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Abstract: Modeling the quantitative relationship between target components and measured spectral
information is an essential part of laser-induced breakdown spectroscopy (LIBS) analysis. However,
many traditional multivariate analysis algorithms must reduce the spectral dimension or extract
the characteristic spectral lines in advance, which may result in information loss and reduced
accuracy. Indeed, improving the precision and interpretability of LIBS quantitative analysis is a
critical challenge in Mars exploration. To solve this problem, this paper proposes an end-to-end
lightweight quantitative modeling framework based on ensemble convolutional neural networks
(ECNNs). This method eliminates the need for dimensionality reduction of the raw spectrum along
with other pre-processing operations. We used the ChemCam calibration dataset as an example to
verify the effectiveness of the proposed approach. Compared with partial least squares regression (a
linear method) and extreme learning machine (a nonlinear method), our proposed method resulted
in a lower root-mean-square error for major element prediction (54% and 73% lower, respectively)
and was more stable. We also delved into the internal learning mechanism of the deep CNN
model to understand how it hierarchically extracts spectral information features. The experimental
results demonstrate that the easy-to-use ECNN-based regression model achieves excellent prediction
performance while maintaining interpretability.

Keywords: Mars; ensemble convolutional neural network; quantitative analysis; laser-induced
breakdown spectroscopy

1. Introduction

Laser-induced breakdown spectroscopy (LIBS) is a type of atomic emission spec-
troscopy that uses laser pulses as the excitation source to induce the generation of laser
plasma [1]. Given the unique features of surface detection on Mars, the long-range detec-
tion, efficient and fast analysis, and multifunctional sampling protocols of LIBS provide it
with advantages over other spectroscopic techniques for Mars surface analysis. Therefore,
LIBS has become recognized as an advanced space exploration technique with tremendous
advantages [2]. The ChemCam instrument on board the Curiosity rover that landed on
Mars in 2012 was the first LIBS device for planetary exploration. The ChemCam engi-
neering model is primarily composed of three spectrometers, a remote micro-imager, a
telescope, a laser, a demultiplexer, and associated digital and electronic devices. The laser
source of the instrument is Nd: KGW 1067 nm, whose frequency range is 3–10 Hz, and
pulsed laser energy can be up to 14 m with a 5-ns duration when the temperature is below
0 ◦C. The light from the generated plasma is captured through a 110 mm diameter telescope
and transmitted via optical fiber to a group of three Czerny-Turner spectrometers (covering
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240–850 nm) [3]. The primary purpose of Martian LIBS is to determine the chemical compo-
sitions of rocks and soil. The ChemCam team routinely reports compositions for eight major
elements (Si, Al, K, Ti, Mg, Fe, Na, Ca). However, due to the LIBS technique outputting
complex spectral data containing peak overlaps and interference between characteristic
spectral lines, it has been a stiff challenge to analyze complex high-dimensional spectral
data efficiently and accurately. In this study, the major elements Si, Al, and K were analyzed
because they cover three representative ranges, and their concentration differences are
important characteristic indexes that reflect the variation of sedimentary conditions [4].
They are also widely chosen as examples for mineral identification, emission line selection,
element abundance identification, and other LIBS tasks [3,5,6].

LIBS multivariate quantification methods can be divided into two categories: linear
and nonlinear. Multiple linear regression is a common linear analysis method. However,
the collinearity of spectral variables affects the accuracy of the parameter estimation. In
addition, when the available spectral data are limited, the model is prone to overfitting.
Although principal component regression and partial least squares regression (PLS) models
solve the collinearity problem of independent variables, they are not applicable in cases
with complex nonlinear relationships between the spectral data and the variables to be
collected due to spectral overlap and changes. Nonlinear modeling methods include
support vector regression (SVR), decision trees, and artificial neural networks (ANNs).
However, dimensionality reduction or feature extraction must be performed on the spectral
data before nonlinear modeling due to the curse of dimensionality. Variable selection
provides a simple option for model interpretation by removing uninformative wavelengths
or choosing a subset of the most relevant wavelengths [7]. However, feature extraction and
modeling are two independent processes, and the extracted features do not necessarily
reflect the true mapping relationship between the spectra and the predicted values. If
useful features are discarded and noise is retained during feature extraction, the results will
deviate from the actual mathematical model. In that respect, traditional feature selection
and modeling methods cannot fully mine the useful information in the given data and
are prone to losing useful information and introducing man-made noise. Therefore, using
one or a few emission lines is insufficient for acquiring comprehensive information about
the plasma systems of interest. While the feature emission lines of analyte elements are
the main signatures of LIBS analysis, the lines of non-analyte elements can also play an
essential role [8]. A LIBS spectrum should thus be considered as an organic whole with an
ordered structure rather than a scattering of isolated data points. Full-spectrum analysis can
potentially overcome these limitations. Thus, it is necessary to develop a data-knowledge,
dual-drive modeling method [9–12] that reduces the need for empirical knowledge and can
automatically extract useful information from a spectrum to improve the model’s predictive
ability, thereby reducing the threshold for LIBS modeling.

In recent years, with the development of deep learning algorithms, a new wave of arti-
ficial intelligence has arrived. A series of end-to-end deep learning algorithms represented
by convolutional neural networks (CNNs) can automatically extract the intrinsic features of
the data without data pre-processing (e.g., dimensionality reduction and feature selection).
The entire feature extraction operation is like viewing an object from the microscopic to
macroscopic scale using a microscope. Good regression analysis results were obtained for
one-dimensional (1D) near-infrared data using a CNN structure [13–15]. The few existing
LIBS-related fundamental studies using CNNs for regression problems are the milestones.
Cao et al. [16] discussed using the Inception V2 network to analyze the concentration of
oxides in Martian soil. The model resulted in better performance for the quantification of
oxides compared to models based on PLS and SVR. Zhang et al. [17] utilized the Resnet
network to quantify the elemental composition from LIBS signals on Mars, which effectively
reduced the prediction error of the measured elements. Li et al. [18] developed a deep
CNN-based LIBS multi-component quantitative analysis method for geological samples,
which is an excellent attempt to apply the convolutional neural network to one-dimensional
LIBS data and achieve good results.
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The methods mentioned above have demonstrated the potential of using deep learning
techniques to develop prediction models for spectral fields. Nevertheless, these existing
CNN models still follow conventions of data-driven deep CNNs for designing deeper and
more complex architectures. They are computationally expensive, and the authors only
provided a summary of the hyperparameters, without disclosing any information as to
how architecture hyperparameter selection was accomplished. The relationships between
model generalizability and parameters are unclear. To address this problem, we focus
on the three following topology-related parameters: stride step, number of convolutional
kernels (NCK), and convolutional kernel width (CKW) [19,20]. We first investigated the
effects of these parameters in detail and proposed a two-step progressive strategy to acquire
the best parameters. From the above studies, we also observed that despite the designed
deep CNNs having deep learning abilities, it is hard to interpret the specific “features”,
which impedes its practical application exactly. Therefore, it is also worthwhile to try the
approaches to interpret CNN results. In this study, we show how the CNN model works
on spectral data by visualizing the feature maps in convolutional layers.

However, a single 1D CNN usually performs poorly when dealing with regression
analysis problems, especially when the calibration dataset is insufficient. In this work, to
further enhance the predictive ability of the CNN model, the model is optimized from
the perspective of a model ensemble. Ensemble learning achieves better prediction per-
formance by combining multiple weakly supervised models into a more comprehensive
supervised model [21]. Considerable research has shown that ensemble modeling is one of
the most effective solutions to reduce over-fitting [22,23] and improves the stability and
accuracy of a single model. The ensemble learning methods for 1D data processing in
most reported studies applied classical PLS regression models as their base estimators [24].
Popular ensemble techniques, such as stacked generalization (stacking) [25], boosting [26],
and bagging [27], are then used to improve and integrate the prediction results of the basic
PLS model. Zhou et al. [28] compared boosting PLS and bagging PLS in an online near-
infrared model for monitoring the active pharmaceutical ingredients of Chinese medicines.
Bi et al. [29] compared several combinational rules for the outer stack step and presented a
dual-stacked PLS method. Some ensemble learning techniques are also based on other non-
linear regressors or classifiers such as SVR [30] and extreme learning machine (ELM) [31].
To our knowledge, CNN-based ensemble learning techniques for spectral analysis are rare
and require further exploration.

This work presents an ensemble learning framework based on a CNN network to
overcome the cumbersome feature selection process and poor model robustness in spectral
analysis. In addition to the comparison between an ensemble CNN (ECNN) and CNN, the
present work compares and conducts comprehensive analyses of the performance of the
developed deep learning models to other popular machine learning models to demonstrate
the added value of the deep learning approach. Compared with previous methods, the
novelties and contributions of the presented framework lie in three points.

• Firstly, our model architecture is specially tailored for spectra analysis. Most deep
learning models used currently in spectrum analysis employ ANN architectures
imported from natural language processing or computer vision, and the details of the
model architectures are often random.

• Secondly, unlike most of the data-driven deep learning models, we integrate prior
domain knowledge of wavelength interval selection and screening into deep learning
to improve the interpretation and robustness of learning systems.

• Lastly, compared with the traditional single modeling method, we provide a further
extension by designing an ensemble method that can explicitly exploit the comple-
mentary knowledge from various submodels.

The experiment’s analysis results suggest that the presented approach provides a
reliable tool for the regression and interpretation of atomic spectral data.
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2. Materials and Methods
2.1. Basic Principles and Datasets of LIBS

In this work, the two utilized datasets were generated by the ChemCam team under
Martian-like environmental conditions using LIBS. The ChemCam device consists of three
spectral regions: ultraviolet (UV, 240–342 nm), violet (VIO, 382–469 nm), and visible and
near-infrared (VNIR, 474–906 nm). Each spectrum consists of 6144 wavelength channels.
The original ChemCam calibration was obtained from just 69 geostandards that were
measured with the flight instrument prior to integration into the Curiosity rover [32]. The
ChemCam team then discovered that the abundance of elements in the Mars rocks was
outside the range of the first calibration’s geostandards. Considering extreme compositional
scenarios, such as the alkali feldspar from the Gale Crater [33], the exploitation of an
expanded geochemical database was activated; the 408 expanded standards were used to
more effectively extract the element concentrations. These samples contained basaltic and
igneous rocks, metasedimentary rocks, sedimentary rocks, as well as a few TiO2-doped
samples and minerals from different localities.

For the 69 standard samples, theoretically, four average spectra can be obtained for
each sample. However, in actual operations, not all four points are selected for each sample.
In addition, when a quantitative analysis model is established for a certain element, the
samples that do not contain this element are discarded. Therefore, all 240 valid samples
were split into a training and a testing dataset using the sample set partitioning based on the
joint x–y distances (SPXY) method. Two hundred samples in the training dataset were used
to build the model, and 40 samples in the testing dataset were used to assess the prediction
performance of the model. We acquired 345 samples data from the expanded standards for
the second experiment since the relative concentrations of oxides in part of the samples
were missing. According to the ChemCam description, in theory, five averaged spectra can
be obtained for each sample, but some samples have only four averaged spectra. Same as
in the last dataset, when we created a quantitative analysis model for a single oxide, some
samples that did not include this oxide were discarded. Therefore, all 1722 valid samples
were split into a training and a testing dataset using the SPXY method. The 1435 samples in
the training dataset were used to develop the model, and 287 samples in the testing dataset
were employed to assess the prediction capability of the model. Min-max scaling was used
to suppress the effect of outliers by scaling the LIBS dataset, ensuring that all wavelengths
were equally represented in magnitude. More details concerning the testing and training
datasets used in this work are listed in Table 1.

Table 1. Statistical results of element concentrations in LIBS data.

Element Set
No. of

Samples
Concentration, wt%

Range Mean ± STD 1

Original calibration dataset

Si
Calibration 200 8.70–75.41 49.46 ± 14.84
Prediction 40 30.90–75.41 54.20 ± 13.35

Al
Calibration 200 0.17–23.71 11.56 ± 5.95
Prediction 40 0.17–23.71 10.93 ± 5.11

K
Calibration 200 0.03–5.60 1.33 ± 1.37
Prediction 40 0.05–5.43 1.56 ± 1.63

Expanded calibration dataset

Si
Calibration 1435 0.21–84.90 55.99 ± 14.38
Prediction 287 0.21–84.63 56.35 ± 13.65

Al
Calibration 1435 0.01–38.79 15.48 ± 5.84
Prediction 287 0.01–38.79 16.43 ± 5.91

K
Calibration 1435 0.002–12.05 2.51 ± 1.89
Prediction 287 0.002–12.05 2.22 ± 1.89

1 STD = standard deviation.
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LIBS can qualitatively and quantitatively analyze elements based on the spectral
line characteristics of elements and the proportional relationship between the content of
each element and the signal intensity. The principle of element calibration for LIBS is
based mainly on the Atomic Spectra Database of the National Institute of Standards and
Technology. For Mars exploration data, the ChemCam Mars Science team developed the
Quick Element Search Tool (C-QuEST).

2.2. CNN Modeling and Training Process

Notably, numerous open-source deep learning tools (e.g., MatConvnet, TensorFlow,
and Caffe) exist. However, we cannot employ them directly to build the CNN model for
LIBS, since the default input for these tools is 2D or 3D images. To use the above tools, we
defined the following transformation: assume that the 1D LIBS data are a special 2D image;
that is, the image contains only one column (row). Accordingly, it is essential to construct
some 1D convolutional kernel functions that match the input LIBS data.

The CKW and the stride step were determined based on the length of the input
spectrum and the size of the data. Due to the small data size, we selected small CKW
and stride step values in this study according to a previous report [34]. As illustrated
in Figure 1, the proposed CNN-based LIBS quantitative regression model consisted of
five layers: input layer, convolutional layer, activation function layer, fully connected
layer, and output layer; there are no pooling layers in this structure. As a substitute, we
used the moving step parameters of convolutional kernels, which also reduced the output
dimension of the convolutional layer. In addition, since the prediction of three major
elements of LIBS belongs to the fitting (or regression) task, the output layer was set as the
regression layer. It was reported that using a lightweight CNN model could enhance the
performance of different spectroscopic methods [35]. Higher numbers of layers possess
more parameters, so more data are required to avoid model overfitting. Notably, the
gain from using CNN decreases as the complexity of the networks increases. Compared
with multiple convolutional layers, the presented CNN model is parsimonious from the
perspective of topological structure.
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Figure 1. Topological structure of a CNN.

For a given spectrum, the dimension for the LIBS dataset was 6144; therefore, the
input size for 1D CNN was 1 × 6144. The convolution layer was adopted to obtain the
feature information of the LIBS spectrum. To capture more intrinsic properties, multiple
convolutional kernels were employed in the convolutional layer. In theory, more convo-
lutional kernels were rewarding for more features. Achieved through different kernels,
the features from various categories were acquired and exploited. Simultaneously, the
stride step is reduced, and the convolution kernel will extract more features. As it was a
regression task, the loss function chosen was the Mean Squared Error (MSE). Additionally,
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the L2 norm regularization was utilized in the networks because of its ability to prevent
overfitting problems. The CNN model was built based on the above steps.

The key drawback of the CNN method is its lack of interpretation as the CNN model is
considered a black box. In chemometrics, understanding the modeling and training process
is as important as the results, which is why PLS is a standard method in chemometrics.
Clarifying the learning mechanisms of deep neural networks, therefore, is necessary to
comprehensively understand why a model produces certain outputs. In other words, to
obtain a high-edge accuracy in an extremely challenging task, pure complex structures are
insufficient, and an understanding of the data based on spectral expertise is essential. The
wavelength interval selection method considers each wavelength interval as a unit, which
improves the predictive capability, provides easier interpretation, and enables reliable
calibration, such as: Moving windows PLS (MWPLS) [36], interval PLS (iPLS) [13], and
synergy iPLS (SiPLS) [6]. As illustrated in Figure 2, when the stride step is smaller than
the CKW, the convolution kernel overlaps with the spectral signals during movement,
thus, more features can be extracted. The basic idea of obtaining overlapping spectral
information derives from the MWPLS method. When the stride step is equal to the CKW,
the situation is like the uniform interval division in the iPLS method. In contrast, when the
stride step is bigger than the CKW, the convolution kernel skips some spectral sub-intervals
and does not extract them. In other words, some useful information is lost. This situation is
similar to the SiPLS method to some extent.
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The proposed CNN training interpretation process exploits domain knowledge of
spectroscopy variable selection to ensure model interpretability by key variables; this
means that a knowledge-driven model is embedded in the nonlinear regression. Thus, the
model combines the good variable interpretability of linear models and the high accuracy
of nonlinear ones. In this study, we also used a visualization approach to explain the trained
CNN model and present feature representations in the model. Feature map visualization is
an explainable artificial intelligence method that aims to extract information from a model
to improve its transparency.

Notably, the optimal result is affected by many factors, including the scale of the
dataset, the structure of subnetworks, and the hyperparameters. It is difficult to establish a
general guideline for determining the CNN topology. Hyperparameters including the CKW,
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NCK, stride step, batch size, etc., must be set before using the deep learning framework in
this work. Since the training of deep learning networks is computationally expensive, the
adjustment of hyperparameter combinations is not easy. In terms of systematic methods
(i.e., abandoning the traditional manual trial-and-error approach), grid search is one of the
most used methods for hyperparameter optimization in machine learning. Thus, inspired
by existing works [37,38], a two-step progressive strategy was implemented to acquire the
best parameters. First, other hyperparameter values were fixed, and a large step rough
search was carried out to define the approximate search range of each hyperparameter
value. Second, a small step-wise grid search was applied to achieve precise positioning
of all relevant hyperparameters. The above two steps will greatly facilitate the processes
of tuning the existing hyperparameters. Because they allow significant narrowing down
the search space for the hidden optimal hyperparameters while still being able to explore
an extensive range of different hyperparameter combinations, they are user-friendly for
practitioners and experts in LIBS quantitative analysis areas.

2.3. Optimization of the CNN Analysis Model

Ensemble learning accomplishes learning tasks by building and merging multiple
learners, resulting in a better prediction ability than that achieved using a single learner.
Based on the generation methods of the individual learners, existing ensemble learning
methods can be broadly classified into sequential methods and parallel methods. In this
study, we adopted a parallel ensemble learning method considering the computational
complexity. Bagging [39], which is based on bootstrap sampling, is the most well-known
and representative parallel ensemble learning method, and it can be useful for regression.
According to Breiman [40], “unstable” learning methods for which minor changes in
the dataset can lead to significant changes in the computational results. Bagging can
significantly reduce the variance of unstable processes, such as neural networks and
decision trees, thus improving prediction, as averaging keeps bias constant and reduces
variance. Compared with a single CNN model, bagging increases the degree of difference
in model integration and improves the generalizability by reselecting the training set.
However, bagging increases the computational overhead and model complexity. Of course,
with the advent of GPUs, this problem has been solved. Herein, based on Breiman’s [40]
finding that more than 25 bootstrap replicates is “love’s labor lost,” each ensemble model
consisted of only 10 member models. The construction process of the CNN ensemble model
is shown in Figure 3.
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In this study, the training process of the presented approach can be summarized in
three basic actions: (1) Randomly extract several data subsets from the original datasets
through the bootstrap sampling (random sampling with replacement) method; (2) Construct
a CNN submodel on each data subset; (3) Aggregate the CNN submodels to form an ECNN
model. In the prediction stage, the outputs of 10 CNN models are aggregated into a final
predictive result by applying a simple or weighted average approach. To differentiate them,
we employ ECNN1 and ECNN2 to represent simple and weighted average combinations,
respectively. The weights of the weighted-averaging algorithm are the normalization results
of the root-mean-square error (RMSE) inverse of different weak learners in the subset. The
smaller the RMSE value, the more critical the weak learner is in the final strong model. The
detailed procedure can be described as follows.

Inputs: Bootstrap sampling generated K training subsets: {T1, T2, . . . , Tk}; the cor-
responding established K quantitative CNN models: {M1, M2, . . . , Mk}; the probed LIBS
spectrum of sample i in the testing dataset: Xi.

Step 1: calculate the weights for each CNN quantitative model Mj (1 ≤ j ≤ K): {w1, w2,
. . . , wk}, where wj (1 ≤ j ≤ K) is obtained by the following Equation:

wj =
Sj

2

∑k
j=1 Sj

2 (1)

where Sj is the inverse of the cross-validation error of the submodel, determined by the cal-
ibration dataset. The weights wj are restricted between 0 and 1, and the sum is normalized
to 1.

Step 2: put Xi into each CNN quantitative model Mj (1 ≤ j ≤ K) and output the
corresponding prediction values: {y1, y2, . . . , yk}.

Step 3: aggregate the predicted values for each CNN model {y1, y2, . . . , yk} and
calculate the final output of Xi:

y = ∑k
j=1 wj · yj (2)

2.4. Quantitative Prediction Models for Comparison

In this paper, we compared three quantitative regression models (PLS [24,41], ELM [31],
and CNN [13,42]), which were established based on the whole range spectra. PLS: PLS
is a useful chemometrics tool for the quantitative regression of LIBS datasets [41]. In this
study, the number of latent variables (LVs) employed in the PLS model was determined
in the range of 5–30 through five-fold cross-validation of the training datasets. CNN:
Conventional 1D CNN models were also developed for comparison. A classical network
structure that was only stacked with 1D convolution layers was used. A convolutional
network without pooling layers was used to avoid overfitting and to reduce the number
of parameters. The structural parameters of the CNN model, including the number of
convolution layers, were all optimized. ELM: The fact that the prediction ability of the BP
neural network might be affected by multiple factors (e.g., the learning rate, initial weights
and bias, and number of neurons in the hidden layer) was considered. The PLS model
first needs to conduct LV analysis, and the number of LVs is an important parameter that
requires careful testing. In contrast, the ELM model is more robust, faster, and has fewer
parameters. Therefore, we selected the ELM model as a representative traditional machine
learning algorithm.

Although there are a variety of modeling methods, the traditional methods are all
based on the establishment of a single mathematical model and thus often fail to achieve
the required accuracy and robustness. Compared to traditional modeling algorithms, the
ECNN approach presented herein has the following advantages. Firstly, it is an end-to-
end framework that allows the entire region of the original LIBS data as direct inputs
without variable selection. When the convolutional kernel function moves throughout
the entire wavelength region, it can automatically extract the local features from various
data windows. Secondly, the bootstrap random sampling method ensures that the stability
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of the regression prediction model outperforms vanilla techniques. This is because the
aggregation of “weak” CNN models is not a simple repeated average; rather, each “weak”
CNN model reflects a certain local distribution of the LIBS data, thus, the aggregation result
reflects the true blueprint of all the data.

2.5. Evaluation of the Prediction Model

The statistical indicators used to evaluate model performance included the root-mean-
square error of cross-validation (RMSECV), the coefficient of determination of calibration
(Rc

2), the root-mean-square error of prediction (RMSEP), the coefficient of determination of
prediction (Rp

2), and the relative error rate (RER). By and large, an ideal model has low
RMSEP and RMSECV, but the discrepancy between the two values cannot be significant.
The higher R2 value means a better-quality model, and vice versa. Modeling and simulation
were performed in the MATLAB R2019b environment (Mathworks Inc., Natick, MA, USA).

R2, RER, and RMSE are derived, respectively, as

R2 = 1 − ∑n
i=1 (Xi − Yi)

2

∑n
i=1 (Xi − Yi)

2 (3)

RMSE =

√
∑n

i=1 (Xi − Yi)
2

n
(4)

RER =
Xi − Yi

Xi
× 100% (5)

where n is the number of samples in the calibration or prediction set, Xi and Yi are the
observed and predicted concentrations of the i-th sample in the calibration or prediction
set, respectively, and Yi is the mean value of the observed concentrations of all samples in
the calibration or prediction dataset.

3. Results
3.1. Comparison of the ECNN Model and the Traditional Chemometric Modeling Method

In this study, the ECNN model was compared with three chemometric modeling
methods commonly used in research: the PLS model, the ELM model, and the traditional
CNN model. Five-fold cross-validation was used to optimize the number of LVs of the
PLS model in the range of 5–30. For ELM, numerous published works [7,21,31] have
demonstrated that the single hidden layer feedforward neural network can fit arbitrary
nonlinear functions with zero error. Thus, cross-validation can fix the number of neurons
in the hidden layer. For the CNN model, a reasonable CNN architecture was first designed,
and a two-step grid search was then applied to determine the best parameters for training
and finally outputting the trained model. The results of the PLS, ELM, and CNN models
were all derived from the results of the above optimal models.

Overall, the RMSE of the end-to-end ECNN model proposed in this study was lower
than that of the other models on the three main element datasets. In addition, the R2 value
of the ECNN model was significantly better than that of the other models. Table 2 presents
the RMSE and R2 values predicted by the various models on the different datasets. Due to
the presence of random factors in the training process of the neural network models, each
model was subjected to 25 repetitive calculations. The means and variances in Table 2 are
from the results of the 25 repetitive calculations. Table 2 also lists the repeated results on the
same dataset from the literature [6] to facilitate a comparison between the results obtained
using the ensemble learning model and the results of previous studies. The individual
member models clearly show considerable differences in the RMSEP, which implies a risk in
using a single model calibration. This agrees with reports that the prediction accuracy and
stability of a single model are not always convincing, especially when outliers are present
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or the calibration dataset is relatively small [43]. The calibration performance improves in
the order of PLS < ELM < CNN < ECNN.

Table 2. Comparison of the prediction ability of the ECNN model and traditional methods.

Element Model
Calibration Prediction

Rc
2 RMSECV Rp

2 RMSEP

Original calibration dataset

Si

PLS 0.9787 2.1614 0.9554 2.9609
ELM 0.8376 ± 0.0487 5.9013 ± 0.8821 0.7601 ± 0.0360 6.9684 ± 0.5136
CNN 0.9789 ± 0.0071 2.2148 ± 0.3184 0.9724 ± 0.0173 2.2099 ± 0.6013

ECNN1 0.9899 ± 0.0034 1.5561 ± 0.2847 0.9848 ± 0.0031 1.6728 ± 0.1759
C-QuEST 0.9695 2.5846 0.9287 3.7354

Al

PLS 0.9837 0.7579 0.9540 1.1499
ELM 0.8795 ± 0.0228 2.0529 ± 0.1909 0.7614 ± 0.0384 2.5271 ± 0.2042
CNN 0.9869 ± 0.0059 0.6983 ± 0.1235 0.9768 ± 0.0126 0.8326 ± 0.1841

ECNN1 0.9927 ± 0.0020 0.5799 ± 0.0431 0.9868 ± 0.0015 0.6785 ± 0.0898
C-QuEST 0.9577 1.2220 0.8862 1.8028

K

PLS 0.9768 0.2079 0.9636 0.3280
ELM 0.8272 ± 0.0329 0.5651 ± 0.0555 0.7895 ± 0.0400 0.7746 ± 0.0906
CNN 0.9813 ± 0.0079 0.2134 ± 0.0411 0.9632 ± 0.0536 0.3345 ± 0.1275

ECNN1 0.9885 ± 0.0039 0.1907 ± 0.0447 0.9834 ± 0.0028 0.2545 ± 0.0374
C-QuEST 0.9605 0.2714 0.8714 0.6057

Expanded calibration dataset

Si

PLS 0.8888 4.6200 0.8839 4.8997
ELM 0.8861 ± 0.0743 4.6073 ± 1.4011 0.8751 ± 0.0831 4.7240 ± 1.3965
CNN 0.9163 ± 0.0851 3.8111 ± 1.6685 0.9053 ± 0.0942 3.8803 ± 1.6132

ECNN1 0.9345 ± 0.0608 3.4640 ± 1.2408 0.9270 ± 0.0669 3.4894 ± 1.1912
ECNN2 0.9616 ± 0.0022 2.8140 ± 0.0825 0.9524 ± 0.0012 2.9782 ± 0.0398

Al

PLS 0.8578 2.2083 0.8572 2.2395
ELM 0.8638 ± 0.0651 2.1042 ± 0.4747 0.8596 ± 0.0713 2.1729 ± 0.5160
CNN 0.8787 ± 0.0843 1.9536 ± 0.5737 0.8661 ± 0.1264 2.0313 ± 0.7457

ECNN1 0.9095 ± 0.0458 1.7129 ± 0.3973 0.9065 ± 0.0507 1.7604 ± 0.4131
ECNN2 0.9498 ± 0.0036 1.3087 ± 0.0483 0.9436 ± 0.0013 1.4042 ± 0.0167

K

PLS 0.8608 0.7065 0.8614 0.7069
ELM 0.8446 ± 0.0722 0.7277 ± 0.1660 0.8301 ± 0.0671 0.7669 ± 0.1480
CNN 0.9034 ± 0.0816 0.5453 ± 0.2214 0.8924 ± 0.0934 0.5713 ± 0.2371

ECNN1 0.9348 ± 0.0578 0.4490 ± 0.1788 0.9271 ± 0.0671 0.4706 ± 0.1934
ECNN2 0.9687 ± 0.0011 0.3349 ± 0.0062 0.9645 ± 0.0020 0.3550 ± 0.0103

In the silicon (Si) content analysis, the mean RMSEP and mean Rp
2 values obtained

by the ECNN model were 2.3255 and 0.9686, respectively, which were superior to those
obtained by the other models in this study and other models reported in the literature.
The mean RMSEP obtained by the second-best performing model was 3.0451, which was
31% higher than that of the ECNN model. In the aluminum (Al) content analysis, the
mean RMSEP and mean Rp

2 values obtained by the ECNN model were 1.0414 and 0.9652,
respectively, which were better than those of the other models in this study and the best
among the results reported in the literature. The mean RMSEP obtained by the second-best
model was 1.4320, which was 38% higher than that of the ECNN model. In the potassium
(K) content analysis, the RMSEP obtained by the ECNN model was the smallest among
the models, with a mean value of 0.3048. Compared with the next-best model, the RMSEP
of the ECNN model was 48% lower, and the Rp

2 was 5% higher. This indicates that the
ECNN model has advantages over traditional models in practical applications. Compared
to the studies employing CNN by [6,44], the 1D CNN model in our work obtained better
performance, possibly due to the dimensional differences of the input spectra. Ng et al. [14]
also demonstrated that a CNN model performed better with 1D spectra as the input than
with 2D spectra.
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Undoubtedly, the PLS presents the highest level of the linear chemometric approaches,
but if there are nonlinear effects in the spectrum (generally applicable for LIBS, due to
matrix effects and the fluctuation of experimental conditions, there is not a simple linear
relationship between the content and the signal intensity), the performance of linear ap-
proaches will be degraded. A natural idea of this problem would result in the belief that
an ANN method would perform better than PLS. However, we note that the performance
of ELM and PLS predictions is neck-and-neck. The reason behind this is probably that,
although ELM can handle nonlinearities, there are also some drawbacks in its application.
ELM is a single hidden layer neural network where the weights between the hidden layer
and input layer are randomly initialized, and the weights between the output layer and
the hidden layer are calculated with a closed-form solution. This sometimes proves to
be a major drawback as it increases the amount of randomness in the network, and its
prediction precision is very sensitive to noise, which will lead to the results of the ELM
potentially obtaining ill-conditioned solutions [45]. Under such circumstances, CNN would
be a better choice because CNNs have not only great nonlinear mapping capability, but
also strong tolerance to errors (spectral interference, noise, etc.). Therefore, CNN can
outperform the PLS and ELM methods. Moreover, the PLS approach cannot consider the
fact that LIBS data are wavelength-ordered spectra (i.e., they are in meaningful numerical
order), and neither can the ELM approach. However, this fact is advantageously taken into
account by the CNN. Through convolution kernel operations, the correlations between the
adjacent data points in a local region can be extracted as a “feature”. Therefore, the internal
correlation and unity of each spectrum are adequately exploited. This is the other reason
why the CNN accuracy can outperform the PLS, and also the reason why the CNN can
behave better than ELM. The CNN prediction model shows less fluctuation than the ELM
prediction model, which may be attributed to the fact that some convolutional kernels have
a smoothing function in the CNN model training (see Section 3.3), reducing part of the
spectral noise. The excellent performance of the CNN quantitative model indicates that
CNN can successfully suppress the chemical matrix effect and can be employed for the
LIBS quantification of 1D ChemCam spectra data.

Here, we explore why the proposed ECNN network achieves better prediction ability
than traditional techniques. In the field of machine learning, data are usually divided into
training, validation, and testing datasets. Nevertheless, the entire LIBS data distribution
may differ from those of the three subsets, suggesting that the model built with the training
dataset may not be suitable for the testing or validation dataset. The presented ECNN
introduces the idea of ensemble learning, which combines many “weak” models to establish
a “strong” model. The weak models were built with different training datasets (rather
than simply repeating them). Figure 4 shows the results of a randomized trial conducted
using the bootstrap sampling strategy. It is easy to see that each trial’s distribution was
different, indicating that each weak model has limitations since it cannot process the entire
dataset. From another perspective, we can infer that each weak model has its own specialty
since each weak model is sufficiently efficient to process local parts of the entire dataset.
The presented ECNN combined several weak models to form a strong model that could
cover all of the LIBS data. This can be explained as follows: Before establishing a member
model, the bootstrap sampling strategy results in multiple versions of the training dataset,
on which the ECNN can obtain various modeling subspaces. The random operations built
in the ECNN and the differences introduced by the bootstrap strategy might introduce the
diversity for ensemble modeling. The combination of these methods successfully maintains
an appropriate diversity among member models and aggregates the feature information on
both the shapes and heights of the spectral lines, improving the calibration.
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We also note that the performance of the calibration model is related to different input
sizes and weight optimization methods. A noteworthy point is that in the ECNN1, all the
submodels are assigned equal weights in training, but such an equal-weight strategy may
not be good enough for the quantification task. The weight is a measure of how well each
subset of the spectrum correlates with the target attribute. Since the characteristic peak
intensities are crucial to LIBS quantitative analysis, it might be better and more dependable
if the learned weights from the training data are highlighted. This idea can be compared to
the process of consulting several experts to make a final decision. From another perspective,
although CNN has strong learning capabilities, without the contribution of an appropriate
amount of data, the ability to realize superior performance may be hindered. The accuracy
advantage of ECNN compared to other methods is again increased with the increasing
sample size of the training dataset. This suggests that the increased sample size would
enhance the ECNN model to learn useful information from multiple spectra sources. Some
authors [2,46] have observed the trend of plateauing of the performance (maximized up
to a certain point) with an increasing sample size. This trend is associated with model
complexity, as simpler models (e.g., PLS) cannot reflect all the variation in the spectra.
Therefore, more complex, nonlinear models are appropriate when the sample size is larger.
As the sample size increases, the ECNN model can better characterize the structure of
LIBS spectra.

In addition to testing the specific values of R2 and RMSE, we also performed a relative
error analysis to make the comparison statistically significant. To intuitively evaluate the
quantitative accuracy of these methods, the absolute value of the prediction RER was
calculated for each element using Equation (5), and the RER value is in units of %. We
have chosen to show the following LIBS samples: Norite, Picrite, Shergottite, NAU2-
LO-S, NAU2-MED-S, and KGA-MED-S. These standards were chosen because they are
ChemCam calibration target samples (CCCT, the onboard Curiosity rover calibration target),
as reported by Wiens et al. [32].
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The concentration RERs for all six validation examples from the expanded dataset are
displayed in Table 3. From a global view, each method successfully predicted the concentra-
tion of most samples and was pretty close to the “actual” values. We also observe that when
the calibration data is sufficient, the ECNN model can provide the best individual and over-
all accuracy in most validation examples. For the three silicate glasses (Shergottite, Picrite,
and Norite), the predicted values of all methods were close to the true values. In addition,
the predicted results of the ECNN were closer to the true values than others. For the three
ceramic targets (NAU2-LO-S, NAU2-MED-S, and KGA-MED-S), our quantification results
and other result values were both higher than the true values acquired in the scientific
laboratory, which can be attributed to two aspects: (1) The NAU2-LO-S, NAU2-MED-S, and
KGA-MED-S are sulfate-bearing targets, including sulfate, basalt, and clay, and complex
matrix effects cause lower prediction accuracy. (2) The ChemCam igneous samples are less
heterogeneous than ceramic samples. As mentioned by Clegg et al. [33], the KGA-MED-S
spectrum recorded on Martian even showed some additional emission lines, including Mg
(280, 285 nm) and Ca (315, 317, 393, 396, 422 nm) compared with those recorded in the labo-
ratory on Earth. This may imply challenges for the quantification analysis of volatile-rich
and heterogeneous standards.

Table 3. Partial predicted results obtained with ECNN, CNN, PLS, and ELM.

Element CCCT Name Actuals
ECNN2 CNN ELM PLS

Predicted RER Predicted RER Predicted RER Predicted RER

Si

Norite 47.88 47.19 1.42% 46.69 2.45% 46.61 2.63% 46.24 3.40%
Picrite 43.59 44.08 1.14% 42.05 3.50% 41.28 5.27% 40.34 7.42%

Shergottite 48.42 48.30 0.23% 46.63 3.69% 45.70 5.60% 45.17 6.55%
NAU2-LO-S 43.78 43.70 0.17% 45.02 2.85% 47.00 7.37% 48.23 10.17%

NAU2-MED-S 37.48 38.54 2.83% 40.31 7.54% 33.42 10.82% 41.71 11.29%
KGA-MED-S 35.64 36.99 3.79% 38.57 8.23% 42.40 18.96% 42.57 19.46%

Al

Norite 14.66 15.01 2.33% 15.57 6.34% 16.22 10.72% 12.50 14.78%
Picrite 12.39 12.86 3.81% 14.02 13.12% 15.32 23.62% 15.52 25.25%

Shergottite 10.83 11.50 6.16% 12.30 13.77% 12.35 14.07% 12.48 15.27%
NAU2-LO-S 7.63 7.69 0.80% 7.83 2.63% 7.06 7.34% 6.85 10.10%

NAU2-MED-S 5.72 5.95 4.12% 6.71 17.36% 7.05 23.33% 7.29 27.54%
KGA-MED-S 23.71 21.49 9.39% 27.02 13.94% 28.77 21.37% 29.06 22.56%

K

Norite 0.06 0.056 5.73% 0.054 9.00% 0.051 13.67% 0.053 11.63%
Picrite 0.10 0.109 9.56% 0.111 11.76% 0.0732 26.80% 0.129 29.66%

Shergottite 0.11 0.114 4.38% 0.103 6.31% 0.143 29.97% 0.100 9.12%
NAU2-LO-S 0.40 0.461 15.48% 0.491 22.77% 0.589 47.41% 0.524 31.17%

NAU2-MED-S 0.29 0.312 7.85% 0.169 41.62% 0.141 51.21% 0.143 50.49%
KGA-MED-S 0.26 0.264 1.63% 0.276 6.24% 0.287 10.65% 0.286 10.31%

Although the low RERs of each method seem to be “satisfactory”, it is also worth
noting that there are cases where the RERs calculated exceed 40%. Such situations usually
occur when the actual concentration values are extremely small (around 0.5% or even less),
such as the K element in NAU2-LO-S and NAU2-MED-S samples. This phenomenon is
present in all data, and can only be well explained by a more in-depth examination of the
properties of the spectral data themselves. On the one hand, the above results show that
the ensemble can significantly increase the accuracy of the CNN submodels, such as Al and
Si elements. This is because these elements have a wider compositional range, are more
sensitive to submodel demarcation, and the effects of ensemble optimization are better than
those of the non-optimization methods. On the other hand, the composition of K is mostly
distributed below 10%, therefore, whether or not to generate the subset might have less
impact on such elements. If the standards contain relatively concentrated compositions,
the optimization of elements is effective but not very obvious.
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Undoubtedly, the CNN and ECNN models are superior to the ELM and PLS models.
We owe these phenomena to the powerful feature extraction ability of the CNN model.
The CNN method can yield the second-best RER, but its superiority over PLS and ELM
models becomes less prominent than ECNN. It can be found that, in most cases, the RER
of ECNN is one or two orders of magnitude improvement than that of other methods.
Specifically, most of the RERs are at 10% order of magnitude for the ELM and PLS. For
CNN, the lowest RER is at 1% order of magnitude. While for the ECNN, the lowest RER
can reach 0.1% order of magnitude, such as Si and Al in the NAU2-LO-S sample and Si in
the Shergottite sample. It was largely ascribed to the ingenious combination of CNN and
other data mining methods. The basic CNN is still able to predict element concentrations
at a time from one model, so it is worth trying to modify the training mode of the CNN.
Ensemble learning is a novel machine learning approach that employs multiple submodels
instead of a single model to address specific problems. It enables the CNN model to learn
more of the common spectral features from various data sources, thereby improving the
robustness and accuracy of the CNN model and making its performance much better
than traditional models. Thus, for big-data environments, the ECNN is a more effective
spectral regression modeling method that can make more accurate predictions. Although
the ECNN method showed advantages over the other three approaches, we have to look
straight at the reality that its quantitative predictive results are still far from satisfactory.
The most common absolute value of relative error is around 10%, which means that room
for improvement remains.

Besides increasing the diversity and quantity of the training samples, it is also crucial
to carefully build a suitable training dataset. There is an empirical rule for LIBS quantitative
analysis that the target sample with the lowest concentration and that with the highest
concentration should only be used as training samples. In some research, e.g., [4,17,47],
the entire dataset was randomly divided, and the rules were ignored. However, we
recommend using a carefully designed partitioning mode to make the data in each set more
representative and thus facilitate network learning. Otherwise, it might predict negative or
zero values for some low-concentration targets, thus increasing the error of the RER.

3.2. Influence of CNN Parameter Values on the Predictive Ability of the Model

As with other CNN-based applications, there is a strong relationship between the
predictive performance of the quantitative model and the CNN parameter values. In this
work, due to the limited space, we used the R2 of Si only as an example to demonstrate
the influence of NCK, CKW, mini-batch size, and stride-step size on the predictive ability
of the model. Si is an essential element for understanding both sedimentary and igneous
geochemistry. Further extensions of the hyperparameter analyses are listed in Appendix A.

3.3. Visualization of Features Extracted by the CNN Network

The visualization of feature maps provides insights into data transformations through
the convolutional layers in a CNN model. Generally, the deeper the layer is, the more
complex features it learns. For CNN frameworks with two or more convolutional layers,
the input LIBS data is compacted into increasingly complex abstractions from layer to
layer, and it may not be possible to trace back which features of the last convolutional layer
map was placed into which input variables. In the special situation of the presented 1D
CNN model, only one convolution layer exists. This shallow structure allows the model to
provide a more straightforward correlation between the input spectrum region and the 1D
representation of the activation, since each filter neuron is the result of neighboring input
neurons. Consequently, this approach lets us directly visualize which parts of the spectral
data are considered vital with potentially only slight drifts. Here, Al is taken as an example
for detailed discussion. The correspondence between the abstract features extracted with
the CNN and the feature emission lines of the original LIBS data is illustrated in Figure 5,
which shows good consistency (281–282.5 nm, 288–288.5 nm, 308–310 nm, 394–395 nm,
395.5–397 nm). The convolution layer is used for spectra pre-processing and learns the
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spectral shape features. Almost all the feature maps have similar peak shapes to the raw
input spectra. Simultaneously, we attempt to explain the results from another angle. As
illustrated in Figure 6, 610 abstract features were captured from 10 convolution kernels.
The abstract features were automatically clustered into 10 groups, consistent with the
10 convolutional kernels. Some kernels captured the differences between samples, while
others could not. Each convolution kernel extracted characteristics of interest from a specific
angle, consistent with existing research [48] in image processing.
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The shapes of the convolutional kernels with different kernel sizes are illustrated in
Figure 7. The visualization results of the convolutional filters agree with the findings of a
previous study [35]. Filters containing many non-zero elements and linear trends of inten-
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sity show similar effects of smoothing and derivatives, and the well-trained convolutional
model can replace the traditional pre-processing methods for spectra analysis.
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4. Discussion
4.1. Model Design

Designing a CNN is a frequently repetitive process that involves the selection of var-
ious parameters, including the number and types of layers and the learning rate. When
building a model, various parameters must be comprehensively considered and analyzed
because they significantly impact the model and its prediction performance. We there-
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fore intend to present the best practice model optimization approach according to the
obtained results.

4.1.1. Number of Network Layers

The data sizes of publicly available datasets range from 56 to 81,840 but are less
than 1000 for most datasets. Studies have shown that a 10-layer neural network model is
sufficient to successfully extract the hidden spectral features [49]. In general, the larger
the input sample size, the deeper the model. Currently, the most used neural network
model structure is composed of two to three convolutional layers and one or two fully
connected layers.

4.1.2. Effects of Convolution Kernel Parameters

According to Ng et al. [46], a convolution kernel is a weight matrix used for feature
detection that determines the size of the output feature map. Although the NCK varies
greatly among studies, the change in NCK has been reported to be closely related to
the sample size. A large dataset provides support for training many parameters. For
example, the training sets in Refs. [50,51] each contained more than 10,000 samples, and
the corresponding NCK values were also large.

Notably, the CKW and stride step must be assigned values by the user when defining
the CNN topology. In line with data processing for other 1D spectra [52], we think that the
relationship between CKW and stride step has a clear physical meaning when analyzing
atomic spectra. When setting the model parameters, the stride step should not exceed
the CKW to avoid information loss. In addition, the optimal CKW must be continuously
verified by testing to find the most suitable range. It is unwise to conclude that one method
is superior or inferior to another because the performance of a chemometric algorithm
genuinely depends on the specific dataset used. There is no universal “best” method, but
there may be a most “suitable” method for a given problem. Only more experiments and
experience can continuously explore a more optimal combination [53]. For example, when
the size of input samples is large, pooling and convolutional layers need to be appropriately
added to create a deep CNN. While the background of input wavelengths is complicated
in the context, the NCK can be increased, allowing the model to extract more features.

4.2. Understanding the Models

In line with the old saying that “there is no free lunch,” when applying the presented
ECNN, one must be aware of its costs and benefits. The end-to-end attributes function as
information distillation pipelines to enhance informative variables, extract overall features,
and directly filter out irrelevant information. The feature map truly corresponds to the
input spectrum owing to the spatial invariance of the CNN. However, as mentioned
earlier, the convolution kernel and the extracted features are abstract, resulting in features
quite different from the frequency- or time-domain features obtained using traditional
techniques. Stacking [25,29] is one of the ensemble learning methods. It can integrate model
strategies based on wavelength range selection, where several different wavelength ranges
are selected to build submodels for simultaneous prediction. From another point of view,
we note that some intervals are assigned smaller weights, and this idea is valuable. Stacking
methods consider not directly removing the intervals that contribute little to the iteration
and optimization processes. Instead, such intervals would be assigned smaller weights, and
thus, useful information is retained. Stacking has been proven successful in applications
involving other 1D spectral data. How to further interpret these abstract shapes and more
features of high-dimensional LIBS data, however, remains an open challenge that requires
more research.

In addition, the number of submodels T is an important parameter that dramatically
affects the ensemble model’s prediction results. When T is too large, the predictive accuracy
is appealing, but the model computation time is longer. With too small T, the superiority of
ensemble modeling cannot be demonstrated, and the corresponding predictive accuracy
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will be poor. Therefore, it is important to determine a proper T for the ensemble. This
work sets the value to 10 because the saturation phenomenon will appear when the value
is greater than 10.

4.3. Future Development Trends

Although the current models developed for the major elements are acceptable, they
could be improved. Based on the results, further research can be conducted in the
following aspects:

• Consider the measurement uncertainty that affects the results of the models: In several
remote LIBS measurements, such as ChemCam, issues that limit the accuracy and
precision of the elemental composition of targets are not necessarily related to the post
processing of the data, but in some cases with the experimental conditions [54,55]. The
proposed method should be tried out for more than just the chemical matrix effect,
such as with different sample states, variable laser-target distances, etc.

• Implement data augmentation algorithms: As demonstrated in the part of the results
section, a large enough training set size is crucial to the CNN model. However, as can
be seen from Table 1, after the size of the calibration dataset was expanded, the range
of the three elements was also greatly expanded. The most intuitive tendency may
be the diversification of the samples in LIBS detection. The fine distinction between
the sample quantity and the sample material diversity should be noted. In actual
situations, the dataset is usually unbalanced and limited. Thus, the number of samples
available for calibration modeling may be limited. In fact, this problem should be
fundamentally solved by increasing the number of training samples for each material,
that is, data augmentation. The augmentation simulates slightly different spectral
acquisition scenarios (e.g., instrumental offset, background lighting, etc.) so that they
created multiple (slightly different) copies of the original spectrum for the same target
value. The training sample dataset can be remarkably expanded so the models can
become robust to unseen variations. Actually, the problem of small dataset learning
occurs in various practical applications [56–58], which confirms that the model which
was established based on the original small dataset may not be inapplicable when
predicting future samples, since they are also valid data. Thus, in our future work, we
will try to fill the information gaps by systematically generating virtual samples.

• Design of lightweight models: Hardware deployment for lightweight models is also
an important future research direction for Mars rovers. The CNN spectral analysis
method is combined with portable hardware [36,59,60] to promote the practical ap-
plication of portable spectrometers in various fields. Two-dimensional CNNs have
unique advantages in image feature extraction, but 1D CNNs are better matches in
terms of dimensionality. In addition, 1D CNN models have more compact structures
and lower hardware requirements, making real-time, efficient, and low-cost complete
configurations possible. Therefore, the authors would like to emphasize that the
simpler the model, the easier it is to utilize and interpret in practical situations [61,62].
For example, to deploy a computational model in a realistic Mars environment, it is
much more desirable to have a lighter, simpler model that can run on modest micro-
processors than a highly complex architecture that demands more computation cost.

5. Conclusions

Deep learning methods have great application potential in spectroscopy analysis. To
better satisfy the current demands of Earth–Mars spectral correction for analyzing the Mars
surface composition, we examined deep learning-based spectral analysis methods and
their mechanisms, and constructed an end-to-end ECNN spectral data analysis system.
The experimental results for three elements of datasets with different sizes indicated that
the presented ECNN outperformed traditional techniques (single-CNN, ELM, and PLS
models) in terms of prediction performance. This study also provides an understanding of
the CNN training interpretation process based on spectral expertise along with insights into
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the data transformations performed in the CNN model through feature map visualization.
These findings are useful for dealing with the tricks of topology pruning and parameter
tuning and for uncovering the interpretable principles of CNN. In summary, the results
indicate that the presented ECNN method simplifies the feature selection process required
by traditional chemometric methods, improves the accuracy and robustness of spectral
analysis, reduces the risk of model overfitting, and provides a more reliable general spectral
analysis strategy for technicians in related industries.
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Appendix A. Hyperparameter Selection

1. Effect of CKW on the Generalizability of the Prediction Model

Previous research across many fields has demonstrated that the CKW significantly
influences pattern (feature) extraction and subsequent calibration modeling. If the CKW is
too large, the obtained characteristics might contain noisy and redundant data. Conversely,
if the CKW is too small, the complete scene of certain patterns cannot be extracted. Similarly,
in LIBS data analysis cases, a small CKW may not cover the waveband near the feature
emission lines. In contrast, a large CKW may result in the selection of unnecessary features,
in addition to the emission lines near characteristics, which could influence the prediction
ability of the regression model.

Figure A1 shows the prediction model results when the NCK was fixed at 10, 20, and 50.
(In these protocols, CKW was equal to the stride step, corresponding to no overlap between
different sub-intervals.) It is worth mentioning that the unit of CKW here is the number of
variables rather than nm. Considering that the LIBS data include only 240 observations,
this means that the number of samples is much lower than the number of features. If all
these characteristics are employed to build a regression model (first column in Figure A1a),
the Rp

2 of the prediction model is slightly lower than when CKW = 10. The other point
that must be considered is that when CKW is equal to the stride step, it is equivalent
to dividing the full spectrum of original LIBS data into certain subintervals on average.
When the extracted features from each subinterval were used to build a prediction model
(red triangles in Figure A1b), Rp

2 was different between the subintervals. In summary,
modeling using features from a particular subinterval, or all features, is not preferred, and
it is necessary to identify the optimal combination of parameters prior to modeling.

http://pds-geosciences.wustl.edu/missions/msl/chemcam.htm
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2. Effect of NCK on the Generalizability of the Prediction Model

In theory, a larger NCK allows us to capture the inherent characteristics of raw LIBS
data from multiple dimensions. Nevertheless, when the NCK increases, the number of
extracted characteristics increases at the same time. For instance, assuming that the stride
step and CKW are equally fixed to 100, when a convolutional kernel moves through the
LIBS waveband region, it will generate 61 (6144/100) features; therefore, M convolutional
kernels will result in 61×M features. The effects of the NCK on the generalizability of the
calibration model are shown in Figure A2, which clearly shows the following: (1) when
CKW was small (e.g., 20 or 50, as shown by the red triangles and green dots in Figure A2,
respectively), NCK increased, Rp

2 first increased significantly and then stabilized; (2) when
CKW was large (e.g., 100, purple squares in Figure A2), Rp

2 increased significantly as NCK
increased from 5 to 60 and then decreased slightly when NCK further increased to 80. Thus,
the generalizability of the prediction model was affected by the coupling between the CKW
and NCK.
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3. Effect of Stride Step on the Generalizability of the Prediction Model

As mentioned above, when the CKW is the same as the stride step, it is equivalent to
dividing the entire region of the original LIBS data into certain sub-intervals on average.
Nevertheless, in some cases, the feature emission lines may be located at the edges of
two neighboring sub-intervals, which will prevent the convolutional kernel from collecting
intrinsic knowledge in the vicinity of the feature emission lines. Reducing the stride step
might be a promising way to address this issue. Figure A3 illustrates the effect of stride
step on the prediction ability of the models for CKW = 10, 20, and 50 and NCK = 20. When
the stride step is smaller than CKW, the entire region of LIBS data can be divided into over-
lapping subintervals. In addition, the consideration of this overlap improves the prediction
ability of the calibrated model. For instance, consider the case of the feature emission line
at 288.24 nm. When both the CKW and the stride step are set to 20, the corresponding
subinterval is 288.15–289.14 nm. When the stride step is 10, the corresponding subintervals
are 287.66–288.64 nm and 288.15–289.14 nm. The Rp

2 values of the model with extracted
characteristics in these two cases are 0.6639 and 0.6906, respectively, indicating that small
stride steps (stride step < CKW) are beneficial for enabling the convolutional kernels to
capture characteristics near these feature emission lines. Comparable results were also
obtained for the other parameters in Figure A3.
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The effect of the mini-batch size on the predictive ability of the model was evaluated
when the stride size, CKW, NCK, and max epochs were set to 1, 10, 50, and 2000, respectively.
As shown in Figure A4, when the mini-batch size was around 100, Rp

2 tended to be
saturated, indicating that the CNN model was sufficiently trained for prediction. However,
as the mini-batch size increased, Rp

2 decreased. This might be due to the small number of
samples in the training dataset (around 200 × 0.632~126); increasing the mini-batch size
reduced the number of updates of convolution kernel parameters in each iterative epoch.
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5. Paradigm for the Overall Design of CNN Parameters

Parameter tuning, which is the key to deep neural network performance, is the most
cumbersome step and requires constant trial-and-error. The parameters that must be
manually set in a CNN model usually include CKW, NCK, and stride step. At present,
there is no satisfactory theory to guide the determination of the various parameters in
ANN algorithms, which is indeed a general limitation and flaw of ANNs. We think that the
above three parameters have nonmonotonic relationships with model performance (not
“the larger the better” or “the smaller the better”). Moreover, the three parameters are not
completely independent; instead, they have mutually coupled relationships. Based on the
above series of experimental studies, the design paradigm for the CNN model parameters
in LIBS analysis cases is summarized as follows.

(1) The CKW should not be too small. If the CKW is too small, the convolution kernel
extracts the characteristics in some subintervals that are not near the characteris-
tic spectral line, and the model constructed based on these features usually has
poor generalization performance. When the CKW is moderate, each feature cap-
tured by the convolution kernel contains spectral information near the characteris-
tic spectral line, and the model constructed from these features usually has good
generalization performance.

(2) The NCK should not be too large. When the CKW is small, the number of features
captured by a single convolution kernel is relatively large. In this case, if the NCK is
continuously increased, the total number of features captured by all the convolution
kernels will double, and the number of features will vastly exceed the number of
samples, causing overfitting and a gradual decrease in the model’s predictive per-
formance. In contrast, when the CKW is large, the model’s predictive performance
increases, and after the NCK reaches a threshold value, further increasing the NCK
slightly reduces the model’s predictive performance. Therefore, a higher NCK value
is not necessarily better. When the CKW value is appropriate, the NCK should not
exceed 60.

(3) The stride step should be smaller than the CKW. When the stride step is small, more
characteristics can be captured, which helps enhance the model’s prediction ability.
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