pixels of the current class. Therefore, we only used the center vector    p i    to generate the weight    W  s p e    .



The specific structure of the spectral attention module is shown in Figure 3. Firstly, the center vector    p i  ∈  R  1 × 1 × b     was taken from the input cube   F ∈  R  s × s × b    , where   s × s   was the spatial size of  F  and  b  was the number of bands. Then, the band weight    W  s p e   ∈  R  1 × 1 × b     was obtained through the calculation of two convolutional layers with a kernel size of   1 × 1  , as shown in Equation (1).


   W  s p e   = σ    W 2  ∗   δ    W 1  ∗  p i        ,  



(1)




where  σ  and  δ  represent the sigmoid and ReLU activation functions, respectively.    W 1    and    W 2    are the weight parameters of the two convolutional layers, and  ∗  represents the convolution operation. Finally, as shown in Figure 2b, the band weight    W  s p e     was used to recalibrate the bands in the feature  F  to highlight the useful spectral information, using Equation (2).


  F =  W  s p e   ⊗ F ,  



(2)




where  ⊗  represents element-wise multiplication.




2.1.2. Spatial Attention


Spatial attention aims to enhance the spatial information for pixels belonging to the same class as that of the central pixel, while suppressing pixels of other classes. Therefore, the spatial weight    W  s p a     should have the same width and height as those of the input feature  F , with a specific structure as shown in Figure 4. Firstly, global max pooling was applied to the input feature  F  along the channel direction, as shown in Equation (3).


   F  max   =   max  c    F   i , j     ,  



(3)




where   F   i , j     represents the value at position     i , j     in the feature   F ∈  R  s × s × b    ,     max  c    represents taking the maximum value along the channel direction  c  and    F  max   ∈  R  s × s     is the feature map after global max pooling. Then, it is passed through two 2D convolutional layers to generate the spatial weight    W  s p a   ∈  R  s × s    , as shown in Equation (4).


   W  s p a   = σ   δ    F  max   ∗  W 1    ∗  W 2    ,  



(4)




where    W 1    and    W 2    are the weight parameters of the two convolutional layers,  σ  and  δ  represent the sigmoid and ReLU activation functions, respectively, and  ∗  denotes the convolution operation. Finally, as shown in Figure 2b, the spatial weight    W  s p a     is used to recalibrate the spatial information in the feature  F  and highlight the useful spatial information, using Equation (5).


  F =  W  s p a   ⊗ F ,  



(5)




where  ⊗  represents element-wise multiplication.





2.2. Feature Embedding Network


Deep neural networks learn the fine-grained features of local objects in HSIs in shallow layers, and high-level semantic features in deep layers. However, during the deep learning process, shallow features are often lost or even disappear, so they are generally not involved in the final HSI classification. In addition, different-depth features have different levels of information representation, and fully utilizing information at different levels is beneficial to improving the effectiveness of HSI classification. In this article, we propose a new Multiscale Attention Feature Embedding Network. The backbone of MAFEN consists of a spectral–spatial feature extraction channel and a deep feature embedding channel. The detailed description of the MAFEN is as follows.



Let   H ∈  R  w × h × b     represent the original HSI data, where  w  and  h  represent the width and height of the spatial dimension, respectively, and  b  is the number of spectral bands. Each pixel in  H  corresponds to a one-hot label vector   Y ∈  R  1 × 1 × K    , where  K  is the number of land cover classes. HSIs have rich spectral information, which will lead to a large number of spectral dimensions and an increase in computational complexity. HSIs may also contain noise, causing interference with the classification. Using Principal Component Analysis (PCA) to perform dimensionality reduction can improve classification accuracy by removing noise and redundant information, and can also reduce computation time and resource consumption, thereby enhancing computational efficiency and making deep learning models more efficient. Therefore, PCA is commonly used to process HSI data. PCA reduces the number of spectral bands from b to l, while maintaining the spatial size of HSI. The resulting reduced-dimensional HSI data are represented as    H  p c a   ∈  R  w × h × l    , where  l  is the number of reduced spectral bands. To fully leverage the spectral and spatial information provided by the HSI, a set of cubes    F 0  ∈  R   s 0  ×  s 0  × l     is extracted from    H  p c a    , where    s 0  ×  s 0    represents the spatial size of the patch blocks in the HSI cube. The center pixel of each patch is denoted as      x i  ,  y i     , and the true label of each patch is determined by the label of the center pixel.



(1) Feature Extraction Channel: Given the ith feature    F i  ∈  R   s i  ×  s i  × l    , i = 0, 1, 2, 3, where    F 0    represents the cube corresponding to the HSI input data;    F 1   ,    F 2    and    F 3    represent low-level, mid-level and high-level features, respectively. The feature map    F  i + 1     is obtained by applying two layers of convolutions (3D-CNN and 2D-CNN) and residual connections to each feature map    F i    in a bottom-up manner, as shown in Equations (6) and (7):


  M = δ   B N    f 1     F i  ,  w 1        ,  



(6)






   F  i + 1   = M P   δ   B N    f 2    M ,  w 2      + M     ,  



(7)




where    f 1    · ,  w 1      represents a 3D convolution with a weight parameter    w 1    and kernel size of   3 × 3 × 3  , and    f 2    · ,  w 2      represents a 2D convolution with a weight parameter    w 2    and kernel size of   3 × 3  .   B N   stands for batch normalization, and  δ  represents the activation function, which is ReLU here.   M P  ·    denotes the max pooling function.



The 3D-2D convolution is used to extract spectral–spatial features from the HSI data, resulting in three features with different levels of information. High-level features contain rich semantic information, while low-level features capture fine-grained local spatial information.



(2) Deep Feature Embedding Channel: Multiscale attention was applied to different deep features    F i    in three branches to extract effective spectral–spatial information, thereby enhancing the classification performance. Then, transpose convolution was applied to the deep features    F i    i = 3 , 2     to complete upsampling and obtain    F i    ′   , as shown in Equation (8).


   F i    ′  = φ    F i  , θ   ,  



(8)




where   φ   · , θ     represents the transpose convolution with a kernel size of   3 × 3   and weight parameter  θ . As a result,    F i    ′    has the same spatial resolution as    F  i − 1    . Next,    F i    ′    and    F  i − 1     were added together for fusion, and the fused features were convolved as shown in Equation (9).


   F  i − 1     ′  =  f 3     F i    ′  ⊕  F  i − 1   ,  w 3    ,  



(9)




where    f 3    · ,  w 3      represents the convolution operation with a weight parameter    w 3   , and  ⊕  represents element-wise addition for fusion. Through the above process, high-level features can be embedded into low-level features, enhancing the feature representation capability of the model.




2.3. Adaptive Spatial Feature Fusion


In contrast to conventional feature fusion strategies, ASSF can learn the fusion weights for each feature map automatically through the network, achieving adaptive fusion. The specific structure is shown in Figure 5.



Firstly, the three different-level features    F i    ′  ∈  R  s × s × b   , i = 1 , 2 , 3   were concatenated along the channel dimension to obtain the feature    F s  ∈  R  s × s × 3 b    . Then, a convolution operation was applied to change the channel length, as shown in Equation (10).


   F s  = δ    f 4     F s  ,  w 4      ,  



(10)




where    f 4    · ,  w 4      represents a 2D convolution with a kernel size of   1 × 1   and  δ  is the ReLU activation function. The resulting    F s    from the convolution operation has a size of   s × s × 3  . To obtain the feature fusion weights   α , β , γ   of size   s × s  , the Softmax function was applied to normalize the exponential function of the data along the channel direction of    F s    at the same position, as shown in Equation (11).


    α , β , γ   =   exp    F  s ,   i , j      k        ∑  k = 1  3   exp    F  s ,   i , j      k        ,  



(11)




where    F  s ,   i , j      c    represents the value of the kth channel of the feature    F s    at position     i , j    . Therefore, the network can learn the weights for each feature automatically, enhancing the fusion capability. Next, features      F 3   ′   ,      F 2   ′    and      F 1   ′    were multiplied in an element-wise way by weights  α ,  β  and  γ  in each band, respectively, to obtain      F 3   ″   ,      F 2   ″    and      F 1   ″   , which were then summed to obtain the final feature representation    F  ″    . Finally, the feature    F  ″     was fed into a linear layer for classification.





3. Experiment and Analysis


3.1. Dataset Description


In order to verify the performance of the proposed method, we selected four classical datasets for experiments, including Indian Pines, Kennedy Space Center (KSC), Pavia University and Salinas.



The Indian Pines dataset was a hyperspectral remote sensing image with a size of 145 × 145 and a spatial resolution of 20 m. It was acquired using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). It contained 200 spectral bands and 16 land cover classes, for a total of 10,249 labeled samples. The false-color image and ground-truth label image are shown in Figure 6a. Table 1 lists the specific classes of the Indian Pines dataset and the number of training and testing samples for each class.



The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific classes of the KSC dataset and the number of training and testing samples for each class.



The Pavia University dataset was a hyperspectral remote sensing image with a size of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University dataset and the number of training and testing samples for each class.



The Salinas dataset was a hyperspectral remote sensing image with a size of 512 × 217 and a spatial resolution of 3.7 m. It was also acquired using an AVIRIS sensor. It contained 204 spectral bands and 16 land cover classes, for a total of 54,129 labeled samples. The false-color image and ground-truth label image are shown in Figure 6d. Table 4 lists the specific classes of the Salinas dataset and the number of training and testing samples for each class.




3.2. Experimental Setting


(1) Evaluation Metrics: To quantitatively assess the effectiveness of the proposed model, we used Overall Accuracy (OA), Average Accuracy (AA) and the Kappa coefficient as the evaluation metrics. A higher value for each metric indicated better classification performance.



(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114 2.2 GHz CPU, 128 GB RAM, and a NVIDIA Geforce RTX 2080 Ti 12 GB graphics card. The PyTorch deep learning framework was used to train the network, with epoch and batch_size set to 100 and 32, respectively. A learning rate decay strategy was employed, with an initial learning rate of 0.001, and a decay of 0.1 every 50 epochs. Adam was chosen as the optimization method for the experiments. Each method was tested five times, and the mean value was taken as the experimental result, along with the calculation of the standard deviation.



In the Indian Pines, Pavia University and Salinas datasets, the size of the patch block (Patch_Size) was set to 13, while in the KSC dataset it was set to 15. The dimension of PCA dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian Pines, KSC, Pavia University and Salinas datasets, respectively.



In practice, labeling samples of hyperspectral image data requires expert knowledge, which is time-consuming and expensive. Therefore, how to train the model well with a limited or low percentage of samples has become an important topic [17], and it is also a necessary way to test the effectiveness of the proposed model. In recent years, with the improvement of deep neural network models, the percentage of the training samples has tended to decrease from 30% [24] to 10%, 5% or 3% [17,20]. In this paper, we also used a low percentage of samples to train the proposed model. There were many available samples in the Pavia University and Salinas datasets, so the number of random training samples in these two datasets accounted for 3% of the total samples, and the number of random training samples in the Indian Pines and KSC datasets accounted for 10% of the total samples.




3.3. Experimental Results and Analysis


3.3.1. Classification Results


We compared the proposed MAFEN model with several representative methods to validate its effectiveness, including traditional methods such as SVM, deep-learning-based methods such as 3DCNN [22], SSRN [23], DFFN [30] and HybridSN [24], as well as attention-based methods such as Speformer [36] and SSFTT [37]. The detailed experimental results of these methods on the Indian Pines, KSC, Pavia University and Salinas datasets are as follows.



(1) Indian Pines: Firstly, all the models were evaluated using the Indian Pines dataset, and the quantitative experimental results are shown in Table 5, where the numbers in bold mean the best results. The results of evaluation metrics show that the proposed MAFEN method performed the best, obtaining the highest OA, AA and Kappa values. Specifically, compared with SVM, the accuracy of 3DCNN was improved by 12.02%, which shows that deep learning has a significant advantage in HSI classification. SSRN had better classification performance than 3DCNN because it uses continuous residual blocks to learn spectral and spatial features separately. The classification performance of DFFN was lower than that of SSRN, which may be because the feature distribution of the Indian Pines dataset did not match well with the DFFN network structure and the way of feature fusion. The poor accuracy of HybridSN and Speformer in the “Grass-pawn-mowed” (class 7, mint green) and “Oats” (class 9, yellow) categories was due to the fact that the number of training samples in the two categories was only three and two, respectively, which was challenging for HSI classification. SSFTT achieved 100% accuracy in the “Grass-Pasture-Mowed” category, but 76.67% accuracy in the “Oats” category, because the region shape of this category was narrow and spatial features could not be fully extracted. However, the accuracy of the proposed model on the two categories was 100% and 93.34%, respectively, and the accuracy of each category was relatively close, which indicates that the model has good feature expression ability for samples with a small training number and an irregular region shape.



Figure 7 shows the classification maps of these methods on the Indian Pines dataset. The compared methods performed poorly on the land cover objects with region edges and narrow shapes, but the proposed MAFEN model generated more accurate classification maps with better homogeneity in each region. This is because MAFEN enhances the feature representation of different categories through deep feature embedding and multiscale attention learning.



(2) KSC: Secondly, we evaluated all the models on the KSC dataset, and the quantitative experimental results are shown in Table 6. The KSC dataset had a sparse distribution of classes, and patches were less affected by interference from neighboring classes, which allowed for better extraction of pixel-level features. Therefore, the accuracy of various methods was relatively high. Among them, HybridSN and Speformer achieved 100% accuracy in five and three categories, respectively, and SSFTT achieved 100% accuracy in nine classes. The proposed MAFEN model achieved 100% accuracy in 10 classes, with OA, AA and Kappa values reaching 99.91%, 99.87% and 99.90%, respectively.



Figure 8 displays the classification maps of these methods on the KSC dataset. Several comparison methods had more noise points in the category “CP/Oak” (class 4, in cyan), which led to poor classification results. Among them, HybridSN achieved the best classification performance, reaching 95.51%. The proposed MAFEN model can better distinguish this category and achieved the best accuracy in this category, reaching 98.68%.



(3) Pavia University: We further evaluated all the models on the Pavia University dataset, and the quantitative experimental results are shown in Table 7. The Pavia University dataset had a large number of samples in each category and abundant training samples, resulting in good classification performance for all methods. Compared with other methods, the proposed MAFEN model achieved the best overall classification results and the best accuracy in most categories.



Figure 9 shows the classification maps of these methods on the Pavia University dataset. The “Gravel” (class 3, in orange) and “Bricks” (class 8, in steel blue) classes had similar spectra but differed in spatial details. From the classification maps, it can be seen that SSRN using deep features for classification could not effectively distinguish “Gravel” and “Bricks”. However, the proposed model performed well on “Gravel” and “Bricks”, which indicates that utilizing shallow local spatial details was beneficial for distinguishing the “Gravel” and “Bricks” classes.



(4) Salinas: Finally, we evaluated all the models on the Salinas dataset, and quantitative analysis results for different methods are presented in Table 8. The Salinas dataset had larger regions and regular shapes for different classes, which allowed for better extraction of spatial features. The proposed MAFEN model achieved an accuracy of 100% for six classes, with OA, AA and Kappa values reaching 99.82%, 99.80% and 99.80%, respectively. This further confirms the feature representation capability of the proposed model.



Figure 10 shows the classification maps of different methods on the Salinas dataset. From the top left corner of the classification maps, we can observe that due to the very similar spectra of “Grapes Untrained” (class 8, in steel blue) and “Vinyard Untrained” (class 15, in olive), the compared methods contained a lot of noise in the classification maps of these two classes. However, the proposed MAFEN model, which has better spectral–spatial feature representation capability, was able to distinguish these two classes, resulting in smoother and more accurate classification maps.




3.3.2. Parameter Analysis


(1) Impact of Patch_Size and PCA_Components on the OA: We analyzed the influence of Patch_Size and PCA_Components on classification performance in the Indian Pines, KSC, Pavia University and Salinas datasets. Patch_Size was selected as (11, 13, 15, 17, 19) for all four datasets, and PCA_Components was selected as (32, 48, 64, 80, 96, 112, 128) for the Indian Pines, KSC and Salinas datasets. Since the Pavia University dataset had 103 spectral bands, PCA_Components was selected as (32, 48, 64, 80, 96) for this dataset. From Figure 11a, we can observe that the best performance was achieved when Patch_Size was set to 13 and PCA_Components was set to 64 on the Indian Pines dataset. From Figure 11b, the classification performance on the KSC dataset was strongly correlated with PCA_Components. As PCA_Components increased, the classification performance improved, and eventually the OA approached 100%. In Figure 11c, the classification performance was better when PCA_Components was in the range (32, 48). As you can see from Figure 11d, the smaller PCA_Components fit well on the Salinas dataset.



(2) OA of Models with Different Percentages of Training Samples: Figure 12 presents the classification accuracy of various methods with different percentages of training samples. Considering the differences in the number of available samples for each dataset, 2%, 4%, 6%, 8% and 10% of labeled samples were selected as training samples for the Indian Pines and KSC datasets, while 0.5%, 1%, 2%, 3% and 4% of labeled samples were selected as training samples for the Pavia University and Salinas datasets. From Figure 12, it can be seen that the proposed MAFEN method still performed well even with fewer training samples. In addition, as the percentage of training samples increased, the accuracy of various methods also increased. Among them, the accuracy of SSFTT and HybridSN was close to our method, showing better classification performance.



(3) Computational Performance: The results of training and testing time consumed by SSRN, DFFN, HybridSN, Speformer, SSFTT and our proposed MAFEN method are listed in Table 9. It can be seen that there were obvious differences in the training and testing time of several methods on different datasets. Among them, SSFTT was the most computationally efficient, and the training time was much lower than that of the other methods on all datasets. In contrast, the training time of Speformer was longer, especially on the Indian Pines dataset, where the training time was more than four times longer than that of the other models. On the whole, our proposed method performed well with relatively short training time on different datasets.




3.3.3. Ablation Experiment


In order to thoroughly validate the effectiveness of each component in the proposed method, the ablation experiment was conducted on the Indian Pines, KSC, Pavia University and Salinas datasets to analyze the impact of the ASFF and MAM components. Four combinations were considered, where the Base network did not contain the MAM and ASFF modules. Three indicators, OA, AA and Kappa, were used to analyze the influence of different components on the whole model, and the experimental results are shown in Figure 13.



The Base network, which did not include the MAM and ASFF modules, had the worst classification performance on the four datasets. When adding the MAM or ASFF module, the classification performance was significantly improved compared with that of the Base network, which verifies the effectiveness of the MAM and ASFF modules. Compared with the network containing the ASFF module, the network containing the MAM module had better improvement performance, showing that the attention mechanism can extract effective spectral–spatial information, which is more helpful to improve the HSI classification performance. The classification performance of the MAFEN network with two modules was better, which reflects the better performance of spectral–spatial features by using both modules simultaneously. In summary, the results of the ablation experiment further prove the effectiveness of the proposed model.






4. Conclusions


The method named Feature Embedding Network with Multiscale Attention (MAFEN) is proposed in this article to improve the classification performance of Hyperspectral Images (HSIs). The MAFEN model first utilizes multiscale attention modules to extract informative features, then embeds deep features into shallow features to enhance the feature representation capability of the network. Finally, adaptive fusion is performed on features at different levels. Experiments were conducted on four commonly used HSI datasets, and comparisons were made with existing methods. The proposed MAFEN method demonstrated superior spectral–spatial feature representation capability, as it effectively utilized spatial details from shallow features and semantic information from deep features, resulting in a significant improvement in classification accuracies on all four datasets compared with those of several other methods. In the future, we will further study new attention-based networks to fully leverage the critical information in HSIs.
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Figure 1. The overall framework of the MAFEN for hyperspectral image classification.    F 0    represents the cube corresponding to the HSI input data,    F 1   ,    F 2    and    F 3    are three feature maps with different levels of information obtained using 3D-2D convolution, representing low-level features, mid-level features and high-level features, respectively.    F 1    ′   ,    F 2    ′    and    F 3    ′    represent the final features of each branch. 
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Figure 2. The structure of MAM. (a) The overall framework of MAM. (b) The structure of the spectral–spatial attention module in MAM. Firstly, MAM convolves the features    F i    of different levels with three convolutional kernels of different sizes to obtain multi-scale information. Then, cascaded spectral attention and spatial attention are employed to extract effective information from the feature  F  extracted by each convolution kernel. 
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Figure 3. Detailed structure diagram of the spectral attention module. The center vector    p i    was taken from the input cube  F . 
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Figure 4. A detailed structure diagram of the spatial attention module.    F  max     is the feature map obtained by global max pooling of  F  along the channel direction. 






Figure 4. A detailed structure diagram of the spatial attention module.    F  max     is the feature map obtained by global max pooling of  F  along the channel direction.



[image: Remotesensing 15 03338 g004]







[image: Remotesensing 15 03338 g005 550] 





Figure 5. The specific structure of ASFF.    F s    is the feature obtained by concatenating three different-level features along the channel dimension,  α ,  β  and  γ  are the feature fusion weights,      F i   ″    represents the weighted features,    F  ″     is the final feature representation. 
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Figure 6. False-color images and ground-truth maps. (a) Indian Pines. (b) KSC. (c) Pavia University. (d) Salinas. 
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Figure 7. Classification maps of the Indian Pines dataset. (a) SVM (OA = 79.60%); (b) 3DCNN (OA = 91.62%); (c) SSRN (OA = 95.75%); (d) DFFN (OA = 91.43%); (e) HybridSN (OA = 97.73%); (f) Speformer (OA = 93.92%); (g) SSFTT (OA = 98.49%); (h) MAFEN (OA = 99.10%). 
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Figure 8. Classification maps of the KSC dataset. (a) SVM (OA = 87.81%); (b) 3DCNN (OA = 92.74%); (c) SSRN (OA = 95.04%); (d) DFFN (OA = 97.39%); (e) HybridSN (OA = 98.98%); (f) Speformer (OA = 97.15%); (g) SSFTT (OA = 99.48%); (h) MAFEN (OA = 99.91%). 
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Figure 9. Classification maps of the Pavia University dataset. (a) SVM (OA = 93.94%); (b) 3DCNN (OA = 98.09%); (c) SSRN (OA = 95.76%); (d) DFFN (OA = 98.25%); (e) HybridSN (OA = 97.35%); (f) Speformer (OA = 96.28%); (g) SSFTT (OA = 98.26%); (h) MAFEN (OA = 99.09%). 
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Figure 10. Classification maps of the Salinas dataset. (a) SVM (OA = 93.30%); (b) 3DCNN (OA = 96.64%); (c) SSRN (OA = 96.27%); (d) DFFN (OA = 98.77%); (e) HybridSN (OA = 98.46%); (f) Speformer (OA = 98.49%); (g) SSFTT (OA = 98.89%); (h) MAFEN (OA = 99.82%). 
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Figure 11. Impact of Patch_Size and PCA_Components on the OA. (a) Indian Pines; (b) KSC; (c) Pavia University; (d) Salinas. 
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Figure 12. OA of models with different percentages of training samples. (a) Indian Pines; (b) KSC; (c) Pavia University; (d) Salinas. 
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Figure 13. Ablation experiment. (a) Indian Pines; (b) KSC; (c) Pavia University; (d) Salinas. 






Figure 13. Ablation experiment. (a) Indian Pines; (b) KSC; (c) Pavia University; (d) Salinas.



[image: Remotesensing 15 03338 g013a][image: Remotesensing 15 03338 g013b]







[image: Table] 





Table 1. The information for each class in the Indian Pines dataset.
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	No.
	Class
	Color
	Train
	Test





	1
	Alfalfa
	[image: Remotesensing 15 03338 i001]
	5
	41



	2
	Corn-notill
	[image: Remotesensing 15 03338 i002]
	143
	1285



	3
	Corn-mintill
	[image: Remotesensing 15 03338 i003]
	83
	747



	4
	Corn
	[image: Remotesensing 15 03338 i004]
	24
	213



	5
	Grass-pasture
	[image: Remotesensing 15 03338 i005]
	48
	435



	6
	Grass-trees
	[image: Remotesensing 15 03338 i006]
	73
	657



	7
	Grass-pasture-mowed
	[image: Remotesensing 15 03338 i007]
	3
	25



	8
	Hay-windrowed
	[image: Remotesensing 15 03338 i008]
	48
	430



	9
	Oats
	[image: Remotesensing 15 03338 i009]
	2
	18



	10
	Soybean-notill
	[image: Remotesensing 15 03338 i010]
	97
	875



	11
	Soybean-mintill
	[image: Remotesensing 15 03338 i011]
	245
	2210



	12
	Soybean-clean
	[image: Remotesensing 15 03338 i012]
	59
	534



	13
	Wheat
	[image: Remotesensing 15 03338 i013]
	20
	185



	14
	Woods
	[image: Remotesensing 15 03338 i014]
	126
	1139



	15
	Buildings-Grass-Trees-Drives
	[image: Remotesensing 15 03338 i015]
	39
	347



	16
	Stone-Steel-Towers
	[image: Remotesensing 15 03338 i016]
	9
	84



	Total
	
	
	1024
	9225
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Table 2. The information for each class in the KSC dataset.
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	No.
	Class
	Color
	Train
	Test





	1
	Scrub
	[image: Remotesensing 15 03338 i017]
	76
	685



	2
	Willow_swamp
	[image: Remotesensing 15 03338 i018]
	24
	219



	3
	CP_hammock
	[image: Remotesensing 15 03338 i019]
	26
	230



	4
	CP/Oak
	[image: Remotesensing 15 03338 i020]
	25
	227



	5
	Slash_pine
	[image: Remotesensing 15 03338 i021]
	16
	145



	6
	Oak/Broadleaf
	[image: Remotesensing 15 03338 i022]
	23
	206



	7
	Hardwood_swamp
	[image: Remotesensing 15 03338 i023]
	10
	95



	8
	Graminoid_marsh
	[image: Remotesensing 15 03338 i024]
	43
	388



	9
	Spartina_marsh
	[image: Remotesensing 15 03338 i025]
	52
	468



	10
	Catial_marsh
	[image: Remotesensing 15 03338 i026]
	40
	364



	11
	Salt_marsh
	[image: Remotesensing 15 03338 i027]
	42
	377



	12
	Mud_flats
	[image: Remotesensing 15 03338 i028]
	50
	453



	13
	Water
	[image: Remotesensing 15 03338 i029]
	93
	834



	Total
	
	
	520
	4691
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Table 3. The information for each class in the Pavia University dataset.
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	No.
	Class
	Color
	Train
	Test





	1
	Asphalt
	[image: Remotesensing 15 03338 i030]
	199
	6432



	2
	Meadows
	[image: Remotesensing 15 03338 i031]
	559
	18,090



	3
	Gravel
	[image: Remotesensing 15 03338 i032]
	63
	2036



	4
	Trees
	[image: Remotesensing 15 03338 i033]
	92
	2972



	5
	Metal Sheets
	[image: Remotesensing 15 03338 i034]
	40
	1305



	6
	Bare soil
	[image: Remotesensing 15 03338 i035]
	151
	4878



	7
	Bitumen
	[image: Remotesensing 15 03338 i036]
	40
	1290



	8
	Bricks
	[image: Remotesensing 15 03338 i037]
	110
	3572



	9
	Shadows
	[image: Remotesensing 15 03338 i038]
	28
	919



	Total
	
	
	1282
	41,494
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Table 4. The information for each class in the Salinas dataset.






Table 4. The information for each class in the Salinas dataset.












	No.
	Class
	Color
	Train
	Test





	1
	Brocoli_green_weeds_1
	[image: Remotesensing 15 03338 i039]
	60
	1949



	2
	Brocoli_green_weeds_2
	[image: Remotesensing 15 03338 i040]
	112
	3614



	3
	Fallow
	[image: Remotesensing 15 03338 i041]
	59
	1917



	4
	Fallow_rough_plow
	[image: Remotesensing 15 03338 i042]
	42
	1352



	5
	Fallow_smooth
	[image: Remotesensing 15 03338 i043]
	80
	2598



	6
	Stubble
	[image: Remotesensing 15 03338 i044]
	119
	3840



	7
	Celery
	[image: Remotesensing 15 03338 i045]
	107
	3472



	8
	Grapes_untrained
	[image: Remotesensing 15 03338 i046]
	338
	10,933



	9
	Soil_vinyard_develop
	[image: Remotesensing 15 03338 i047]
	186
	6017



	10
	Corn_senesced_green_weeds
	[image: Remotesensing 15 03338 i048]
	98
	3180



	11
	Lettuce_romaine_4wk
	[image: Remotesensing 15 03338 i049]
	32
	1036



	12
	Lettuce_romaine_5wk
	[image: Remotesensing 15 03338 i050]
	58
	1869



	13
	Lettuce_romaine_6wk
	[image: Remotesensing 15 03338 i051]
	27
	889



	14
	Lettuce_romaine_7wk
	[image: Remotesensing 15 03338 i052]
	32
	1038



	15
	Vinyard_untrained
	[image: Remotesensing 15 03338 i053]
	218
	7050



	16
	Vinyard_vertical_trellis
	[image: Remotesensing 15 03338 i054]
	54
	1753



	Total
	
	
	1622
	52,507
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Table 5. Classification results of different methods on the Indian Pines dataset.






Table 5. Classification results of different methods on the Indian Pines dataset.





	Class
	SVM
	3DCNN
	SSRN
	DFFN
	HybridSN
	Speformer
	SSFTT
	MAFEN





	1
	33.81 ± 0.05
	89.74 ± 0.01
	96.58 ± 4.78
	91.16 ± 0.06
	90.73 ± 13.83
	94.63 ± 5.21
	97.07 ± 3.58
	100 ± 0.00



	2
	74.99 ± 0.03
	85.01 ± 0.12
	93.87 ± 2.94
	93.47 ± 0.04
	93.96 ± 1.88
	89.90 ± 1.71
	96.68 ± 0.68
	96.76 ± 0.56



	3
	68.86 ± 0.02
	86.41 ± 0.26
	93.95 ± 4.99
	89.12 ± 0.14
	98.90 ± 0.67
	89.97 ± 1.25
	99.22 ± 0.41
	99.57 ± 0.66



	4
	47.57 ± 0.04
	96.19 ± 0.02
	86.29 ± 2.17
	92.41 ± 0.05
	96.53 ± 2.23
	97.65 ± 1.07
	99.62 ± 0.55
	99.15 ± 0.91



	5
	85.29 ± 0.03
	88.19 ± 0.01
	99.17 ± 0.78
	81.38 ± 0.06
	98.85 ± 1.32
	97.06 ± 1.07
	98.57 ± 1.48
	99.86 ± 0.11



	6
	95.77 ± 0.03
	88.16 ± 0.02
	98.14 ± 0.50
	96.53 ± 0.01
	98.99 ± 0.67
	99.33 ± 0.41
	99.63 ± 0.39
	99.51 ± 0.34



	7
	60.00 ± 0.24
	87.50 ± 0.04
	97.6 ± 3.20
	93.60 ± 0.08
	18.4 ± 36.8
	71.20 ± 10.24
	100 ± 0.00
	100 ± 0.00



	8
	98.56 ± 0.01
	100 ± 0.00
	99.58 ± 0.45
	100 ± 0.00
	99.91 ± 0.19
	99.86 ± 0.19
	100 ± 0.00
	99.90 ± 0.19



	9
	30.00 ± 0.08
	88.23 ± 0.16
	88.89 ± 7.03
	66.67 ± 0.12
	21.43 ± 7.36
	66.67 ± 11.11
	76.67 ± 7.36
	93.34 ± 5.44



	10
	75.45 ± 0.02
	89.35 ± 0.01
	96.32 ± 1.88
	89.86 ± 0.05
	99.11 ± 0.15
	92.78 ± 1.41
	97.76 ± 1.12
	99.43 ± 0.19



	11
	82.14 ± 0.01
	93.71 ± 0.03
	94.14 ± 3.04
	89.69 ± 0.14
	99.36 ± 0.25
	95.70 ± 1.34
	99.38 ± 0.33
	99.38 ± 0.20



	12
	61.31 ± 0.01
	93.63 ± 0.23
	92.77 ± 2.25
	77.21 ± 0.14
	95.43 ± 1.39
	80.56 ± 3.29
	96.29 ± 1.36
	98.58 ± 0.39



	13
	95.14 ± 0.02
	100 ± 0.00
	99.68 ± 0.65
	95.19 ± 0.03
	98.38 ± 1.41
	99.68 ± 0.43
	98.16 ± 2.04
	99.89 ± 0.22



	14
	94.19 ± 0.02
	97.99 ± 0.04
	99.37 ± 0.13
	97.76 ± 0.01
	99.39 ± 0.52
	98.53 ± 1.03
	99.89 ± 0.21
	99.84 ± 0.13



	15
	53.91 ± 0.04
	88.92 ± 0.01
	97.64 ± 1.05
	94.30 ± 0.02
	99.08 ± 1.05
	90.72 ± 2.67
	97.46 ± 2.90
	100 ± 0.00



	16
	80.95 ± 0.05
	95.29 ± 0.01
	99.28 ± 0.95
	98.05 ± 0.01
	96.90 ± 1.78
	91.90 ± 5.80
	88.80 ± 6.80
	97.14 ± 0.95



	OA
	79.60 ± 0.01
	91.62 ± 0.01
	95.75 ± 0.61
	91.43 ± 0.04
	97.73 ± 0.33
	93.92 ± 0.91
	98.49 ± 0.46
	99.10 ± 0.06



	AA
	71.12 ± 0.01
	91.78 ± 0.01
	95.83 ± 0.61
	90.40 ± 0.04
	86.49 ± 0.33
	91.01 ± 0.93
	96.58 ± 0.46
	98.90 ± 0.30



	Kappa
	76.66 ± 0.01
	90.45 ± 0.01
	95.16 ± 0.61
	90.27 ± 0.04
	97.41 ± 0.33
	93.06 ± 1.04
	98.28 ± 0.46
	98.98 ± 0.07
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Table 6. Classification results of different methods on the KSC dataset.
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	Class
	SVM
	3DCNN
	SSRN
	DFFN
	HybridSN
	Speformer
	SSFTT
	MAFEN





	1
	95.01 ± 0.01
	98.12 ± 0.34
	99.68 ± 0.35
	99.74 ± 0.21
	100 ± 0.00
	99.74 ± 0.06
	99.80 ± 0.25
	100 ± 0.00



	2
	85.84 ± 0.06
	77.53 ± 8.56
	98.54 ± 0.73
	99.27 ± 1.07
	97.35 ± 1.27
	98.36 ± 0.89
	100 ± 0.00
	100 ± 0.00



	3
	86.93 ± 0.04
	87.15 ± 4.09
	70.78 ± 32.36
	97.22 ± 2.26
	98.43 ± 1.66
	97.13 ± 2.05
	100 ± 0.00
	99.74 ± 0.35



	4
	50.66 ± 0.03
	80.11 ± 1.30
	82.91 ± 11.67
	83.96 ± 7.69
	95.51 ± 2.42
	70.84 ± 2.29
	91.37 ± 6.85
	98.68 ± 1.47



	5
	31.45 ± 0.19
	84.25 ± 6.46
	72.28 ± 34.09
	91.31 ± 0.94
	97.93 ± 1.57
	94.07 ± 2.81
	100 ± 0.00
	100 ± 0.00



	6
	52.75 ± 0.04
	87.63 ± 4.32
	77.57 ± 19.72
	75.92 ± 6.51
	98.64 ± 1.77
	92.23 ± 1.62
	99.51 ± 0.75
	100 ± 0.00



	7
	75.16 ± 0.16
	96.22 ± 4.05
	69.57 ± 36.19
	100 ± 0.00
	80.00 ± 8.52
	100 ± 0.00
	100 ± 0.00
	100 ± 0.00



	8
	89.28 ± 0.03
	85.83 ± 3.65
	99.48 ± 0.36
	99.43 ± 0.50
	100 ± 0.00
	99.95 ± 0.10
	100 ± 0.00
	100 ± 0.00



	9
	97.73 ± 0.01
	95.77 ± 0.90
	100 ± 0.00
	98.50 ± 0.63
	100 ± 0.00
	100 ± 0.00
	100 ± 0.00
	100 ± 0.00



	10
	94.51 ± 0.02
	93.43 ± 4.76
	99.78 ± 0.44
	99.89 ± 0.22
	99.07 ± 1.87
	99.67 ± 0.32
	100 ± 0.00
	100 ± 0.00



	11
	97.04 ± 0.01
	93.86 ± 2.54
	100 ± 0.00
	99.63 ± 0.27
	99.95 ± 0.11
	99.95 ± 0.11
	100 ± 0.00
	99.84 ± 0.32



	12
	88.30 ± 0.04
	95.74 ± 1.39
	99.25 ± 0.38
	99.38 ± 0.61
	100 ± 0.00
	93.55 ± 2.80
	99.51 ± 0.87
	100 ± 0.00



	13
	99.07 ± 0.01
	98.67 ± 1.07
	100 ± 0.00
	100 ± 0.00
	100 ± 0.00
	100 ± 0.00
	100 ± 0.00
	100 ± 0.00



	OA
	87.81 ± 0.01
	92.74 ± 1.42
	95.04 ± 3.31
	97.39 ± 0.62
	98.98 ± 0.91
	97.15 ± 0.40
	99.48 ± 0.43
	99.91 ± 0.09



	AA
	80.29 ± 0.01
	90.33 ± 1.46
	89.99 ± 7.71
	95.71 ± 0.99
	97.45 ± 3.23
	95.81 ± 0.50
	99.25 ± 0.64
	99.87 ± 0.14



	Kappa
	86.41 ± 0.01
	91.91 ± 1.58
	94.47 ± 3.70
	97.10 ± 0.69
	98.86 ± 1.02
	96.83 ± 0.45
	99.43 ± 0.48
	99.90 ± 0.10
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Table 7. Classification results of different methods on the Pavia University dataset.






Table 7. Classification results of different methods on the Pavia University dataset.





	Class
	SVM
	3DCNN
	SSRN
	DFFN
	HybridSN
	Speformer
	SSFTT
	MAFEN





	1
	94.65 ± 0.01
	98.75 ± 0.01
	95.04 ± 2.61
	99.36 ± 0.47
	97.33 ± 4.49
	93.59 ± 0.50
	97.58 ± 1.50
	99.29 ± 0.56



	2
	98.12 ± 0.01
	99.35 ± 0.01
	99.49 ± 0.59
	99.96 ± 0.03
	99.90 ± 0.05
	99.29 ± 0.16
	99.67 ± 0.08
	99.97 ± 0.02



	3
	76.84 ± 0.04
	91.83 ± 0.03
	86.31 ± 6.14
	97.89 ± 1.05
	98.57 ± 0.79
	87.65 ± 2.41
	90.27 ± 3.54
	91.68 ± 2.31



	4
	92.91 ± 0.03
	93.00 ± 0.02
	96.52 ± 0.85
	90.51 ± 3.52
	95.38 ± 1.03
	95.34 ± 0.32
	97.19 ± 1.14
	98.48 ± 0.64



	5
	99.30 ± 0.01
	98.57 ± 0.01
	98.74 ± 1.54
	96.88 ± 3.45
	98.57 ± 0.90
	99.97 ± 0.06
	99.91 ± 0.15
	100 ± 0.00



	6
	87.84 ± 0.02
	99.68 ± 0.01
	91.96 ± 4.58
	99.40 ± 0.45
	100 ± 0.00
	96.87 ± 0.45
	98.43 ± 1.15
	99.79 ± 0.27



	7
	85.92 ± 0.02
	99.70 ± 0.01
	85.44 ± 12.85
	99.18 ± 0.76
	59.94 ± 5.94
	83.16 ± 1.39
	97.72 ± 1.31
	98.60 ± 1.08



	8
	89.92 ± 0.01
	96.56 ± 0.02
	90.09 ± 5.72
	97.99 ± 1.72
	95.74 ± 3.04
	93.51 ± 0.53
	97.22 ± 0.94
	97.87 ± 0.63



	9
	99.76 ± 0.01
	93.65 ± 0.03
	98.48 ± 1.22
	78.24 ± 12.68
	94.04 ± 3.03
	98.74 ± 0.56
	97.91 ± 2.61
	99.41 ± 0.47



	OA
	93.94 ± 0.01
	98.09 ± 0.01
	95.76 ± 0.58
	98.25 ± 0.42
	97.35 ± 1.62
	96.28 ± 0.16
	98.26 ± 0.26
	99.09 ± 0.03



	AA
	91.69 ± 0.01
	96.79 ± 0.01
	93.56 ± 0.87
	95.49 ± 1.44
	93.28 ± 5.22
	94.24 ± 0.26
	97.32 ± 0.49
	98.34 ± 0.18



	Kappa
	91.93 ± 0.01
	97.47 ± 0.01
	94.37 ± 0.78
	97.68 ± 0.57
	96.48 ± 2.16
	95.07 ± 0.21
	97.69 ± 0.34
	98.80 ± 0.05
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Table 8. Classification results of different methods on the Salinas dataset.
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	Class
	SVM
	3DCNN
	SSRN
	DFFN
	HybridSN
	Speformer
	SSFTT
	MAFEN





	1
	99.35 ± 0.01
	99.96 ± 0.01
	99.64 ± 0.30
	97.98 ± 4.04
	99.94 ± 0.12
	99.68 ± 0.53
	99.99 ± 0.02
	100 ± 0.00



	2
	99.88 ± 0.01
	99.52 ± 0.01
	100 ± 0.00
	99.62 ± 0.22
	100 ± 0.00
	99.75 ± 0.23
	99.99 ± 0.01
	99.99 ± 0.02



	3
	99.12 ± 0.01
	98.37 ± 0.01
	99.99 ± 0.02
	99.99 ± 0.02
	100 ± 0.00
	98.41 ± 0.90
	99.97 ± 0.04
	100 ± 0.00



	4
	99.74 ± 0.01
	95.63 ± 0.02
	98.79 ± 0.91
	91.72 ± 8.36
	99.87 ± 0.12
	99.56 ± 0.25
	99.62 ± 0.20
	99.50 ± 0.35



	5
	98.11 ± 0.01
	99.11 ± 0.01
	99.69 ± 0.34
	99.85 ± 0.29
	99.71 ± 0.43
	99.41 ± 0.25
	99.68 ± 0.24
	99.73 ± 0.44



	6
	99.96 ± 0.01
	100 ± 0.00
	99.83 ± 0.33
	98.68 ± 1.88
	99.99 ± 0.01
	99.98 ± 0.02
	99.98 ± 0.04
	99.99 ± 0.02



	7
	99.85 ± 0.01
	99.94 ± 0.01
	99.85 ± 0.14
	99.83 ± 0.07
	99.95 ± 0.09
	99.37 ± 0.49
	99.95 ± 0.04
	100 ± 0.00



	8
	90.83 ± 0.01
	94.36 ± 0.02
	91.89 ± 6.05
	99.08 ± 1.71
	99.92 ± 0.12
	97.77 ± 0.34
	96.81 ± 1.11
	99.81 ± 0.15



	9
	99.75 ± 0.01
	99.74 ± 0.01
	100 ± 0.00
	100 ± 0.00
	100 ± 0.00
	99.18 ± 0.30
	99.97 ± 0.06
	100 ± 0.00



	10
	96.17 ± 0.01
	98.38 ± 0.01
	97.73 ± 1.11
	100 ± 0.00
	99.84 ± 0.16
	99.53 ± 0.24
	99.36 ± 0.35
	99.97 ± 0.05



	11
	96.12 ± 0.02
	98.01 ± 0.01
	99.52 ± 0.45
	99.71 ± 0.48
	100 ± 0.00
	99.15 ± 0.32
	99.86 ± 0.08
	100 ± 0.00



	12
	100 ± 0.00
	99.92 ± 0.01
	100 ± 0.00
	97.15 ± 1.66
	99.65 ± 0.70
	99.05 ± 0.90
	99.84 ± 0.32
	100 ± 0.00



	13
	98.88 ± 0.01
	99.52 ± 0.01
	99.73 ± 0.54
	97.16 ± 1.97
	39.29 ± 4.85
	98.90 ± 0.44
	98.81 ± 0.69
	99.91 ± 0.08



	14
	94.31 ± 0.02
	95.87 ± 0.01
	95.16 ± 3.96
	93.47 ± 6.03
	96.95 ± 5.82
	96.59 ± 1.77
	98.88 ± 0.16
	98.92 ± 0.38



	15
	69.37 ± 0.03
	87.70 ± 0.05
	87.48 ± 6.68
	97.57 ± 2.63
	97.10 ± 5.19
	95.53 ± 0.62
	97.83 ± 0.41
	99.43 ± 0.24



	16
	98.95 ± 0.01
	99.49 ± 0.01
	99.16 ± 0.38
	100 ± 0.00
	99.93 ± 0.14
	99.60 ± 0.28
	99.27 ± 0.19
	99.54 ± 0.26



	OA
	93.30 ± 0.01
	96.64 ± 0.01
	96.27 ± 0.54
	98.77 ± 0.69
	98.46 ± 1.19
	98.49 ± 0.12
	98.89 ± 0.28
	99.82 ± 0.06



	AA
	96.27 ± 0.01
	97.84 ± 0.01
	98.03 ± 0.28
	98.24 ± 0.85
	95.76 ± 2.91
	98.84 ± 0.21
	99.36 ± 0.13
	99.80 ± 0.04



	Kappa
	92.52 ± 0.01
	96.26 ± 0.01
	95.85 ± 0.59
	98.63 ± 0.77
	98.28 ± 1.33
	98.32 ± 0.13
	98.77 ± 0.31
	99.80 ± 0.07
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Table 9. Computational performance comparison of several comparison methods and the proposed method.
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Methods

	
Indian Pines

	
KSC

	
Pavia University

	
Salinas




	
Train. (s)

	
Test. (s)

	
Train. (s)

	
Test. (s)

	
Train. (s)

	
Test. (s)

	
Train. (s)

	
Test. (s)






	
SSRN

	
78.90

	
1.69

	
115.47

	
1.90

	
129.75

	
9.71

	
449.59

	
24.43




	
DFFN

	
65.56

	
1.82

	
37.79

	
1.10

	
83.54

	
8.26

	
112.91

	
11.71




	
HybridSN

	
73.85

	
2.02

	
40.54

	
1.02

	
91.93

	
9.21

	
115.28

	
12.37




	
Speformer

	
394.06

	
23.99

	
118.99

	
5.70

	
58.15

	
12.07

	
198.74

	
52.78




	
SSFTT

	
25.18

	
0.65

	
26.64

	
0.76

	
8.78

	
1.15

	
10.79

	
1.46




	
MAFEN

	
66.13

	
1.93

	
86.21

	
2.67

	
65.59

	
7.66

	
88.75

	
9.76
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