Analysis of Water Yield Changes in the Johor River Basin, Peninsular Malaysia Using Remote Sensing Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.3. Methodology
2.3.1. LULC Mapping
Pre-Processing of Satellite Images
Satellite Images Classification
2.3.2. Satellite-Based Water Balance Extraction
Modeling WY Using Soil Water Assessment Tool (SWAT)
2.3.3. Calibration and Validation
Calibration of TMPA Rainfall with Reference to Observed Rain Gauge Data
Calibration and Validation of MODIS ET Data
2.3.4. Satellite-Based Water Yield Changes from Individual LULC Classes
- = total WY from LULC classes;
- AOOP = WY from agriculture LULC class;
- BL = WY from bare land class;
- FRST = WY from forest class;
- OP = WY from oil palm class;
- UB = WY from urban class;
- WB = WY from water body class.
- WY2000–2005 = changes total WY between 2000 and 2005;
- b1, b2, b3, b4, b5, and b6 are coefficients of WY changes due to the LULC classes of agriculture, bare land, forest, oil palm, urban, and water body, respectively.
2.3.5. Mann–Kendall Statistics for Trends Analysis
3. Results
3.1. Calibration and Validation of Satellite Data
3.1.1. Calibration and Validation of TMPA
3.1.2. Calibration and Validation of MODIS ET
3.2. Assessment of Fully Satellite-Based Water Yield Compared to In-Situ-Derived Water Yield
3.2.1. Validation with River Flow Data
3.2.2. Validation with Soil Water Assessment Tool (SWAT)
3.2.3. Comparison of Similar Studies
3.3. Analysis of LULC Changes and Water Yield
3.4. Characterisation of WY in All Watersheds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spruce, J.; Bolten, J.; Mohammed, I.N.; Srinivasan, R.; Lakshmi, V. Mapping Land Use Land Cover Change in the Lower Mekong Basin from 1997 to 2010. Front. Environ. Sci. 2020, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Khare, D.; Mondal, A. Past, Present and Future Land Use Changes and Their Impact on Water Balance. J. Environ. Manag. 2017, 197, 582–596. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chang, J.; Luo, L.; Wang, Y.; Guo, A.; Ma, F.; Fan, J. Spatiotemporal Impacts of Land Use Land Cover Changes on Hydrology from the Mechanism Perspective Using SWAT Model with Time-Varying Parameters. Hydrol. Res. 2019, 50, 244–261. [Google Scholar] [CrossRef]
- Wang, L.; Pijanowski, B.; Yang, W.; Zhai, R.; Omrani, H.; Li, K. Predicting Multiple Land Use Transitions under Rapid Urbanization and Implications for Land Management and Urban Planning: The Case of Zhanggong District in Central China. Habitat Int. 2018, 82, 48–61. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Yin, Z.; Wen, X.; Si, J.; Li, C.; Deo, R.C. Identifying Separate Impacts of Climate and Land Use/Cover Change on Hydrological Processes in Upper Stream of Heihe River, Northwest China. Hydrol. Process. 2017, 31, 1100–1112. [Google Scholar] [CrossRef]
- Lang, Y.; Song, W.; Zhang, Y. Responses of the Water-Yield Ecosystem Service to Climate and Land Use Change in Sancha River Basin, China. Phys. Chem. Earth 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Paz, I.; Tchiguirinskaia, I.; Schertzer, D. Rain Gauge Networks’ Limitations and the Implications to Hydrological Modelling Highlighted with a X-Band Radar. J. Hydrol. 2020, 583, 124615. [Google Scholar] [CrossRef]
- Kim, G.S.; Lim, C.H.; Kim, S.J.; Lee, J.; Son, Y.; Lee, W.K. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T. Optimal Ground Control Points for Geometric Correction Using Genetic Algorithm with Global Accuracy Optimal Ground Control Points for Geometric Correction Using. Eur. J. Remote Sens. 2017, 48, 101–120. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Yuan, L.; Yang, X.; Fu, B. Ecological-Hydrological Processes in Arid Environment: Past, Present and Future. J. Geogr. Sci. 2017, 27, 1577–1594. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Wah Win, K.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Assessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data Sparse Mountainous Watershed in Myanmar. Remote Sens. 2017, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Jiang, G.; Wei, Y.; Mu, X.; Wang, F.; Zhao, G.; Sun, W. Streamflow Regimes of the Yanhe River under Climate and Land Use Change, Loess Plateau, China. Hydrol. Process. 2015, 29, 2402–2413. [Google Scholar] [CrossRef]
- Li, S.; He, F.; Zhang, X.; Zhou, T. Evaluation of Global Historical Land Use Scenarios Based on Regional Datasets on the Qinghai–Tibet Area. Sci. Total Environ. 2019, 657, 1615–1628. [Google Scholar] [CrossRef]
- Mat Nazir, M.H.; Sulaiman, W.N.A.; Juahir, H. Hydrologic Response Characteristics of a Tropical Catchment to Land Use Changes: A Case Study of The Nerus Catchment. Environ. Earth Sci. 2015, 73, 7533–7545. [Google Scholar] [CrossRef]
- Li, Q.; Wei, X.; Zhang, M.; Liu, W.; Fan, H.; Zhou, G.; Giles-Hansen, K.; Liu, S.; Wang, Y. Forest Cover Change and Water Yield in Large Forested Watersheds: A Global Synthetic Assessment. Ecohydrology 2017, 10, e1838. [Google Scholar] [CrossRef]
- Soulis, K.X.; Dercas, N.; Papadaki, C. Effects of Forest Roads on the Hydrological Response of a Small-Scale Mountain Watershed in Greece. Hydrol. Process. 2015, 29, 1772–1782. [Google Scholar] [CrossRef]
- Mateus, C.; Tullos, D.D.; Surfleet, C.G. Hydrologic Sensitivity to Climate and Land Use Changes in the Santiam River Basin, Oregon. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 400–420. [Google Scholar] [CrossRef]
- Hashim, M.; Reba, N.M.; Nadzri, M.I.; Pour, A.B.; Mahmud, M.R.; Yusoff, A.M.R.M.; Ali, M.I.; Jaw, S.W.; Hossain, M.S. Satellite-Based Run-Off Model for Monitoring Drought in Peninsular Malaysia. Remote Sens. 2016, 8, 633. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Merino, E.; Lewis, Q.W.; Lindsey, E.O.; Yang, X. A Pathway to the Automated Global Assessment of Water Level in Reservoirs with Synthetic Aperture Radar (SAR). Remote Sens. 2020, 12, 1353. [Google Scholar] [CrossRef] [Green Version]
- FAO. WWC towards a Water and Food Secure Future Critical Perspectives for Policy-Makers; FAO: Rome, Italy, 2015. [Google Scholar]
- Hofste, R.W.; Reig, P.; Schleifer, L. 17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress|World Resources Institute. Available online: https://www.wri.org/insights/17-countries-home-one-quarter-worlds-population-face-extremely-high-water-stress (accessed on 26 September 2021).
- Department of Irrigation and Drainage Malaysia. Review of the National Water Resources Study (2000–2050) and Formulation of National Water Resources Policy; Department of Irrigation and Drainage Malaysia: Kuala Lumpur, Malaysia, 2011. [Google Scholar]
- Rahman, S. The Struggle for Balance’s Environmental Issues, Overlaps and Future. In Johor: Abode for Development; Hutchinson, F.E., Rahman, S., Eds.; ISEAS Publishing: Singapore, 2020; pp. 473–500. [Google Scholar]
- Rahman, S. Johor’s Forest City Faces Critical Challenges. In Johor: Abode for Development; Hutchinson, F.E., Rahman, S., Eds.; ISEAS Publishing: Singapore, 2020; pp. 447–472. [Google Scholar]
- Pakiam, G.K.; Mui, H.; Terrace, K. Trends in Southeast Asia Agriculture in Johor: What’s Left; ISEAS Publishing: Singapore, 2018; ISBN 978-981-4818-81-0. [Google Scholar]
- Ewing, J.; Domondon, K. Drought, Pollution and Johor’s Growing Water Needs; ISEAS Publishing: Singapore, 2016. [Google Scholar]
- Wang, X.G.; Su, F.Z.; Zhang, J.J.; Cheng, F.; Hu, W.Q.; Ding, Z. Construction Land Sprawl and Reclamation in the Johor River Estuary of Malaysia since 1973. Ocean Coast. Manag. 2019, 171, 87–95. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of Land-Use and Climate Variability on Hydrological Components in the Johor River Basin, Malaysia. Hydrol. Sci. J. 2015, 60, 873–889. [Google Scholar] [CrossRef]
- Banjir, R.; Lembangan, D.; Johor, S.; Shakir, A.; Saudi, M.; Juahir, H.; Azid, A.; Azaman, F. Flood Risk Index Assessment in Johor River Basin. Malays. J. Anal. Sci. 2015, 19, 991–1000. [Google Scholar]
- Tan, M.L.; Chua, V.P.; Li, C.; Brindha, K. Spatiotemporal Analysis of Hydro-Meteorological Drought in the Johor River Basin, Malaysia. Theor. Appl. Climatol. 2019, 135, 825–837. [Google Scholar] [CrossRef]
- Bin, A.; Ali, M.D. Flood Inundation Modeling and Hazard Mapping under Uncertainty in the Sungai Johor Basin, Malaysia; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Tan, M.L.; Juneng, L.; Tangang, F.T.; Chan, N.W.; Ngai, S.T. Future Hydro-Meteorological Drought of the Johor River Basin, Malaysia, Based on CORDEX-SEA Projections. Hydrol. Sci. J. 2019, 64, 921–933. [Google Scholar] [CrossRef]
- Hutchinson, F.E. Situating Johor. In Johor: Abode for Development; ISEAS Publishing: Singapore, 2020; pp. 5–25. [Google Scholar]
- Shirazi, S.M.; Adham, M.I.; Saha, R.R.; Khan, M.Z.H.; Karim, M.R. Runoff Assessment of Watershed in South Johor of Malaysia. World J. Sci. Eng. 2017, 2, 1–22. [Google Scholar]
- Ju, Z.; Leong Tan, M.; Samat, N.; Chang, C.K. Comparison of Landsat 8, Sentinel-2 and Spectral Indices Combinations for Google Earth Engine-Based Land Use Mapping in the Johor River Basin, Malaysia. Malays. J. Soc. Space 2021, 17, 30–46. [Google Scholar] [CrossRef]
- Segal, D.; Harvard, U. Singapore’s Water Trade with Malaysia and Alternatives. In Desalination; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Prusty, B.A.K.; Chandra, R.; Azeez, P.A. Wetland Science: Perspectives from South Asia. In Wetland Science: Perspectives from South Asia; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–587. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Gu, G.; Huffman, G.J. Evaluation of Quantitative Precipitation Estimations through Hydrological Modeling in IFloodS River Basins. J. Hydrometeorol. 2017, 18, 529–553. [Google Scholar] [CrossRef]
- Kite, G.W.; Pietroniro, A. Remote Sensing Applications in Hydrological Modelling. Hydrol. Sci. J. 1996, 41, 563–591. [Google Scholar] [CrossRef]
- Fayaz, A.; Shafiq, M.U.; Singh, H.; Ahmed, P. Assessment of Spatiotemporal Changes in Land Use/Land Cover of North Kashmir Himalayas from 1992 to 2018. Model Earth Syst. Environ. 2020, 6, 1189–1200. [Google Scholar] [CrossRef]
- Sani, D.A.; Hashim, M.; Hossain, M.S. Recent Advancement on Estimation of Blue Carbon Biomass Using Satellite-Based Approach. Int. J. Remote Sens. 2019, 40, 7679–7715. [Google Scholar] [CrossRef]
- Thompson, D.R.; Hochberg, E.J.; Asner, G.P.; Green, R.O.; Knapp, D.E.; Gao, B.C.; Garcia, R.; Gierach, M.; Lee, Z.; Maritorena, S.; et al. Airborne Mapping of Benthic Reflectance Spectra with Bayesian Linear Mixtures. Remote Sens. Environ. 2017, 200, 18–30. [Google Scholar] [CrossRef]
- Ahmed, B.; Kamruzzaman, M.D.; Zhu, X.; Shahinoor Rahman, M.D.; Choi, K. Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sens. 2013, 5, 5969–5998. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current Capabilities and Research Opportunities in Applied Watershed Modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Guo, T.; Engel, B.A.; Shao, G.; Arnold, J.G.; Srinivasan, R.; Kiniry, J.R. Development and Improvement of the Simulation of Woody Bioenergy Crops in the Soil and Water Assessment Tool (SWAT). Environ. Model. Softw. 2019, 122, 104295. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. Swat: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Arnold, J.G.; Youssef, M.A.; Yen, H.; White, M.J.; Sheshukov, A.Y.; Sadeghi, A.M.; Moriasi, D.N.; Steiner, J.L.; Amatya, D.M.; Skaggs, R.W.; et al. Hydrological Processes and Model Representation: Impact of Soft Data on Calibration. Trans. ASABE 2015, 58, 1637–1660. [Google Scholar] [CrossRef]
- Tanaka, T.; Tachikawa, Y.; Iachikawa, Y.; Yorozu, K. Impact Assessment of Upstream Flooding on Extreme Flood Frequency Analysis by Incorporating a Flood-Inundation Model for Flood Risk Assessment. J. Hydrol. 2017, 554, 370–382. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Liu, W. Separating the Impacts of Climate Change and Land Surface Alteration on Runoff Reduction in the Jing River Catchment of China. Catena 2016, 147, 80–86. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Huang, G.H. A Study on DEM-Derived Primary Topographic Attributes for Hydrologic Applications: Sensitivity to Elevation Data Resolution. Appl. Geogr. 2008, 28, 210–223. [Google Scholar] [CrossRef]
- Nilawar, A.P.; Waikar, M.L. Use of SWAT to Determine the Effects of Climate and Land Use Changes on Streamflow and Sediment Concentration in the Purna River Basin, India. Environ. Earth Sci. 2018, 77, 783. [Google Scholar] [CrossRef]
- Li, Z.; Deng, X.; Wu, F.; Hasan, S.S. Scenario Analysis for Water Resources in Response to Land Use Change in the Middle and Upper Reaches of the Heihe River Basin. Sustainability 2015, 7, 3086–3108. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C. Spatial Climate Justice and Green Infrastructure Assessment: A Case Study for the Huron River Watershed, Michigan, USA. GI_Forum 2016, 4, 176–190. [Google Scholar] [CrossRef]
- Chen, Y.; Ale, S.; Rajan, N.; Munster, C. Assessing the Hydrologic and Water Quality Impacts of Biofuel-Induced Changes in Land Use and Management. GCB Bioenergy 2017, 9, 1461–1475. [Google Scholar] [CrossRef]
- Anand, J.; Gosain, A.K.; Khosa, R. Prediction of Land Use Changes Based on Land Change Modeler and Attribution of Changes in the Water Balance of Ganga Basin to Land Use Change Using the SWAT Model. Sci. Total Environ. 2018, 644, 503–519. [Google Scholar] [CrossRef]
- Swat Input/Output File Documentation, Version 2012. Available online: https://swat.tamu.edu/docs/ (accessed on 28 September 2022).
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the Impact of Climate Change on Water Resources in Iran. Water Resour. Res. 2009, 45, 7615. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. SWAT-CUP-2012. SWAT Calibration and Uncertainty Program—A User Manual; Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2012. [Google Scholar]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Nawaz, N. Spatial Distribution of the Trends in Precipitation and Precipitation Extremes in the Sub-Himalayan Region of Pakistan. Theor. Appl. Climatol. 2019, 137, 2755–2769. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Liu, P.; Choo, K.K.R.; Huang, F. Spectral–Spatial Multi-Feature-Based Deep Learning for Hyperspectral Remote Sensing Image Classification. Soft Comput. 2017, 21, 213–221. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Envrionment. In Symposia of the Society for Experimental Biology; Cambridge University Press (CUP): Cambridge, UK, 1965; Volume 19. [Google Scholar]
- Shah, S.M.H.; Mustaffa, Z.; Yusof, K.W. Disasters Worldwide and Floods in the Malaysian Region: A Brief Review. Indian J. Sci. Technol. 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Hamidon, N.; Hong, C.J.; Awang, M.; Rahman, M.A.A.; Ahmad, F.; Musa, K.; Yusof, F.M.; Adnan, S.H.; Mustafa, M.S.S. Future Flood Forecasting in Bukit Merah Using HEC-HMS Software. In Proceedings of the Third International Conference on Separation Technology 2020 (ICoST 2020), Johor, Malaysia, 15–16 August 2020; Volume 200, pp. 183–189. [Google Scholar] [CrossRef]
- Hashim, M. Mapping the Daily Rainfall over an Ungauged Tropical Micro-Watershed: A Downscaling Algorithm Using GPM Data. Water 2020, 12, 1661. [Google Scholar] [CrossRef]
- Memarian, H.; Balasundram, S.K.; Abbaspour, K.C.; Talib, J.B.; Boon Sung, C.T.; Sood, A.M. SWAT-Based Hydrological Modelling of Tropical Land-Use Scenarios. Hydrol. Sci. J. 2014, 59, 1808–1829. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.X.; Cao, H.W.; Yu, X.X.; Liu, B.; Zhu, S.B.; Cheng, C.; Yin, L.X.; Xie, G. Effect of Climatic Change and Afforestation on Water Yield in the Rocky Mountain Area of North China. For. Syst. 2015, 24, e014. [Google Scholar] [CrossRef] [Green Version]
- Healey, N.C.; Rover, J.A. Analyzing the Effects of Land Cover Change on the Water Balance for Case Study Watersheds in Different Forested Ecosystems in the USA. Land 2022, 11, 316. [Google Scholar] [CrossRef]
- Khand, K.; Senay, G.B. Runoff Response to Directional Land Cover Change across Reference Basins in the Conterminous United States. Adv. Water Resour. 2021, 153, 103940. [Google Scholar] [CrossRef]
- Sharannya, T.M.; Venkatesh, K.; Mudbhatkal, A.; Dineshkumar, M.; Mahesha, A. Effects of Land Use and Climate Change on Water Scarcity in Rivers of the Western Ghats of India. Environ. Monit. Assess. 2021, 193, 820. [Google Scholar] [CrossRef]
- Giri, S.; Arbab, N.N.; Lathrop, R.G. Water Security Assessment of Current and Future Scenarios through an Integrated Modeling Framework in the Neshanic River Watershed. J. Hydrol. 2018, 563, 1025–1041. [Google Scholar] [CrossRef]
- Azadi, H.; Keramati, P.; Taheri, F.; Rafiaani, P.; Teklemariam, D.; Gebrehiwot, K.; Hosseininia, G.; Van Passel, S.; Lebailly, P.; Witlox, F. Agricultural Land Conversion: Reviewing Drought Impacts and Coping Strategies. Int. J. Disaster Risk Reduct. 2018, 31, 184–195. [Google Scholar] [CrossRef]
- Shah, M.I.; Abbas, S.; Olohunlana, A.O.; Sinha, A. The Impacts of Land Use Change on Biodiversity and Ecosystem Services: An Empirical Investigation from Highly Fragile Countries. Sustain. Dev. 2023, 31, 1384–1400. [Google Scholar] [CrossRef]
- He, X.; Liang, J.; Zeng, G.; Yuan, Y.; Li, X. The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services. Glob. Chall. 2019, 3, 1800095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obaid, H.A.; Shahid, S. Soil Erosion Susceptibility of Johor River Basin. Water Environ. J. 2017, 31, 367–374. [Google Scholar] [CrossRef]
- Mazilamani, L.S.; Annammala, K.V.; Nainar, A.; Najib, M.Z.M. Trace Element Concentrations in Fine Sediment and Linkages to Non-Point Pollution Source: Lower Johor River Basin. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 072005. [Google Scholar] [CrossRef]
- Pak, H.Y.; Chuah, C.J.; Yong, E.L.; Snyder, S.A. Effects of Land Use Configuration, Seasonality and Point Source on Water Quality in a Tropical Watershed: A Case Study of the Johor River Basin. Sci. Total Environ. 2021, 780, 146661. [Google Scholar] [CrossRef] [PubMed]
Sensor | Scene ID | Path/Row | Date of Acquisition | * Monsoon |
---|---|---|---|---|
Landsat 7 ETM+ | LEO71250582000104EDC00 | 125/058 | 29 September 2000 | Post-SW |
LEO71250592005356EDC00 | 125/059 | 25 September 2005 | Post-SW | |
LEO71260582010292EDC00 | 126/058 | 8 August 2009 | SW | |
Landsat 8 OLI | LE081260592015181EDC00 | 126/059 | 2 November 2015 | NE |
Parameters | Details |
---|---|
WLATITUDE | Latitude of the climate station |
WLONGITUDE | Longitude of the climate station |
WELEV | Height of the climate station in meters above mean sea level |
RAIN_YRS | Number of years of maximum monthly half-hour rainfall data used to define values for average per month of the year |
TMPMX | Average daily maximum air temperature for each month in degree Celsius (°C) |
TMPMX | Average daily maximum air temperature for each month in degree Celsius (°C) |
TMPSTDMN | The standard deviation for daily minimum air temperature for each month in degree Celsius (°C) |
PCPMM | The average total of monthly precipitation in milometers (mm) |
PCPSTD | The standard deviation for daily precipitation for each month expressed as in mm of water per day. |
PCPSKW | The skew coefficient for daily rainfall for each month |
PR_W1 | Possibility of a wet day following a dry day for each month |
PR_W2 | Possibility of a wet day following a wet day for each month |
PCPD | mean numbers of days of rainfall for each month |
RAINHHMX | Most extreme half-hour precipitation for each month |
SOLARAV | Average daily solar radiation for each month. |
DEWPT | Average daily few points temperature per month of the year in degree Celsius (°C) |
WNDAV | Average daily wind speed for each month (m/s) |
Parameter | Details |
---|---|
TEXTURE | Texture of soil layer |
HYDGRP | Soil hydrologic group |
SOL_ZMX | Maximum rooting depth for soil profile (mm) |
ANION_EXCL | A fraction of porosity (void space) from which union are excluded |
SOL_CRK | Crack volume potential of soil |
SOL_PH1 | A soil PH of the first layer of soil. |
SOL_Z1 | Depth from the soil surface to the bottom of the first layer of soil (mm). |
SOL_BD1 | Moist bulk density of the first layer of soil (g/cm3) |
SOL_AWC1 | Accessible water capacity of the soil layer number one (mm) |
SOL_K1 | Wet hydraulic conductivity of the first layer of soil (mm/h). |
SOL_CBN1 | The organic carbon content of layer one of the soil (%) |
CLAY1 | The clay content of layer one of the soil (%). |
SILT1 | Silt content of layer one of the soil (%). |
SAND1 | Sand content of layer one of the soil (%) |
ROCK1 | Rock fragment content of layer one of the soil (%) |
SOL_ALB1 | Moist soil albedo of layer one of the soil. |
NLAYERS | Number of layers in the soil |
SOL_EC1 | Soil electrical conductivity of the first layer of soil(ds/m). |
SOL_CAL1 | Calcium carbonate content of layer one of the soil (%) |
USLE_k1 | USLE equation of soil erodibility (K) factor of the first layer of soil. |
S/NO. | Stations | Lat. (N) | Long. (E) | Rain Gauge Obs. | TMPA Obs. | ||
---|---|---|---|---|---|---|---|
Annual Rainfall (mm/yr) | R2 | NSE | BIAS% | ||||
1 | Sg. Jengeli | 01°57′00″ | 103°39′00″ | 2268.38 | 0.67 | 0.65 | 9 |
2 | Sg. Johor | 01°45′30″ | 103°50′00″ | 2158.92 | 0.65 | 0.63 | 10 |
3 | Sg. Johor * | 01°35′30″ | 103°56′30″ | 2592.13 | 0.69 | 0.67 | 8 |
4 | Sg. Layang | 01°32′30″ | 103°53′00″ | 2106.36 | 0.64 | 0.62 | −9 |
5 | Sg. Lebak | 01°49′00″ | 103°48′00″ | 2323.95 | 0.73 | 0.71 | −7 |
6 | Sg. Linggiu | 01°59′30″ | 103°40′30″ | 2085.75 | 0.60 | 0.60 | −8 |
7 | Sg. Sayong | 01°52′30″ | 103°30′00″ | 2435.79 | 0.75 | 0.73 | 8 |
8 | Sg. Seluyut | 01°45′00″ | 104°00′00″ | 2388.05 | 0.70 | 0.69 | 4 |
9 | Sg. Semangar | 01°44′00″ | 103°40′00″ | 2487.75 | 0.68 | 0.66 | 9 |
S/No. | Months | WY from Satellite-Based Water Balance Equation (mm/Month) | WY from SWAT (mm/Month) | ||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2000 | 2005 | 2010 | 2015 | ||
1 | January | 165.76 | 175.52 | 124.29 | 215.86 | 169.23 | 135.93 | 157.87 | 200.67 |
2 | February | 119.49 | 233.95 | 250.14 | 128.24 | 103.88 | 247.23 | 226.17 | 122.59 |
3 | March | 103.86 | 100.66 | 118.17 | 161.44 | 139.47 | 55.66 | 126.02 | 173.01 |
4 | April | 122.57 | 85.26 | 94.83 | 133.98 | 143.26 | 42.46 | 100.00 | 117.4 |
5 | May | 82.38 | 79.35 | 62.40 | 97.51 | 88.06 | 83.47 | 69.59 | 160.63 |
6 | June | 35.17 | 43.82 | 54.49 | 70.20 | 38.08 | 34.09 | 72.12 | 82.49 |
7 | July | 64.88 | 64.98 | 66.97 | 96.81 | 76.48 | 82.08 | 103.29 | 110.53 |
8 | August | 63.60 | 103.94 | 75.91 | 86.81 | 83.36 | 118.55 | 88.80 | 93.97 |
9 | September | 77.49 | 82.92 | 84.60 | 122.44 | 72.36 | 124.4 | 77.35 | 146.65 |
10 | October | 65.63 | 171.61 | 86.52 | 254.29 | 78.96 | 189.34 | 79.73 | 229.29 |
11 | November | 94.40 | 133.05 | 294.25 | 230.85 | 83.35 | 174.51 | 256.78 | 217.80 |
12 | December | 228.87 | 161.15 | 219.50 | 367.89 | 194.90 | 171.16 | 155.32 | 317.74 |
Total WY (mm/yr) | 1224.10 | 1436.21 | 1532.07 | 1966.32 | 1251.41 | 1458.88 | 1513.04 | 1972.77 |
Watershed/Catchment | Type of Watershed/Catchment | Size (km2) | Mean Annual Precipitation (mm) | Total Water Yield (mm yr−1) | References/Approach Satellite |
---|---|---|---|---|---|
Johor River | Oil palm plantation, forest, and semi-urban | 2367.17 | 2500 | 710 | This study/Satellite |
Langat River | Semi-Urban | 1257.70 | 2401 | 1207 | [18]/Satellite |
Layang | Semi-Urban | 33.61 | 2690 | 1334 | [69]/SWAT/Satellite |
Pendang Terap | Forest | 1032.30 | 2406 | 868 | [18]/Satellite |
Hulu Perak | Forest | 857.30 | 2641 | 687 | [18]/Satellite |
Kenyir Lake | Forest | 1260.00 | 2606 | 1473 | [18]/Satellite |
Johor River | Semi-Urban | 2636.50 | 788 | [18]/Satellite | |
Johor River | Semi-Urban | 1652.00 | 2500 | 706 | [29]/SWAT/Satellite |
Hulu Langat | Forest | 390.26 | 2453 | 742 | [70]/SWAT/Satellite |
LULC Classes | Yr 2000 | Yr 2005 | Yr 2010 | Yr 2015 | ||||
---|---|---|---|---|---|---|---|---|
Area | WY | Area | WY | Area | WY | Area | WY | |
(ha) | (mm/yr) | (ha) | (mm/yr) | (ha) | (mm/yr) | (ha) | (mm/mr) | |
Agriculture other than oil palm | 11,943.5 | 535.28 | 24,412 | 717.18 | 33,480.8 | 879.59 | 38,169.3 | 983.06 |
Bare land | 2885.4 | 856.7 | 2409.66 | 632.46 | 2145.87 | 314.88 | 5246.1 | 306.04 |
Forest | 101,717 | 77.33 | 78,060.24 | 196.29 | 46,648.6 | 277.53 | 25,624.3 | 358.76 |
Oil palm | 95,051.1 | 101.03 | 103,527 | 118.92 | 108,755.6 | 237.97 | 123,164 | 280.4 |
Urban | 10,683 | 170.95 | 15,517.1 | 416.41 | 33,091 | 549.4 | 33,924.1 | 592.9 |
Water bodies | 14,437.4 | 63.37 | 12,791.4 | 55.7 | 12,595.5 | 53.08 | 10,589.6 | 29.66 |
Total Water Yield (mm/yr) In JRB | 606.32 | 756.21 | 803.07 | 1074.1 |
LULU Categories | 2000 (%) | 2005 (%) | 2010 (%) | 2015 (%) | ||||
---|---|---|---|---|---|---|---|---|
Prod. | User | Prod. | User | Prod. | User | Prod. | User | |
Agricultural area | 86.33 | 92.64 | 91.33 | 85.50 | 86.33 | 87.83 | 92.00 | 89.46 |
Bare Land | 89.67 | 89.67 | 88.00 | 91.10 | 91.33 | 92.92 | 90.26 | 87.55 |
Forest | 93.00 | 88.48 | 85.00 | 85.93 | 98.00 | 88.91 | 90.68 | 92.45 |
Oil Palm | 94.67 | 85.88 | 88.00 | 86.52 | 86.33 | 86.33 | 88.76 | 89.77 |
Urban | 88.00 | 92.74 | 86.33 | 87.83 | 91.33 | 92.92 | 89.44 | 90.26 |
Waterbody | 91.33 | 94.55 | 89.67 | 89.67 | 88.00 | 92.74 | 92.33 | 89.84 |
Overall Kappa | 89.00 | 85.67 | 88.67 | 88.05 | ||||
Overall Accuracy | 90.50 | 87.72 | 90.22 | 86.89 |
S/No. | LULC Classes | 2000 WY (mm/yr) | 2005 WY (mm/yr) | 2010 WY (mm/yr) | 2015 WY (mm/yr) | Δ 2000–2015 (%) | p-Val. | RMSE |
---|---|---|---|---|---|---|---|---|
1 | Agriculture other than oil palm | 535.28 | 717.18 | 879.59 | 983.06 | 20.58 | 0.001 | 0.64 |
2 | Bare land | 856.7 | 632.46 | 314.88 | 306.04 | 25.31 | 0.001 | 0.58 |
3 | Forest | 77.33 | 196.29 | 277.53 | 358.76 | 12.93 | 0.001 | 0.56 |
4 | Oil palm | 101.03 | 118.92 | 237.97 | 280.4 | 8.24 | 0.001 | 0.6 |
5 | Urban | 170.95 | 416.41 | 549.4 | 592.9 | 19.39 | 0.001 | 0.62 |
6 | Water body | 63.37 | 55.7 | 53.08 | 29.66 | 1.55 | 0.001 | 0.59 |
* LULC Classes | LULC Changes 2000–2005 | LULC Changes 2005–2010 | LULC Changes 2010–2015 | LULC Changes 2000–2015 | ||||
---|---|---|---|---|---|---|---|---|
S/No. | Ha | % | Ha | % | Ha | % | Ha | % |
1 | 12,455.73 | 5.26 | 9081.63 | 3.84 | 22,838.76 | 9.67 | 44,355.87 | 18.78 |
2 | −482.94 | −0.20 | −256.59 | −0.11 | 293.76 | 0.12 | −448.11 | −0.19 |
3 | −23,590.98 | −9.97 | −31,476.87 | −13.30 | −23,920.47 | −10.13 | −78,897.78 | −33.40 |
4 | 8429.49 | 3.56 | 5261.31 | 2.22 | 18,265.68 | 7.73 | 4644.45 | 13.51 |
5 | 4824.90 | 2.04 | 17,583.48 | 7.43 | 21,307.23 | 9.02 | 43,695.90 | 18.50 |
6 | −1636.20 | −0.69 | −192.96 | −0.08 | −2253.60 | −0.95 | −4061.43 | −1.72 |
Changes in Water yield (mm) | 149.89 | 16.02 | 46.86 | 5.01 | 271.03 | 28.97 | 467.78 | 50.00 |
LULC Classes | Estimate | Std. Error | t Value |
---|---|---|---|
Intercept | −0.004165 *** | 0.001056 | −3.942 |
Agriculture | 1.643754 *** | 0.040208 | 40.881 |
Bare land | 1.093582 *** | 0.060279 | 18.142 |
Forest | 1.003378 *** | 0.089682 | 11.188 |
Oil Palm | 0.688391 *** | 0.149676 | 4.599 |
Urban | 0.752166 *** | 0.016001 | 47.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashim, M.; Baiya, B.; Mahmud, M.R.; Sani, D.A.; Chindo, M.M.; Leong, T.M.; Pour, A.B. Analysis of Water Yield Changes in the Johor River Basin, Peninsular Malaysia Using Remote Sensing Satellite Imagery. Remote Sens. 2023, 15, 3432. https://doi.org/10.3390/rs15133432
Hashim M, Baiya B, Mahmud MR, Sani DA, Chindo MM, Leong TM, Pour AB. Analysis of Water Yield Changes in the Johor River Basin, Peninsular Malaysia Using Remote Sensing Satellite Imagery. Remote Sensing. 2023; 15(13):3432. https://doi.org/10.3390/rs15133432
Chicago/Turabian StyleHashim, Mazlan, Babangida Baiya, Mohd Rizaludin Mahmud, Dalhatu Aliyu Sani, Musa Muhammad Chindo, Tan Mou Leong, and Amin Beiranvand Pour. 2023. "Analysis of Water Yield Changes in the Johor River Basin, Peninsular Malaysia Using Remote Sensing Satellite Imagery" Remote Sensing 15, no. 13: 3432. https://doi.org/10.3390/rs15133432
APA StyleHashim, M., Baiya, B., Mahmud, M. R., Sani, D. A., Chindo, M. M., Leong, T. M., & Pour, A. B. (2023). Analysis of Water Yield Changes in the Johor River Basin, Peninsular Malaysia Using Remote Sensing Satellite Imagery. Remote Sensing, 15(13), 3432. https://doi.org/10.3390/rs15133432