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Abstract: Feature matching is a fundamental task in the field of image processing, aimed at ensuring
correct correspondence between two sets of features. Putative matches constructed based on the
similarity of descriptors always contain a large number of false matches. To eliminate these false
matches, we propose a remote sensing image feature matching method called LMC (local motion
consistency), where local motion consistency refers to the property that adjacent correct matches
have the same motion. The core idea of LMC is to find neighborhoods with correct motion trends
and retain matches with the same motion. To achieve this, we design a local geometric constraint
using a homography matrix to represent local motion consistency. This constraint has projective
invariance and is applicable to various types of transformations. To avoid outliers affecting the
search for neighborhoods with correct motion, we introduce a resampling method to construct
neighborhoods. Moreover, we design a jump-out mechanism to exit the loop without searching all
possible cases, thereby reducing runtime. LMC can process over 1000 putative matches within 100 ms.
Experimental evaluations on diverse image datasets, including SUIRD, RS, and DTU, demonstrate
that LMC achieves a higher F-score and superior overall matching performance compared to state-of-
the-art methods.

Keywords: feature matching; mismatch removal; homography matrix; local motion consistency;
reprojection error

1. Introduction

Feature matching is one of the fundamental problems in the field of image process-
ing [1], aiming to establish reliable correspondences between image pairs for various types
of transformations. The matching performance of feature matching methods is crucial for
many tasks, such as 3D reconstruction [2,3], image registration and fusion [4–6], image
stitching [7,8], etc. These tasks have high requirements regarding the feature matching
methods in terms of robustness, accuracy, and efficiency.

The feature matching problem exhibits a combinatorial property [9]. For example,
matching N points from one set to M points in another set produces MN different matching
results, resulting in exponential time complexity. To address this problem, a mainstream
approach now is to use an indirect feature matching strategy with a two-stage process.
In the first stage, feature descriptor methods such as SIFT [10], SURF [11], and ORB [12] are
used to create a set of putative matches based on the similarity of local patch descriptors.
These methods greatly reduce the time complexity of feature matching problems. However,
the ambiguity of local descriptors leads to a significant number of false matches in the
set of putative matches. Thus, a geometric constraint is necessary in the second stage to
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distinguish between correct matches (i.e., inliers) and false matches (i.e., outliers) in the set
of putative matches.

The second stage, also known as mismatch removal, is one of the key challenges
faced by current indirect feature matching methods. To eliminate false matches, numerous
methods have been proposed. In the following, we categorize mismatch removal methods
into the following five types and provide a brief review.

1.1. Resampling-Based Methods

Random sample consensus (RANSAC) [13] is a classic resampling method used to
estimate a model. The main idea of RANSAC is to randomly select a small subset of data
to estimate model parameters, test the remaining data with the estimated model, and dis-
tinguish between data that fit the model and data that do not fit the model. RANSAC is
typically used in mismatch removal methods to estimate homography matrices. Many
improved RANSAC methods have been proposed, such as maximum likelihood estimator
sample consensus (MLESAC) [14], progressive sample consensus (PROSAC) [15], marginal-
izing sample consensus (MAGSAC++) [16], Graph-Cut RANSAC (GC-RANSAC) [17],
and others. The basic idea of PROSAC is to gradually increase the number of sampled
points according to a certain probability distribution to select more accurate estimated
parameters. MAGSAC++ proposes a σ-consensus method that uses the concept of marginal-
ization to avoid the need for manually setting the threshold in RANSAC. GC-RANSAC
selects inliers using graph-cutting methods. These resampling-based methods can be un-
derstood as globally modeling the transformations between images. However, when the
transformations between images are too complex, global modeling may not represent these
transformations well.

1.2. Non-Parametric Model-Based Methods

To handle more complex transformations between images, methods based on non-
parametric models have been proposed. Representative methods include the identifying
correspondence function (ICF) [18], coherent point drift (CPD) [19], and vector field con-
sensus (VFC) [20]. Among them, VFC assumes that the motion vectors of correct matches
have motion consistency, and the vector field composed of the motion vectors of correct
matches is smooth. VFC defines an energy function based on this and restores the vector
field to consistency, selecting the vectors consistent with the vector field as inliers. However,
the models defined by these methods are global and may not be suitable for local trans-
formations. Moreover, because no explicit model is established, these methods typically
require more computational resources and time.

1.3. Graph Matching-Based Methods

Most of the previous graph matching methods belonged to direct matching rather
than removing false matches by designing similarity constraints [21–23]. Graph matching
methods are formulated as quadratic assignment problems (QAP) [24], which are usually
computationally complex and not widely applicable. Recently, graph matching methods
have emerged to remove false matches, such as local graph structure consensus (LGSC) [25]
and motion-consistency-driven matching (MCDM) [26]. LGSC proposes the use of local
graph structure consistency to remove false matches based on the consistency of local
geometric information, but it does not have an advantage in runtime. MCDM introduces a
priori local motion consistency and proposes using a probabilistic graph model to remove
false matches, demonstrating good matching results. Using graph-based methods to
remove false matches is a relatively novel and feasible approach.

1.4. Learning-Based Methods

With the rise of deep learning, increasing numbers of learning-based methods have
been proposed for removing false matches. Earlier methods include learning a two-class
classifier for mismatch removal (LMR) [27] and learning to find good correspondence
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(LFGC) [28]. Recently, some novel methods have been proposed, such as SuperGlue [29],
a graph attention network (GANet) [30], and a context structure representation network
(CSRNet) [31]. SuperGlue proposes to generate reliable matches from local features using
graph neural networks. GANet builds on SuperGlue with a multi-head graph attention
mechanism and a sparse attention map, effectively making the model lightweight and
improving its performance. However, GANet is limited by its specific parameter model,
and its generality needs to be improved. CSRNet introduces a context-aware attention
mechanism and proposes a permutation-invariant structure representation learning module.
However, CSRNet ignores information from the source image and cannot meet the real-
time requirements of some high-speed tasks due to its own time complexity. Additionally,
there are learning-based methods that are directly applied to graph matching, such as
GLMNet [32] and GCAN [33]. The use of deep learning-based approaches has shown great
potential in research areas, such as mismatch removal and motion model estimation.

1.5. Local Geometric Constraint-Based Methods

Mismatch removal based on local geometric constraints is currently one of the most
popular methods. Unlike global models, local geometric constraint-based methods can
better handle situations where the scene undergoes local changes and can maintain perfor-
mance in feature matching tasks with different types of transformations without changing
their own model. Local geometric constraint-based methods can typically achieve high
accuracy or fast speed when processing with various types of image transformations.

Classical and representative methods include locality preserving matching (LPM) [34]
and grid-based motion statistics (GMS) [35]. These two methods are simple and robust,
but their constraint abilities still need to be improved. Subsequently, a series of meth-
ods have been proposed to enhance their constraint abilities. Local structure consistency
constraint (LSCC) [36] introduces the Pearson correlation coefficient to measure the con-
sistency of the structure of feature points’ neighborhoods. Multi-scale locality and rank
preservation (mTopKRP) [37] defines rank list distance measurements based on multi-scale
neighborhoods to more strictly and generally preserve local topological structure. The
multi-neighborhood guided Kendall rank correlation coefficient (mGKRCC) [38] proposes
that the neighborhood points of feature points have rank consistency and uses the Kendall
correlation coefficient to measure the error in the rank order of neighborhood points. Neigh-
borhood manifold representation consensus (NMRC) [39] proposes iterative filtering of
neighborhood construction to obtain more reliable neighborhood points and uses manifold
learning to preserve inliers with consistent neighborhood topology. These four meth-
ods seek the potential relationships between feature points and their neighboring points
through mathematical means, such as correlation, minimizing reconstruction errors, etc.

Apart from these methods, there are other types of methods that predefine a geometric
model representing the relationship between feature points and their neighboring points to
find inliers. Affine covariant detectors (such as MSER) are used to calculate the reprojection
error of two feature point neighborhoods in frame-based probabilistic local verification
(IPLV) [40], which proposes a probabilistic model that combines the reprojection error to
calculate the probability of feature points being inliers. Local affine preservation (LAP) [41]
removes some outliers in the neighborhood points based on the hypothesis that inliers
have motion consistency and defines the minimum topological unit (MTU) consisting of
the center feature point and its three neighbors. The consistency of neighborhood topology
is measured by the ratio of MTUs. IPLV and LAP propose geometric constraints with
affine invariance. Considering that affine invariance is a subset of projective invariance, we
use homography matrices with projective invariance to design local geometric constraints.
Such local geometric constraints have stronger constraint abilities.
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For remote sensing images, on the one hand, due to local distortions caused by
changes in terrain and imaging viewpoints, spatial relationships become complex [42],
and global geometric transformation models cannot represent image transformations well.
On the other hand, using complex non-rigid transformation models to represent image
transformations would increase the computational complexity of the method. Therefore, it
is necessary to design a mismatch removal method that has low time complexity and can
handle complex geometric transformations.

In this paper, we propose a remote sensing image feature matching method named
LMC (local motion consistency). Based on local motion consistency [34], correct matches
have the same motion as their neighboring inliers, while false matches do not. The core
idea of LMC is to find neighborhoods with correct motion trends and treat them as local
regions, retaining matches that have the same motion as the local region. We conducted
experiments on multiple public datasets, and the results show that LMC has linear time
complexity and can handle images with complex geometric transformations.

Our contributions can be summarized as follows:

1. We propose a local geometric constraint based on the homography matrix for feature
matching in remote sensing images. Compared to other methods based on local geo-
metric constraints, LMC has more strict constraints that aim to utilize the properties
of the homography matrix to represent local motion consistency, thereby retaining
correct matches. This constraint is projectively invariant and applicable to images
with various rigid or non-rigid deformations;

2. We design a jump-out mechanism that can exit the loop without searching through all
possible cases, thereby reducing the runtime. LMC can process more than 1000 puta-
tive matches within 100 ms;

3. To avoid outliers affecting the search for neighborhoods with correct motion, we
introduce a resampling method to construct neighborhoods.

In addition, our proposed method can provide prior knowledge about the homog-
raphy matrix representing local geometric transformations for subsequent tasks, such as
image registration.

The rest of this paper is organized as follows: In Section 2, we provide a detailed
description of the proposed LMC method. In Section 3, we compare our method with
several state-of-the-art methods on different types of datasets and present qualitative and
quantitative experimental evaluations, as well as a robustness analysis. Furthermore, we
discuss the impact of different neighborhood construction methods on the performance
of LMC. In Section 4, we provide a brief discussion. Finally, in Section 5, we present a
brief conclusion.

2. Materials and Methods

In this section, we propose a geometric constraint based on a homography matrix to
represent local motion consistency and employ this constraint to remove false matches. We
partition the images into many local regions based on the neighborhood of feature points,
represent local geometric transformation using a homography matrix, and calculate the
reprojection error of feature points to distinguish correct matches from incorrect ones. Ad-
ditionally, we use RANSAC to build neighborhoods to improve the reliability of constraints
and propose a jump-out mechanism to reduce computation time. The flowchart of our
proposed method is illustrated in Figure 1.
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Figure 1. The flowchart of the proposed LMC method.

2.1. Problem Formulation

After obtaining a pair of remote sensing images Ix and Iy, we use SIFT to obtain a
set of putative matching feature point pairs S = {(xi, yi)}N

i=1, where xi and yi ∈ R2×1

represent the 2D coordinate vectors of feature points in images Ix and Iy, respectively,
and N represents the total number of feature point pairs.

Due to the inevitable existence of many false matches in the set of putative matches
based on feature descriptors, our goal is to remove the false matches (outliers) and retain
as many correct matches (inliers) as possible in the given putative matches set S, to obtain
the optimal inlier set I∗.

We summarized two consensus points from multiple methods [20,25,26,34–41] for
removing false matches.

Consensus 1: Motion consistency. The vectors of correct matches (blue vectors in
Figure 2b) have similar motions overall, and adjacent vectors have consistent motions,
while the vectors of false matches (red vectors in Figure 2d) tend to exhibit random motion
across the entire image. We refer to the consistent motion between adjacent vectors of
correct matches as local motion consistency.

Consensus 2: Neighborhood topology stability. Real objects are subject to their physical
models, which causes the neighborhood topology of feature points to slightly change
after geometric transformation, but it is usually stable. The stability of the neighborhood
topology of feature points is usually manifested when both the feature point and the points
that make up the neighborhood are inliers, as shown in the yellow topology in Figure 2a.
However, when there are outliers among the neighborhood points, the neighborhood
topology usually lacks stability, as shown in the red topology in Figure 2c.

Therefore, we can design a local geometric constraint that uses the neighborhood
to measure the local motion consistency of the matches to determine whether a match is
correct. To this end, we formalize the problem of mismatch removal as follows:

I∗ = arg min
I

C(I ; S, λ), (1)

with the cost function C defined as follows:

C(I ; S, λ) = ∑
i∈I

Error(xi, yi) + λ(N − |I|), (2)

where I represents the set of inliers, |I| represents the cardinality of I , and Error(xi, yi)
represents the degree of motion consistency between the match (xi, yi) and its neighbor-
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hood. A larger value of Error(xi, yi) indicates greater inconsistency, and hence a higher
probability that (xi, yi) is a false match. The cost function C consists of two terms: the
first penalizes any matches with Error(xi, yi) > 0, while the second is used to retain more
inliers. Thus, to obtain the optimal solution of the cost function C, we aim to maximize
the number of inliers |I| while minimizing Error(xi, yi) as much as possible, with the
parameter λ used to balance these two terms. Next, we will introduce how to construct a
reliable neighborhood set U and design local geometric constraints to define Error(xi, yi).

(a) (b)

(c) (d)

Figure 2. Illustration of motion consistency and neighborhood topological stability. (a,c) are image
pairs Ix and Iy, where the blue lines connect the correctly matched feature points xi and yi. The yellow
lines in (a) represent the connections between feature points and neighboring points when all the
neighboring points are inliers. The red lines in (c) represent the connections between feature points
and neighboring points when there are outliers among the neighboring points. (b,d) are motion
vectors of matches, pointing from xi to yi. (b) is the motion field of correct match vectors, while (c) is
the motion field of false match vectors.

2.2. Building Neighborhoods Based on RANSAC

If we search for neighborhood points in the set of putative matches S, the neighborhood
points will inevitably be contaminated by outliers. Given that the two aforementioned
consensuses are based on the case where both feature points and neighborhood points are
inliers, in order to ensure the reliability of the results of the local geometric constraints, we
need to remove outliers from the neighborhood as much as possible. To this end, we use
RANSAC to construct a reliable set of neighborhood points.

RANSAC (random sample consensus) is a method based on resampling to estimate
model parameters. In this paper, RANSAC is used to estimate the homography matrix.
The homography matrix can map a point on one plane to a corresponding point on another
plane and is used to describe the mapping relationship between planes, including rotation,
translation, scaling, and projection. Assuming that (u, v) and (u′, v′) are points in the two
planes, their mapping relationship can be expressed asu′

v′

1

 = H

 u
vs.
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 1

 u
vs.
1

, (3)

where H represents the homography matrix, which can be solved using SVD or Gaussian
elimination. Because it has eight parameters, at least four pairs of points are required to
compute it.
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The steps to estimate the homography matrix using RANSAC are as follows: First,
a random sample of corresponding point pairs is selected from the set of matches S. Using
these point pairs, a homography matrix is computed. The homography matrix is then used
to project the remaining point pairs, and the reprojection error between the projected points
and their actual locations is computed. If the error is less than a predefined threshold α,
the corresponding point pair is considered an inlier. The process is repeated by resampling
until the stopping criteria are met. The homography matrix HRANSAC that can validate the
most inliers is selected as the optimal solution, and the validated inliers are regarded as the
reliable neighborhood point set U. As a global geometric transformation model, RANSAC
constrains the overall motion trend of the neighborhood point set U to be consistent with
the planar motion trend represented by HRANSAC, which ensures that U does not contain
some randomly distributed outliers. The threshold α controls the strength of the constraint,
with smaller α leading to stronger constraints.

2.3. Calculation of Reprojection Error Based on Homography Matrix

The complex non-rigid transformations in remote sensing images cannot be repre-
sented by a global geometric transformation model due to factors such as terrain changes,
imaging viewpoint changes, and local non-rigid geometric distortion [41]. However, global
complex geometric transformations can be approximated by many local simple geomet-
ric transformations, which is a common idea in image stitching and matching methods.
Considering that the homography matrix is a geometric model that can represent simple ge-
ometric transformations (such as affine and projection), we attempt to use the homography
matrix to represent local geometric transformations. Therefore, in this section, we introduce
the use of a homography matrix to calculate the reprojection error to measure the local
motion consistency between feature points and the minimum homography unit (MHU).

We search for the K nearest neighboring points of each feature point xi in the reliable
neighborhood point set U under the Euclidean distance and construct the neighborhood
N K

xi
. Similarly, we construct the neighborhood N K

yi
for feature point y. Because the neigh-

boring points are obtained by searching under the Euclidean distance, the points inN K
xi

and
N K

yi
may not correspond one-to-one in the putative set S. We need to extract the matched

points from N K
xi

and N K
yi

, generate a set of matched neighborhood point pairs Ri, and use
the points in Ri to compute the homography matrix. The expression for Ri is

Ri = {(xj, yj)|xj ∈ N K
xi

, yj ∈ N K
yi
}. (4)

The homography matrix H is a 3× 3 matrix with 8 degrees of freedom; thus, at least
4 pairs of feature points are required for its estimation. We need to select four distinct
pairs of feature points from Ri to construct the minimum homography unit (MHU) for
homography matrix computation, as follows:

Mi = C4
ki
=

ki!
4!× (ki − 4)!

, (5)

where ki represents the cardinality of Ri, i.e., ki = |Ri|. Mi represents the number of possible
combinations of neighborhood points in Ri used to calculate the homography matrix. All
neighborhood points in Ri can be found by their indices in the putative set S, and we store
these indices in the index matrix q ∈ RMi×4. Thus, qmn(m ≤ Mi, n ≤ 4) denotes the index
of the n-th neighborhood point in the m-th combination in S.

In Figure 3, {(xqm1 , yqm1), (xqm2 , yqm2), (xqm3 , yqm3), (xqm4 , yqm4)} represents the m-th
MHU. xqm1 , xqm2 , xqm3 , and xqm4 denote the neighborhood points of xi in the m-th com-
bination, and the quadrilateral formed by these four points represents the neighborhood
of xi. A dashed line connects these four points and xi to create a neighborhood topology.
Unlabeled points represent other neighborhood points of xi. yqm1 , yqm2 , yqm3 , and yqm4

denote the matching points of xi’s neighborhood points in yi’s neighborhood, where yi
is the putative matching point of xi, ŷi,m is the point where xi is projected onto the image
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Iy according to the geometric transformation of the neighborhood, and em represents the
reprojection error.

Figure 3. MHU structure diagram.

First, it is necessary to compute the homography matrix that represents the geometric
transformation of the neighborhood. Thus, we have[

yqmn

1

]
= Hi,m

[
xqmn

1

]
, (6)

where Hi,m represents the homography matrix calculated based on the m-th MHU of
match (xi, yi), which can be solved by Gaussian elimination. (xqmn , 1)T and (yqmn , 1)T

(m ≤ Mi, n ≤ 4), respectively, represent the homogeneous 3D coordinates of the n-th
neighborhood point in the m-th MHU of xi and yi. Based on Hi,m, the projection of xi onto
image Iy can be calculated as follows:[

ŷi,m
1

]
= Hi,m

[
xi
1

]
, (7)

where ŷi, m represents the mapping of feature point xi to the image Iy obtained using the
homography matrix Hi,m. Hi,m represents the motion trend of the MHU. According to
local motion consistency, if (xi, yi) is a correct match, the motion trend of (xi, yi) should be
consistent with that of the MHU, i.e., the distance between yi and ŷi,m should be small.

Therefore, the Euclidean distance between yi and ŷi,m is used to measure the motion
consistency between (xi, yi) and the m-th MHU:

em(xi, yi) = ‖ŷi,m − yi‖2, (8)

where em(xi, yi) represents the reprojection error calculated by xi and yi using Hi,m. A smaller
value of em(xi, yi) indicates a higher level of motion consistency between (xi, yi) and the
m-th MHU, indicating a higher probability of (xi, yi) being the correct match.

It should be noted that, in theory, local motion consistency is only valid when the
feature point and its neighborhood are all inliers. Therefore, if one em(xi, yi) value is very
small, we can infer that (xi, yi) is likely to be a correct match. However, the MHU may be
contaminated by outliers in its neighborhood, so we cannot directly judge the correctness
of (xi, yi) if one em(xi, yi) value is very large. To avoid contaminated MHUs affecting the
correct calculation of MHUs, we should avoid integrating the results of multiple MHUs.
Therefore, we choose to use only the minimum em(xi, yi) to represent the probability that
(xi, yi) is the correct match.
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The local geometric constraints in the cost function (1) can be expressed as

Error(xi, yi) = min em(xi, yi), m = 1, . . . , Mi. (9)

2.4. Jump-Out Mechanism

Because the local geometric constraint function Error(xi, yi) needs to calculate the
minimum em(xi, yi) value every time to serve as its output, this can result in significant
computation time. Therefore, in this section, we design a jump-out mechanism to shorten
the processing time while minimizing the impact on method accuracy.

We define a binary variable p ∈ RN×1 to represent the matching relationship, where
pi = 1 indicates that (xi, yi) is an inlier, and pi = 0 indicates that (xi, yi) is an outlier.
By substituting the binary variable p into the cost function, Equation (2) becomes

C(p; S, λ) =
N

∑
i=1

piError(xi, yi) + λ(N −
N

∑
i=1

pi). (10)

We can rewrite the equation by combining terms that are related to pi as follows:

C(p; S, λ) =
N

∑
i=1

pi(Error(xi, yi)− λ) + λN. (11)

The second term in the equation is a constant. To minimize the cost function, we
should retain as many negative terms as possible and eliminate positive terms in the first
term. Therefore, we define pi as

pi =

{
1, Error(xi, yi) ≤ λ

0, Error(xi, yi) > λ
, i = 1, . . . , N. (12)

Based on local motion consistency, only an MHU that consists entirely of inliers can be
used to assess the match, and its assessment result will be reliable. We refer to this kind of
MHU as a reliable MHU. The number of reliable MHUs for a match may range from 0 to Mi,
depending on the inlier ratio in the neighborhood. When there are more than four inliers
in the neighborhood, the number of reliable MHUs will exceed 1 and will be randomly
distributed among the Mi MHUs. In other words, if a match is correct in this case, there
may be multiple reliable MHUs with sufficiently small reprojection errors. Therefore, we
set a threshold τ, and if there exists an m such that em(xi, yi) ≤ τ, then the mth MHU is
reliable, and the match (xi, yi) is locally motion consistent with this MHU, indicating that
it is a correct match. As a result, we redefine pi as

pi =

{
1, if ∃m ≤ Mi s.t. em(xi, yi) ≤ τ

0, otherwise
. (13)

Therefore, the optimal inlier set I∗ can be represented as

I∗ = {(xi, yi)|pi = 1, i = 1, 2, . . . , N}. (14)

If there exists an m that satisfies the conditions of Equation (13), the method can
stop calculating Error(xi, yi) and jump out of the current loop early to calculate the next
Error(xi+1, yi+1). It can be seen that, theoretically, the loop can only be prematurely exited
when the match is correct. Therefore, as the inlier rate of the putative matching set decreases,
the ability of this mechanism to shorten the running time will diminish. When the value of
τ is the same as λ, the mechanism can significantly reduce the method’s running time with
almost no impact on its accuracy. The feasibility of this mechanism will be demonstrated in
the ablation study section.
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2.5. Time Complexity

As the method proposed in this paper mainly defines a geometric constraint based
on a homography matrix to represent local motion consistency, we have abbreviated the
proposed method as LMC and summarize it in Algorithm 1. Given a putative match set S
with N point pairs, the time complexity for building a reliable neighborhood set U using
RANSAC is O(iN), where i is the number of iterations for RANSAC. Using a K-D tree
to search for the K nearest neighbors of each feature point in S has a time complexity
close to O((K + N) log N). The time complexity for computing the reprojection error of
neighborhood homography is at most O(MN), where M is calculated from Equation (5).
The total time complexity for the proposed LMC is at most O(iN + (K + N) log N + MN).
When the iteration count i and neighborhood size K are strictly controlled, the total time
complexity can be simplified to O(N log N), as i, M, and K are constants and are smaller
than N. The proposed method has linear time complexity and is therefore suitable for
handling real-world tasks.

Algorithm 1 The LMC Algorithm.

Input: Putative set S = {(xi, yi)}N
i=1, parameters α, K, τ

Output: Inlier set I∗
1: Initialize p = zeros(N)
2: HRANSAC, U = RANSAC(S, α)
3: Construct neighborhoods N K

xi
and N K

yi
for xi and yi, respectively, based on U.

4: for i = 1:N do
5: Construct Ri based on Equation (4).
6: Calculate Mi based on Equation (5).
7: for m = 1:Mi do
8: Calculate em(xi, yi) based on Equations (6)–(8).
9: if em(xi, yi) ≤ τ then

10: pi = 1
11: break
12: end if
13: end for
14: end for
15: Calculate I∗ based on Equation (14).

It should be noted that there may be one-to-many or many-to-one situations (i.e.,
xi = xj but yi 6= yj, or xi 6= xj but yi = yj) in the putative match set S obtained using
descriptor-based methods (such as SIFT). Therefore, after computing the reprojection
error, we check whether the neighboring points are duplicates. If duplicates are found,
the calculation result is discarded.

3. Experimental Results

In this section, we compare our proposed method LMC with several existing advanced
methods, including LPM [34], RANSAC [13], mTopKRP [37], NMRC [39], and LSCC [36].
The performance will be evaluated based on the following metrics: recall (R), precision (P),
F-score (F), and runtime. The performance metrics are defined as follows:

R =
TP

TP + FN
, P =

TP
TP + FP

, F =
2× P× R

P + R
, (15)

where true positive (TP) represents the inliers that are correctly identified as inliers, false
positive (FP) represents the outliers that are incorrectly identified as inliers, false negative
(FN) represents the inliers that are incorrectly identified as outliers, and true negative (TN)
represents the outliers that are correctly identified as outliers. Recall represents the ratio of
correctly identified inliers to the total number of inliers in the sample. Precision represents
the ratio of correctly identified inliers to the total number of identified inliers. F-score is the
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harmonic mean of recall and precision. By observing the F-score, the matching accuracy of
the method can be comprehensively evaluated.

For the compared methods, LPM is implemented through its Python source code.
RANSAC is implemented through the findHomography() function in Opencv4.6.0. In the
findHomography() function, RANSAC dynamically adjusts the size of the minimum subset
and adapts the threshold according to the distribution of the current data. Additionally,
RANSAC uses a method called Sampson distance to calculate errors, which can handle
some noise distributions different from Gaussian. RANSAC is also GPU-accelerated.
In fact, RANSAC implemented through the findHomography() function has undergone
many improvements and differs significantly from the initial version of RANSAC [13].
However, for better naming consistency in subsequent discussions, we still refer to it as
RANSAC. For mTopKRP, we modified its Matlab source code into Python source code
and implemented it. The Python source code for NMRC and LSCC was self-reproduced
based on the respective papers. The default parameters were used in both methods for
the experiments. All experiments were conducted on a desktop computer with an Intel(R)
Core(TM) i7-10700 CPU with a clock speed of 2.90GHz, 16GB of RAM, Python 3.9, Opencv
4.6.0, and PyCharm 2021.3.2 (Community Edition).

3.1. Datasets

To evaluate the matching performance of the proposed method, we selected five
datasets: SUIRD, HPatches [43], RS [1], DTU [44], and Retina [45]:

1. SUIRD: This dataset contains 60 pairs of low-altitude remote sensing images cap-
tured by small drones, covering natural landscapes and urban streets. The geometric
transformations between image pairs are caused by viewpoint changes during drone
shooting, resulting in a low overlap rate, non-rigid image deformation, and extreme
viewpoint changes. The dataset is divided into five groups according to the types of
drone viewpoint changes: horizontal rotation (termed Horizontal), vertical rotation
(termed Vertical), scaling (termed Scaling), mixed viewpoint changes (termed Mix-
ture), and extreme viewpoint changes (termed Extreme). To better demonstrate the
experimental data, we integrated horizontal rotation, vertical rotation, and scaling
into simple rotation and scaling (termed R&S) in the dataset;

2. HPatches: This dataset consists of images selected from multiple datasets such as
VGG, DTU, and AMOS and is used to evaluate the matching performance of matching
methods on common images. The dataset contains 116 sets of image sequences, with
6 images in each set. In each image sequence, the first image is matched with the
remaining five images. The images involve variations in rotation, scaling, extreme
viewpoint changes, lighting changes, and image compression. The dataset is divided
into two groups based on the types of image variations, viewpoint changes (termed
HPatches-v), and lighting changes (termed HPatches-i);

3. RS: This dataset consists of four different types of remote sensing image datasets,
including SAR, CIAP, UAV, and PAN. The image pairs of SAR were captured by
synthetic aperture radar and drones, totaling 18 pairs. The images of CIAP were
corrected, but with a small overlap area, totaling 57 pairs. The images of UAV were
captured by drones with projection distortion, totaling 35 pairs. The images of PAN
were captured at different times, with projection distortion, totaling 18 pairs;

4. DTU: The dataset consists of 131 pairs of images with large viewpoint changes. Due
to the presence of large viewpoint changes, there are complex non-rigid deformations
between image pairs;

5. Retina: This dataset consists of 70 pairs of multimodal medical retinal images, which
exhibit non-rigid deformations between the image pairs.

SUIRD consists of low-altitude remote sensing images, while DTU was captured from
a closer distance, resulting in a higher degree of non-rigid transformation compared to
SUIRD, despite both datasets having large-angle viewpoint changes. The main matching
objects in HPatches are planar images, but there are image pairs with extremely low inlier



Remote Sens. 2023, 15, 3379 12 of 22

rates in the dataset. RS is a mixed dataset of remote sensing images that can provide
a more comprehensive evaluation of the performance of matching methods for remote
sensing images. Retina can further evaluate the matching performance of methods on more
complex non-rigid transformation images.

These datasets have an average inlier rate of no more than 60%, which poses a chal-
lenge for mismatch removal methods. The ground truth for SUIRD, RS, DTU, and Retina
was manually annotated. The ground truth for HPatches was represented by homogra-
phy matrices, with an error threshold set to 5 pixels, and the putative matches sets were
established by SIFT.

3.2. Parameter Settings and Ablation Study

The initial parameters of LMC proposed in this paper include the number of neighbors
K, the threshold τ for local motion consistency, and the error threshold α for RANSAC.
To test the impact of initial parameters on the performance of LMC, we chose the SUIRD
dataset as the test set. Figure 4 shows the curves of the recall (R), precision (P), F-score
Fscore(F), and runtime of LMC as the initial parameters change.

Figure 4. Change curve of algorithm performance under different parameter settings and abla-
tion study.

Theoretically, the parameter K should not be too large or too small. Based on the
motion consistency, inliers typically only have motion consistency with their neighboring
inliers, while for farther inliers, they only have similar motion trends. If the K value is
too large, it means that the neighborhood of the feature points is large, which reduces the
reliability of judging local motion consistency, and the calculation time increases signifi-
cantly due to the increase in neighboring points. Similarly, if the K value is too small, there
may not be enough inliers in the neighborhood to construct the correct MHU, leading to a
reduction in the reliability of judging local motion consistency.

As for the τ value, it should be noted that the LMC matching accuracy indicators
recall, precision, and F-score only vary in the second decimal place, which indicates that
the influence of the τ value on LMC matching accuracy is slight and can distinguish most
inliers from outliers. One of the reasons for the change in accuracy indicators is that there
are a few outlier positions that are very close to the actual corresponding positions of feature
points, which makes LMC unable to distinguish these outliers well within a certain error
threshold. Not all such outliers can be distinguished, which depends on the randomness
of the outliers and the type of geometric transformation of the neighborhood. Therefore,
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blindly reducing the τ value will remove some inliers while removing these outliers, and it
will also calculate more permutations and combinations, consuming more time.

As for the value of α, it should be noted that LMC performance indicators only change
in the third decimal place, so although the curve seems to fluctuate greatly, the impact of α on
LMC performance is very slight. The fluctuation in the indicators occurs because RANSAC
is a resampling method with certain randomness, and the change in the neighborhood point
set has a slight impact on LMC performance. The change in runtime is because the value of
α will change the runtime of RANSAC and then change the overall runtime of LMC.

As seen from the above analysis, parameters K and α are usually fixed and only the
value of τ is adjusted to balance recall, precision, and runtime. In order to demonstrate the
best performance of LMC in the dataset, we set the initial parameter values to K = 8, τ = 8,
and α = 3.4.

We divided LMC into three modules: building a reliable neighborhood set using
RANSAC, computing the reprojection error using a homography matrix, and using a
jump-out mechanism to shorten the runtime. To confirm the effectiveness of these modules,
we designed four versions of LMC (Model_2, Model_12, Model_23, and Model_123) for the
ablation experiments. The results of these experiments are shown in Figure 4.

The meaning of each version of LMC is as follows:

• Model_2: Neither RANSAC nor a jump-out mechanism were used.
• Model_12: Used RANSAC but did not use a jump-out mechanism.
• Model_23: Used a jump-out mechanism but did not use RANSAC.
• Model_123: Both RANSAC and a jump-out mechanism were used.

In this experiment, we set λ = τ. From the ablation study in Figure 4, it can be seen
that constructing a reliable neighborhood set can effectively improve the matching accuracy
of LMC, while the jump-out mechanism can effectively reduce the runtime of LMC.

3.3. Qualitative Analysis

To intuitively understand the matching performance of LMC, we selected 12 represen-
tative image pairs from the SUIRD, HPatches, RS, DTU, and Retina datasets to show the
matching results, as shown in Figure 5.

Figure 5. LMC matching results on 12 image pairs. From top to bottom, the first column shows SUIRD
(Horizontal), SUIRD (Vertical), SUIRD (Scaling), and HPatches-i. The second column shows SUIRD
(Extreme), SUIRD (Mixture), DTU, and RS (UAV). The third column shows RS (SAR), RS (CIAP), Retina,
and RS (PAN). The matching results are presented in the form of image pair matching visualization and
motion field of match vectors. True positives are shown in blue, false positives in red, false negatives
in green, and true negatives in black. The yellow lines indicate the connections between true positive
feature points and their neighboring points. The purple lines indicate the connections between false
positive feature points and their neighboring points. To demonstrate the results, only 100 randomly
selected matches are displayed, and true negative matches are not shown in the image pairs.
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It can be seen that LMC can remove most of the false matches for various types of
image transformations. The matching results shown in Figure 5 are satisfactory, but there
are still a small number of false matches due to four reasons, which we analyze as follows:
Firstly, as mentioned earlier, the position of outliers may be very close to the actual corre-
sponding position of the feature points, making it difficult for LMC to distinguish between
them. Secondly, the distance between a feature point and the quadrilateral formed by its
neighboring points may be so far that, strictly speaking, the quadrilateral cannot be consid-
ered as the neighborhood of the feature point, leading to LMC misjudgment. Thirdly, there
may be cases where a feature point is an outlier and there are outliers in its neighborhood,
but the feature point has a small reprojection error calculated based on these neighborhood
points, which is a rare event caused by the randomness of the outliers. Fourthly, a feature
point may be very close to or even coincide with a certain neighboring point, making the
reprojection error very small and causing LMC misjudgment. These cases may occur in
combination. Nevertheless, the LMC proposed by us shows excellent matching results in
the SUIRD, HPatches, RS, DTU, and Retina datasets, and the experimental results show
that LMC can handle various types of image feature matching.

3.4. Quantitative Analysis

To evaluate the matching performance of the LMC method, we divided the SUIRD
dataset into three subsets, Extreme, Mixture, and R&S, and compared it quantitatively
with five advanced feature matching methods (LPM [34], RANSAC [13], mTopKRP [37],
NMRC [39], and LSCC [36]). We compared these six methods in terms of four performance
metrics (recall, precision, F-score, and runtime), as shown in Table 1 and Figure 6.

Table 1. Average precision (AP), recall (AR), F-score (AF), and running time (ART) of all algorithms
on three datasets (the red fonts are the maximum values, the blue fonts are the submaximum values).

Method LPM mTopKRP RANSAC NMRC LSCC LMC (Ours)

Extreme

AR (%) 94.71 94.80 95.02 98.53 80.96 98.74
AP (%) 95.41 94.69 99.97 98.03 98.11 99.25
AF (%) 95.03 94.67 96.84 98.27 87.13 98.97

ART (ms) 14.04 860.95 5.88 956.04 442.66 81.45

Mixture

AR (%) 95.38 96.16 97.07 99.12 84.81 99.56
AP (%) 96.89 96.48 99.97 98.92 98.84 99.27
AF (%) 96.05 96.31 98.18 99.02 88.94 99.41

ART (ms) 18.62 1088.45 6.87 1281.97 727.71 107.92

R&S

AR (%) 96.18 96.32 96.16 98.99 84.38 99.12
AP (%) 96.43 96.02 99.98 98.42 98.38 99.26
AF (%) 96.28 96.12 97.64 98.70 89.67 99.17

ART (ms) 13.63 851.73 4.41 949.24 415.00 83.54

From Table 1 and Figure 6, it can be seen that the recall and F-score of the LMC method
rank first among all six methods on all three datasets, while its precision ranks second,
being slightly lower than that of RANSAC. The running time of LMC ranks third. Overall,
LMC outperforms the other five advanced methods in terms of matching performance.
RANSAC ranks first in precision and runtime, indicating that RANSAC can maximize the
inlier ratio of the output results on the SUIRD dataset. However, RANSAC is based on
a global geometric transformation model. Although the non-rigid transformations in the
SUIRD images are small, there may still be some inliers that do not conform to the global
geometric transformation model. Therefore, while ensuring precision, RANSAC always
misses some inliers, leading to its third ranking in recall.

LSCC, LPM, mTopKRP, NMRC, and LMC are all based on local geometric constraints.
LSCC’s precision ranks fourth, while its recall is the lowest, indicating that Pearson
correlation-based methods cannot effectively capture the correlation between neighboring
and feature points. LPM’s overall performance is lower than RANSAC’s because LPM is
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better suited for handling non-rigid transformation scenarios, but the local distortion in the
SUIRD dataset is not significant, and LPM did not showcase its advantages. The matching
accuracy of mTopKRP and LPM is similar, indicating that their constraint abilities are
similar, but LPM’s runtime is significantly lower than mTopKRP. NMRC’s neighborhood
manifold-based approach better captures the relationship between neighboring and feature
points than LSCC and mTopKRP, with a constraint ability closest to LMC but still slightly
lower. We believe that local geometric constraints based on homography matrices have
stricter constraint abilities due to their projective invariance. Overall, the LMC method
effectively balances recall and precision and has an acceptable runtime, demonstrating
superior performance over the other five advanced methods in three different viewpoint
change types of datasets.

Figure 6. The matching performance of six methods, LPM, mTopKRP, RANSAC, NMRC, LSCC,
and LMC, is quantitatively compared on the Extreme, Mixture, and R&S subsets of the SUIRD dataset.
The experimental data in Extreme, Mixture, and R&S are shown from top to bottom, and the dataset’s
average inlier rate, recall, precision, F-score, and runtime are shown from left to right. Each curve in
the figure represents a cumulative distribution. For example, a point (x, y) on the LMC curve in the
recall plot indicates that the proportion of image pairs with recall less than y for LMC in that dataset
is x. All data in the legends are average values, with red indicating the top ranked, blue indicating
second ranked, and green indicating third ranked.

3.5. Robustness Analysis

To investigate the matching performance of LMC in image pairs with different inlier
ratios, we processed each sequence of image pairs in the HPatches-i dataset and compared
the matching performance of LMC with five other state-of-the-art methods. We sorted each
group of image pairs by deformation level, as shown in Figure 7. We matched the first
image in each row with the remaining five images, resulting in five sets of image pairs.
The degree of deformation gradually increases from left to right, and the inlier ratio in the
putative sets decreases. We divided each column of image pairs into a group, resulting in
five groups. Figure 8 presents a box plot of the inlier ratio and F-score of these five groups
and the six methods.
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Figure 7. A schematic diagram of sorting two image sequences in HPatches-i according to the degree
of deformation. From left to right, other images have increasing degrees of deformation relative to
the first column image.

Figure 8. Robustness analysis of different methods with an increasing degree of deformation in the
HPatches-i dataset.

The reason for the appearance of outliers with inlier ratios and F-scores close to 0 in
the figure is that there are a few image sequences in HPatches in which the inlier ratio of all
image pairs is close to 0, resulting in a sharp drop in method performance and becoming
an outlier. As shown in Figure 8, as the inlier ratio decreases, the matching performance of
all methods decreases. However, compared with the other five methods, the performance
of LMC declines more slowly. Therefore, the stability of LMC with respect to changes in
the inlier ratio is superior to that of the other five methods.

3.6. Impact of Neighborhood Construction Methods on Performance

To investigate the impact of different neighborhood construction methods on the per-
formance of the method, we used RANSAC and LPM to construct the neighborhood sepa-
rately. To distinguish these two methods, we named them LMC_RANSAC and LMC_LPM,
respectively. We compared these two methods with five other advanced methods on differ-
ent types of datasets, including DTU, Retina, RS, HPatches, and SUIRD. When a method
could not process a particular image pair, we set its recall, precision, and F-score to 0 and
set the runtime to 1000 ms as a penalty. The experimental results are shown in Table 2 and
Figure 9.

Based on Table 2, it can be observed that LMC_LPM achieves the highest recall and F-
score on the DTU and Retina datasets, while ranking third in terms of running time, which is
acceptable. However, LMC_LPM ranks third in terms of precision. RANSAC performs best



Remote Sens. 2023, 15, 3379 17 of 22

in precision as it retains global matches with the most consistent motion trends, ensuring
that the retained matches are inliers to a greater extent. However, due to varying degrees of
non-rigid deformations in the DTU, Retina, and RS datasets, there are inliers in the matches
that deviate from the global motion trends. RANSAC fails to preserve these inliers, resulting
in a significant decrease in recall compared to precision on these three datasets. Benefiting
from the use of RANSAC as the neighborhood construction method, LMC_RANSAC
achieves the second highest precision across all five datasets. For the RS dataset, LMC_LPM
ranks second in F-score, while recall and precision rank third. Nevertheless, even when
LMC_LPM’s F-score is only 0.01% lower than that of NMRC, its running time is only 65%
of NMRC’s. On the HPatches dataset, LMC_RANSAC ranks first in F-score and second in
recall and precision. However, due to the low inlier rate in the HPatches dataset, all seven
methods experience varying degrees of performance degradation. Examining the data
in the fourth row of Figure 9, despite having the most image pairs that LMC_RANSAC
cannot handle, it still demonstrates better matching performance for the pairs it can handle.
Additionally, the average running time of LMC_RANSAC and LMC_LPM increases due to
the penalty term, but for the image pairs that can be processed, their running time remains
around 100 ms. On the SUIRD dataset, LMC_RANSAC achieves the highest F-score and
recall, while ranking second in precision and third in running time. In summary, within an
acceptable range of running time, LMC_LPM demonstrates the best overall matching
performance on the DTU, Retina, and RS datasets, while LMC_RANSAC exhibits the best
overall matching performance on the HPatches and SUIRD datasets.

Table 2. Average precision (AP), recall (AR), F-score (AF), and running time (ART) of all algorithms
on five datasets (the red fonts are the maximum values, the blue fonts are the submaximum values).

Method LPM mTopKRP RANSAC NMRC LSCC LMC_RANSAC (Ours) LMC_LPM (Ours)

DTU

AR (%) 95.05 95.57 44.07 95.78 88.73 67.48 96.19
AP (%) 95.33 91.71 97.12 93.60 95.16 96.49 96.03
AF (%) 95.10 93.21 58.15 94.59 91.64 78.21 96.07

ART (ms) 10.46 650.22 33.84 739.61 451.22 326.85 95.34

Retina

AR (%) 93.70 91.85 44.98 92.08 75.90 86.24 93.92
AP (%) 83.10 88.27 98.05 91.54 93.03 89.59 91.06
AF (%) 87.61 89.31 60.69 91.55 82.85 87.72 92.24

ART (ms) 3.25 129.16 34.30 133.94 36.44 123.96 17.47

RS

AR (%) 98.82 99.25 76.87 99.22 77.52 93.48 99.10
AP (%) 98.11 99.08 99.53 99.15 92.96 99.50 99.22
AF (%) 98.40 99.15 84.74 99.17 82.25 96.06 99.16

ART (ms) 11.98 129.16 15.64 133.94 36.44 123.96 86.78

HPatches

AR (%) 47.45 71.05 71.50 75.20 28.47 73.74 58.91
AP (%) 63.51 68.12 78.86 70.45 43.32 74.14 63.77
AF (%) 47.57 66.39 72.79 71.21 29.70 73.37 58.57

ART (ms) 12.74 406.46 26.29 351.31 111.49 289.61 207.69

SUIRD

AR (%) 96.40 96.67 96.25 99.12 85.46 99.29 98.06
AP (%) 96.73 96.48 99.98 98.60 98.57 99.28 98.03
AF (%) 96.53 96.54 97.79 98.86 90.36 99.27 97.92

ART (ms) 15.61 964.49 4.64 969.60 533.99 89.51 90.70

For neighborhood construction methods, LPM is better suited for handling non-rigid
transformation images with complex imaging conditions, such as multimodality, noise
interference, and image distortion (such as a wide angle). RANSAC is more suitable
for handling relatively simple cases. However, by observing Figure 9, when penalty
terms appear in the data of LMC_RANSAC and LMC_LPM, the recall and precision of
their neighborhood construction methods always have very low values. Compared with
other methods, LMC has stricter requirements for the neighborhood’s inlier rate and the
number of putative matches. If the neighborhood’s inlier rate is insufficient, it will cause
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LMC’s runtime to increase and even reduce the reliability of local geometric constraints in
estimating local motion consistency. If the number of putative matches is insufficient, it
will cause the neighborhood to be too large, thereby reducing the accuracy of the method.

Figure 9. Seven methods, LPM, mTopKRP, RANSAC, NMRC, LSCC, LMC_RANSAC, and LMC_LPM,
are quantitatively compared for their matching performance in five datasets. The experimental data
from the DTU, Retina, RS, HPatches, and SUIRD datasets are shown from top to bottom, and from left
to right, the data represent the average inlier rate, recall, precision, F-score, and runtime, respectively.
Each curve in the graph represents the cumulative distribution. The data shown in all legends
represent the average values, with red representing the top ranking, blue representing the second
ranking, and green representing the third ranking. When a method is unable to handle image pairs,
its recall, precision, and F-score are set to 0 as a penalty, and its runtime is set to 1000 ms.

In general, the experimental data indicate that LMC_LPM is suitable for handling non-
rigid transformation images with complex imaging situations and unknown types of image
changes. LMC_RANSAC, on the other hand, is suitable for handling relatively simple image
transformations. Both algorithms have demonstrated superior matching performance in
their respective applicable datasets compared to the current five advanced methods.
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4. Discussion

In Section 3.3, we visualized the feature matching performance of LMC in multiple
datasets and discussed the reasons for the errors in LMC based on the visualization results,
providing ideas for improving LMC. In Section 3.4, we conducted experiments on multiple
datasets with various viewpoints, comparing LMC with five other advanced methods
and providing a brief analysis of each method. In Section 3.5, we conducted a robustness
analysis, which shows that LMC has better robustness to changes in the inlier ratio than
other methods but still fails when the inlier ratio is too low. In Section 3.6, we discussed the
impact of neighborhood construction methods on LMC’s matching performance. The ex-
perimental results show that LMC_LPM and LMC_RANSAC had the best comprehensive
matching performance on their respective applicable geometric transformation datasets,
with an average runtime of less than 100 ms.

Compared to other methods based on local geometric constraints, LMC uses more
strict geometric constraints, which enables it to handle cases with more complex geometric
transformations. Therefore, LMC has a wider range of applicability than methods such
as RANSAC. In addition to its good feature matching performance in the field of remote
sensing images, our proposed method also shows promising potential in other image
processing fields, such as feature matching in multimodal medical images.

However, LMC also has strict requirements for the inlier ratio of the neighborhood.
If the feature points are too sparse, it may lead to abnormal neighborhood construction,
which may in turn reduce the matching performance of LMC. In addition, the runtime
of LMC increases as the inlier ratio of the neighborhood decreases. This is because the
jump-out mechanism of LMC assumes that there may exist multiple reliable MHUs in the
neighborhood. When the inlier ratio of the neighborhood is too low, the number of reliable
MHUs in the neighborhood will also decrease, which may degrade or even invalidate the
performance of the jump-out mechanism.

Overall, LMC has two limitations. Firstly, LMC heavily relies on the initialization
of neighborhoods, making it unable to handle images with very sparse features, such as
water surfaces, skies, and white walls. Secondly, LMC is based on the assumption that
local regions can be approximated as planes. When the geometric transformations in
the image become excessively complex, leading to local regions with intricate non-rigid
geometric transformations, LMC’s performance is affected. Considering these limitations,
we propose two directions for improvement. To address the first limitation, we can explore
designing new feature point detection methods that can detect more features in sparse
images. Additionally, we can work on designing faster and more versatile neighborhood
construction methods to ensure robust neighborhood initialization. Regarding the second
limitation, for more complex local geometric transformations, we can consider using
models capable of representing more intricate geometric transformations to design local
geometric constraints.

5. Conclusions

This paper proposes a new method for removing mismatches in the feature matching
of remote sensing images, called local motion consistency (LMC). LMC is based on the
property that adjacent correct matches have the same motion and uses homography matri-
ces to represent neighborhood geometric transformations. This method measures the local
motion consistency of matches by calculating the reprojection error of feature points, which
allows for the identification and removal of false matches. We propose a jump-out mecha-
nism to significantly reduce the runtime. The experimental results demonstrate that this
mechanism can maintain the runtime within 100 ms. Additionally, we utilize RANSAC and
LPM for neighborhood construction, dividing the proposed method into LMC_RANSAC
and LMC_LPM. The experimental data reveal that LMC_RANSAC and LMC_LPM achieve
higher F-scores than other methods on their respective applicable datasets. This indi-
cates that these two methods excel in balancing recall and precision, showcasing superior
comprehensive matching performance compared to state-of-the-art approaches.
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It should be noted that LMC heavily relies on the initialization of the neighborhood.
When putative matches are very sparse or the inlier ratio of the neighborhood is very
low, the measure of local motion consistency used by LMC can become unreliable. For-
tunately, the neighborhood construction methods that are currently used are generally
applicable to most cases, but it is possible to explore the design of faster and more versatile
neighborhood construction methods. Additionally, it is worth trying to use geometric
transformation models that can represent more complex transformations to represent local
motion consistency.
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