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Abstract: Remote and real-time displacement measurements are crucial for a successful bridge health
monitoring program. Researchers have attempted to monitor the deformation of bridges using remote
sensing techniques such as an accelerometer when a static reference frame is not available. However,
errors accumulate throughout the double-integration process, significantly reducing the reliability and
accuracy of the displacement measurements. To obtain accurate reference-free bridge displacement
measurements, this paper aims to develop a real-time computing algorithm based on hybrid sensor data
fusion and implement the algorithm via smart sensing technology. By combining the accelerometer and
strain gauge measurements in real time, the proposed algorithm can overcome the limitations of the
existing methods (such as integration errors, sensor drifts, and environmental disturbances) and provide
real-time pseud-static and dynamic displacement measurements of bridges under loads. A wireless
sensor, SmartRock, containing multiple sensing units (i.e., triaxial accelerometer and strain gauges) and a
Micro Controlling Unit (MCU) were utilized for remote data acquisition and signal processing. A remote
sensing system (with SmartRocks, an antenna, an industrial computer, a Wi-Fi hotspot, etc.) was
deployed, and a laboratory truss bridge experiment was conducted to demonstrate the implementation
of the algorithm. The results show that the proposed algorithm can estimate a bridge displacement with
sufficient accuracy, and the remote system is capable of the real-time monitoring of bridge deformations
compared to using only one type of sensor. This research represents a significant advancement in the
field of bridge displacement monitoring, offering a reliable and reference-free approach for remote and
real-time measurements.

Keywords: bridge deformation; structural health monitoring; remote sensing; SmartRock; data
fusion; Kalman filter

1. Introduction

Bridges and building infrastructure can generate dynamic displacement under external
excitation, like cars, trains, and winds. Obtaining accurate, stable, and reliable displacement
measurements is a crucial component of a successful structural health monitoring program
for bridge maintenance [1,2]. In the past few decades, considerable efforts have been made
toward sensors for the measurement of bridge dynamic responses under loads, such as
the maximum deflection and dynamic deformation. Depending on how the sensor is used
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for measuring structural displacements, bridge structural displacement monitoring can be
classified as direct method (e.g., total stations, LVDT, and camera) and indirect method
(e.g., accelerometer, strain gauge, and inclinometer) sensors.

Among the direct methods, the linear variable differential transducer (LVDT) can
provide real-time displacement measurements by connecting a measurement point and a
reference point physically. It has a significant advantage over other forms of displacement
transducers in terms of robustness and unlimited resolution. However, this approach is
inconvenient and limited, particularly for bridges where the measurement point is too
far away from the reference point [3,4]. Advancements in digital image correlation (DIC)
techniques have enabled precise measurements of displacements based on high-resolution
visual data [5]. Barros et al. conducted dynamic displacement measurements on a masonry
rail bridge using 3D-DIC, discussing strategies to minimize on-site errors [6]. Nasimi and
Moreu [7] developed a laser camera system mounted on an unmanned aerial vehicle to
estimate the total transverse displacement on railroad bridges, achieving accuracy within a
few millimeters.

Another direct method, a vision-based technique, like a high-speed and precision
camera, can also be used for directly measuring structural displacement without requiring
significant wiring [8,9]. Lee et al. introduced a dual-camera system that compensated for
ego-motion, enabling the long-term monitoring of bridges [10]. They validated the system
during the construction stages of a railway bridge girder. Xu et al. proposed an integrated
approach that combined a deep learning-based Siamese tracker and correlation-based
template matching, enhancing its robustness of the environmental conditions [11]. But it is
hard to find a sensor installation location in many scenarios due to the device’s restricted
range of measurement (no more than 200 m), and the device and the accuracy could easily
be affected by the weather and other environmental disturbances.

As for indirect types of sensors, there have been many attempts to monitor the de-
flection of a bridge by using an inclinometer, strain gauge, fiber optics, accelerometer,
etc. [12–15]. Among these, an accelerometer is the most commonly used sensor due to
its characteristics of small size, easiness of deployment, and high signal resolution [16].
In addition, the effectiveness of employing acceleration for reconstructing dynamic dis-
placement lies in its independence from the need for a reference point. Accelerometer data
can be utilized to determine a bridge structure’s dynamic properties and can be converted
into displacement through a double-integration process. However, the acceleration mea-
surement contains small errors from sensor drifts, unknown initial conditions, and other
noises. Using the direct double integration of acceleration to obtain displacements has to
overcome an integration error that linearly accumulates during the integration process,
which will produce a large error in the trend term [17–20]. To overcome these drawbacks,
Lee et al. [21] suggested minimizing the drift error by removing low-frequency components
below the first natural frequency. Moreu et al. [22] proposed a study to obtain the transverse
displacement of a timber railroad bridge from acceleration by applying a finite impulse
response (FIR) filter. The drift error is still hard to remove, because the FIR filter is more
suitable in obtaining a transient response or sinusoidal response, as well as free vibration
response, instead of pseudo-static displacements.

Recently, further research on improving bridge displacement monitoring based on the
fusion of measurements from multi-sensors was also studied. Chan et al. [23] proposed
an empirical mode decomposition (EMD)-based data fusion method that combined ac-
celerometer and GPS measurements. An adaptive filter was then used to denoise the GPS
displacement. EMD was used to fuse the high-frequency component of double-integrated
acceleration with the denoised GPS displacement. However, EMD may introduce errors at
the beginning and end of the processed signal, so longer records are needed to truncate
these errors. Also, since EMD requires full-length measurements, it is not suitable for real-
time displacement estimations. Hong et al. [24] developed a novel finite impulse response
filter that combined acceleration and intermittent displacement measurements. While this
approach showed promise, it required manual adjustment of the filter parameters, which
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limited its utility for automation. Kim et al. [25] proposed a displacement estimation system
based on the fusion of an accelerometer and a RTK-GNSS. However, low-frequency noise
in a RTK-GNSS signal was observed, which caused a high level of estimation errors in the
results, and using RTK-GNSS makes it hard to monitor the displacement of a bridge in real
time. It cannot provide time-synchronized measurements with acceleration measurements
and will generate errors caused by interpolation. Zeng et al. [26] also introduced a method
by fusing acceleration with gyroscope measurements. The ‘observation measurement’
in the iteration process of the Kalman filter was transferred from the angular rotation
measurement. However, angular rotation could only be applied to simple structures such
as cantilever beams and simply supported beams, and it was difficult to establish the
mathematical and physical relationship between rotation and deformation for slightly
more complex bridges. Moreover, the gyroscope provides the angular velocity measure-
ment, which still requires integration to obtain displacement, resulting in drift errors in the
long-term displacement measurement.

Therefore, it is clear that the current structural displacement monitoring methods have
their limitations in obtaining accuracy and reference-free bridge displacement in real time.
In this paper, a novel bridge reference-free displacement estimation algorithm is proposed
and studied.

2. Objective, Novelty, and the General Framework

This paper aims to develop a smart computing algorithm and a bridge displacement
monitoring system based on a hybrid sensors data fusion technique and verify their ac-
curacy based on laboratory simulative tests. The key novelty of this paper lies in the
development of a real-time bridge displacement monitoring system without the require-
ment of a fixed static reference point (so-called reference-free) based on hybrid sensor
data fusion. By combining accelerometers and strain gauge measurements in real time,
the proposed algorithm can overcome the limitations of the existing methods (such as
integration errors, sensor drifts, and environmental disturbances) and provide real-time
pseudo-static and dynamic displacement measurements of bridges under loads.

The framework of the proposed bridge displacement monitoring system consists of
two parts: (1) a real-time computing algorithm based on data fusion techniques using the
combination of acceleration and strain measurements and (2) a prototype smart sensor,
SmartRock, enclosing multiple sensing units, i.e., a triaxle accelerometer, strain gauges, and
a Micro Controlling Unit (MCU), which can execute the built-in smart computing algorithm
in real time. In this paper, a series of laboratory simulation tests using SmartRocks on a
model truss bridge was developed to evaluate the performance of the proposed algorithm
and the SmartRocks. The real-time displacements obtained from the sensors and their
built-in algorithm are further compared with real displacements from dial gauges and
LVDT to validate the efficiency and accuracy of the sensor and the proposed algorithm.

3. Instrumentation

A remote sensing system (see Figure 1) was deployed for this study, which enables
automatic data gathering, real-time data processing, remote data transmission, etc. [27].
The system includes several SmartRock sensors, an industrial computer for local data
storage, an antenna for remote control and data collection, a Wi-Fi hotspot, and a data
acquisition (DAQ) box equipped with a solar/battery kit. In this study, the battery was
fully charged, so the solar panel was not utilized. Figure 1 provides a depiction of the
system. The SmartRock can transmit the data through Bluetooth, and the terminal user can
remotely access the data using any terminal device.
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Figure 1. A photo of the remote sensing system.

SmartRock (see Figure 2 [28]) is a wireless sensor containing multiple sensing units
(i.e., triaxial accelerometer, gyroscope, and strain unit) and a Micro Controlling Unit (MCU)
for executing the built-in smart computing algorithm. It can easily be installed on the
surface of a bridge for real-time data acquisition and displacement estimations. It has the
capability of recording triaxial acceleration and strain measurements in a time-synchronized
manner at a high sampling rate (maximum 200 Hz). In this study, a total of six SmartRocks
were utilized for real-time data acquisition, and the novel bridge deformation estimation
algorithm proposed in this study was programmed in the SmartRock for real-time bridge
deformation monitoring.
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4. Methodology

One approach to obtaining reference-free deformation measurements is through the
double integration of acceleration, although this method is subject to significant low-
frequency drift errors [29]. Many attempts have been made to apply high-pass filters, but
these attempts can negatively impact the accuracy of the results by removing true low-
frequency components. In this study, Kalman filter was used to integrate the acceleration
and strain measurements to produce a more accurate and robust estimate of the displace-
ment while preserving the true low-frequency components [30]. Kalman filter [31] is an
algorithm that uses a series of measurements observed over time, including statistical noise
and other inaccuracies, and produces estimates of unknown variables that tend to be more
accurate than those based on a single measurement alone by estimating the joint probability
distribution over the variables for each time frame [32,33]. The proposed algorithm is
depicted in a flowchart in Figure 3, and its methodology is described in detail as follows.
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4.1. Formulation of Kalman Filter-Based Displacement Estimation Algorithm

The Kalman filter applied to the acceleration measurement is based on the state
prediction model at a kth time step:

xk = A·xk−1 + B·uk + wk (1)

Zk = h·zk + vk (2)

where A =

[
1 ∆t
0 1

]
, B =

[ 1
2 ∆t2

∆t

]
, xk =

[
xk.
xk

]
, xk is the displacement,

.
xk is the velocity, uk is

the measured acceleration, Zk is an observation measurement with noise (here is the second
displacement measurement in addition to dk) at time k, zk is the sencond measurement,
∆t is the length of the time step, h is the observation model mapping the state prediction
onto the observed state, wk is the white Gaussian noise of displacement regarding to the
covariance, and Qk is also the white Gaussian noise regarding the second displacement
measurement with the covariance Rk. These noises can be obtained by

Qk = E
(

wk, wk
T
)

, Rk = E
(

vk, vk
T
)

(3)

where E is the mathematical expectation. The state-space model in Equations (1) and (2) is
utilized to develop the Kalman filter-based displacement estimation algorithm, which can
be separated into time update and measurement update steps:

• Time update

a. Project the state ahead:
xk

− = Axk−1 + Buk (4)

b. Project the covariance ahead:

Pk
− = AP̂k−1AT + Qk (5)

• Measurement update

a. Compute the Kalman gain:

Kk = Pk
−HT

k

(
HkPk

−HT
k + Rk

)
(6)

b. Update state estimate:

xk = xk
− + Kk

(
Zk − xk

−) (7)

c. Update the covariance:
P̂k = (I − Kk H)Pk

− (8)
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In the algorithm, the time update step puts forward the current state xk−1 and co-
variance P̂k−1 to obtain an a priori displacement estimate xk

− based on the integration of
acceleration and the initial state of the previous estimation xk−1. Then, in the measurement
update step, the priori estimate xk

− is incorporated with an observation measurement
Zk from a second monitoring tool to obtain an improved and accurate posterior estimate
(proposed displacement). Therefore, finding a reliable ‘observation measurement’ Zk is the
key component.

4.2. Strain–Displacement Transformation

In this study, strain gauges and a numerical finite element (FE) model transformation
approach were used to obtain the ‘observation measurement’. The model transformation
approach is based on modal superposition. This approach is generally utilized for the gen-
eration of the relationship between displacement and strain and estimating displacement
using only a limited set of strain measurements [34–36]. In this approach, displacements
of structures can be calculated from strain measurements using a series of selected mode
shapes ϕ and strain mode shapes φ. As shown in Equations (9) and (10), both displacement
x and strain ε can be multiplied with the corresponding modal coordinate vector q, where
N is the number of displacements at certain positions, n is the number of selected modes,
M is the number of the measured strains, and the symbol · is the matrix multiplication.

[d]M×1 = [ϕ]M×n·[q]n×1 (9)

[ε]M×1 = [φ]N×n·[q]n×1 (10)

Since the modal coordinate vector q is the same for the strain ε and the displacement d,
the strain can be transformed into displacement in terms of the mode shape matrix and the
strain mode shapes matrix as

[d]M×1 = [ϕ]M×n·
(
[φ]TN×n·[φ]

−1
N×n·[φ]

T
N×n

)
·[ε]M×1 (11)

where [ϕ]M×n·
(
[φ]TN×n·[φ]

−1
N×n·[φ]

T
N×n

)
is expressed as the strain-to-displacement transfor-

mation (SDT) matrix. Then, the displacement-to-strain relationship can be expressed as

[d]M×1 = [SDT]M×N ·[ε]n×1 (12)

Hence, by combining acceleration and strain-transferred displacement measurements,
the displacement of the structure at the sensor locations can be estimated.

4.3. Obtaining Full-Field Displacement

To obtain an accurate displacement measurement at other locations where no sensor is
installed and project the full-field displacement of the upper chord, the modal expansion
method is utilized [37,38].

Based on Equation (9), any response of the bridge could be obtained by a linear combina-
tion of the mode shapes ϕ with the weighing of modal coordinates q: [x]M×1 = [ϕ]M×n·[q]n.
M is the number of strain gauges (control nodes), and n is the number of modes (here, it is 4,
based on the results in Section 4.2). This is called modal decorrelation. We calculated the modal
coordinates q by transforming the nodal predicted displacement using modal decorrelation.

[q]n = ϕᵀ
M×n·[d]M×1 (13)

where ·ᵀ denotes the Moore–Penrose inverse. If we have the full-field mode matrix
[ϕ]all_node×n (all_node is the number of nodes in the FEM model), the full-field measure-
ments of the system d̂(t) can be obtained by replacing the spatial limited-mode matrix
[ϕ]M×n with the full-field mode matrix [ϕ]all_node×n, including all DOFs.

d̂(t) = [ϕ]all_node×n·[q]n = [ϕ]all_node×n·ϕ
ᵀ
M×n ·[d]M×1 (14)
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5. Implementation and Verification of the Algorithm
5.1. Experimental Setup and Sensing Units

A laboratory-scale experiment was conducted to explain the implementation of the
algorithm for displacement measurements and verify the performance and reliability of
the SmartRock with a built-in smart computing algorithm. A G-Scale (1:22.5) wood truss
bridge (Figure 4a) using dry lumber with a cross-section of 19.05 mm × 19.05 mm was
constructed. The bridge had eight panels with a total span of 1.83 m, and all the truss
members were screw-connected. The detailed dimensions of the bridge can be found in
Figure 4b. The load was vertically applied through an actuator at the middle of the upper
chord with a maximum capacity of 4500 N, and a harmonic load with a frequency of 1 Hz
was applied as the test load.
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and sensor installation plan.

Figure 4b presents a schematic diagram of the bridge and sensor installation plan. A total
of six SmartRocks connected to six strain gauges were utilized to estimate the deflection of the
top chord. The acceleration and strain were measured at the locations of SR1 to SR6. Three
dial gages and a LVDT were used: dial gage #1 was mounted at the connection of panels #1
and #2, dial gage #2 was mounted at the middle of panel #2, and dial gage #3 was mounted at
the middle of panel #3. The LVDT was mounted on the actuator.

The strain gauges used were linear type strain gauges with a high accuracy (noise level
was ±0.5 µε) and low sensitivity to temperature. They were prewired and easy to install.
The vertical acceleration and the strain gauge measurements were imported into the built-in
smart computing algorithm through the MCU to estimate the reference-free displacement
of the upper chord of the truss bridge. The displacements recorded by three dial gages
and LVDT at the middle of the upper chord were taken as the references to evaluate the
accuracy of the estimated displacements.
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5.2. Implementation of the Algorithm

Both the acceleration and strain measurements at the corresponding six locations were
recorded by the SmartRocks in real time with a sample rate of 100 Hz. Figure 5 shows an
example of the recorded acceleration and strain signals at the location of S3. Then, they
were imported into the proposed algorithm for real-time computing. The procedure and
results of the application are discussed in the following sections.
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Figure 5. Signals measured at the middle point of panel #3 on the upper chord (location of S3):
(a) acceleration; (b) strain.

As mentioned earlier in Section 4.2, the strain gauges and model transformation ap-
proach were used to obtain the ‘observation measurement’ in the algorithm. According to
Equation (12), it is possible to obtain the displacement and the observation measurement
during the iteration of smart computing by multiplying the strain data by a displacement–
strain relationship matrix (SDT). In the lab test application, the mode shapes and strain
mode shapes need to be calculated first to construct the SDT matrix. A FE model of the truss
bridge was constructed using the MATLAB Partial Differential Equation (PDE) toolbox [39].
The FEM model was built with meticulous attention to detail, considering the structural
characteristics and geometry of the truss bridge. It consisted of a substantial number of
linear tetrahedral elements, specifically 425,737, which were used to discretize the bridge’s
geometry and represent its behavior under different loading conditions. To ensure the
accuracy and reliability of the FEM model, it was calibrated using strain measurements
obtained from strain gauges installed at specific locations on the truss bridge. By comparing
the strain values predicted by the FEM model to the actual measured strains, adjustments
and fine-tuning were made to optimize the model’s performance and ensure its compati-
bility with the experimental data. By solving the eigenvalue problem associated with the
FEM model, the eigenfrequencies (natural frequencies) and corresponding mode shapes of
the truss bridge were obtained. The obtained mode shapes represented the deformation
patterns of the truss bridge at its natural frequencies. These mode shapes were visualized
using contour plots, and in this case, the contour plots of the first eight mode shapes are
shown in Figure 6. Additionally, strain mode shapes were also extracted from the FEM
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model. These strain mode shapes represented the spatial distribution of strains experi-
enced by the truss bridge at its natural frequencies. The strain mode shapes were obtained
by associating the modal displacements with strain values calculated using appropriate
strain–displacement relationships. Both the mode shapes and strain mode shapes were
crucial inputs for generating the SDT matrix.
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It was important to include all the modes that contributed significantly to the de-
formation of the bridge into the transformation matrix to improve the accuracy of the
strain-transferred displacements under a certain pattern of loads [28]. It was apparent from
Figure 6 that mode 6 had the highest magnitude of mode deflection in the vertical direction.
But, in order to reconstruct the deformation of the structure as thoroughly as possible, other
modes could also be included. Therefore, a mode selection scheme [40] was applied before
generating the SDT, and the process will be discussed as follows.

First, a static finite element analysis was conducted with a point vertical load at the
same load location as in the lab test. The displacements δ from the static analysis results
were used for the calculation of hybrid strain energy, as shown in Equations (15)–(18). Then,
the mass-normalized modes were calculated through the result of the eigenvalue analysis;
first, a static finite element analysis was conducted with a point vertical load at the same
load location as in the lab test.

ψ =
ϕ√

ϕT ·[M]·ϕ
(15)

where ψ is the mass-normalized mode shape, and M is the global mass matrix. Next,
displacement from the static analysis was utilized to obtain the optimal modes using

qi = [ψ i
]T

·[M]·δ (16)

where qi is a combined modal coordinate for the ith mode, ψi is the ith mode shape, and
M is the global mass matrix. The hybrid modal displacement for all the modes was then
written as

[δm]= Σqi·[ψ i
]

(17)

Finally, the strain energy Em corresponding to the hybrid displacement was calculated as

[Em] =
1
2

δm
T ·[K]·[δm] (18)
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where K is the global stiffness matrix. The calculations performed in Equation (18) were for
the total energy summed over the mode m. By examining the percents of the hybrid strain
energies of each mode, it was feasible to identify how many modes should be included in
the solution.

The first 20 modes were considered, and their hybrid strain energies for the lab-
scaled truss bridge are shown in Table 1. It should be noted that, when selecting mode
shapes and constructing the SDT matrix, the rank of SDT (n) should be smaller than
the number of strain sensors (M) used for estimating the deformed shapes accurately at
the higher frequency excitation [41,42]. The ratios of modes 1, 6, 13, and 20 were 10.1%,
78.6%, 5.0%, and 2.2%, respectively, contributing to 95.9% of the total energy combined.
Therefore, modes 1, 6, 13, and 20 were used to construct the SDT matrix. In this case, the
SDT contained six rows (the number of strain gauges) and four columns (the number of
modes). The measured strain values at the corresponding points (S1 to S6) and the SDT
were substituted into Equation (12), which yielded strain-transferred displacements at the
corresponding locations (See Figure 7). Then, the transferred displacement at the middle
point of the top chord was obtained using the polynomial interpolation method for sensor
fusion calculations. Figure 8 shows the comparison of strain-transferred displacements and
real displacements at the locations of dial gage #2 and dial gage #3.

Table 1. Hybrid strain energy percentages of the first 20 modes.

Mode Number Strain Energy (N·m) Ratio Mode # Strain Energy (N·m) Ratio

1 1.70 × 108 10.1% 11 4.85 × 104 0.0%

2 8.20 × 104 0.0% 12 1.22 × 105 0.0%

3 4.90 × 105 0.0% 13 8.45 × 107 5.0%

4 4.66 × 106 0.3% 14 1.35 × 103 0.0%

5 3.18 × 104 0.0% 15 5.41 × 105 0.0%

6 1.32 × 109 78.6% 16 9.86 × 105 0.1%

7 5.80 × 105 0.0% 17 5.24 × 106 0.3%

8 5.31 × 104 0.0% 18 1.28 × 105 0.0%

9 1.52 × 106 0.1% 19 4.13 × 106 0.2%

10 3.41 × 106 0.2% 20 3.74 × 107 2.2%
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Figure 7. Strain-transferred displacements at S1 to S6.
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Figure 8. Strain-transferred displacements at the locations of (a) dial gage #2 and (b) dial gage #3.

Figure 8 shows that the strain measurements could yield displacements that closely
matched the real displacements in harmonic trend but not in magnitude. The accuracy was
quantified by calculating the root mean square deviation (RMSD), as shown in Equation (19).

RMSD(%) =

√
∑(xesitamete − xreal)

2√
∑ xreal

2
× 100 (19)

The peak displacements of the strain-transferred displacement and real displacement
at each load cycle were selected for the RMSD calculations. The results were 16.48% at the
location of dial gage #2 and 14.53% at the location of dial gage #3, which were not accurate
enough in terms of the displacement monitoring accuracy requirements to a few tenths of a
millimeter.

5.3. Displacement Prediction Using the Proposed Algorithm

In order to improve the accuracy and obtain a reliable bridge structural displacement
prediction, the acceleration and strain measurements recorded by the SmartRocks were pro-
jected into the built-in smart computing algorithm for real-time computing. The effectiveness
of the algorithm was investigated both at the locations with and without a sensor installed.

5.3.1. Predicting Displacements at Sensor Locations

With the acceleration measurements and strain-transferred displacements ready, the
predicted displacements at the sensor locations (S1–S6) under the harmonic load were
calculated using the proposed algorithm. As described in Section 4, in the time update
step, it predicted a pre-state estimation xk

− at iteration step k based on the kinematic
model defined in Equation (4) with the filtered acceleration and the predicted displacement
xk−1 and velocity

.
xk−1 at step k−1 as the initial conditions. Then, the post-estimate of

the displacement was obtained as a weighted linear summation of the pre-estimate of
the state vector and the strain-transferred displacement Zk. A comparison between the
real displacements and the predicted displacements at the location of S2 was first plotted
(see Figure 9) to verify the accuracy of the proposed algorithm at the sensor locations
(where the accelerometers and strain gauges were installed).
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Figure 9. Comparison of real displacement versus predicted displacement at the location of S2:
(a) all-time series of data; (b) 10-s zoom-in time window.

As shown in Figure 9, the predicted displacements at the location of dial gage #2
showed good consistency with the real displacements (read from the corresponding dial
gages) in both harmonic trend and displacement magnitude. Similar good agreements
were observed for the locations of dial gages #3, which are not presented herein. The RMSD
of the predicted displacements at these two observed sensor locations were calculated and
are shown in Table 2.

Table 2. RMSD of strain-transferred displacement and predicted displacement corresponding to real
displacement.

Location
RMSD

Strain-Transferred Displacement Predicted Displacement

Dial gage #2 16.48% 4.91%

Dial gage #3 14.53% 4.25%

Table 2 shows that the predicted displacements had lower RMSD values than the strain-
transferred displacements for the two locations. Considering many unknown disturbances
from the environment and the sensors, the RMSD of the predicted displacements apparently
demonstrated good performance of the proposed method. Therefore, the capability of
the proposed bridge displacement estimation algorithm in obtaining an accurate bridge
displacement with the fusion of acceleration and strain measurements at the location where
the strain gauge and accelerometer were installed was validated.

5.3.2. Predicting Displacements at the Location without a Sensor Installed

Using the modal expansion method (Equations (13) and (14)) and the predicted displace-
ments at the control nodes (in a selected combination), displacement at any point on the
upper chord could be estimated. In addition, to investigate the effects of sensor location and
projecting the most accurate full-field displacement measurements of the truss upper chord,
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three pairs of strain gauges and SmartRocks in different control node combinations were
studied. Considering that the bridge was symmetrical, a total of nine combination cases were
considered: Cases 124, 125, 126, 135, 136, 236, 245, 345, and 346, and the numbers correspond
to sensor serial numbers in Figure 2b. The numbers in the cases referred to the number of
selected sensors (from SR1 to SR6). The results from the predicted displacements and the
corresponding real displacements at the location of dial gage #1 (the connection of upper
panels #1 and #2) and the LVDT (the middle of the upper chord) were used as the validation.

Figures 10 and 11 depict the plots of the peak values of real displacement versus
predicted displacement for nine different combination cases at the locations of dial gage
#1 and the middle of the upper chord (the location of the LVDT). Considering that only
three SmartRocks were selected, the predicted values showed a good match with the real
displacements. However, the results indicated that the locations of the selected control
nodes had an effect on the accuracy of the displacement estimations. The RMSD varied
from 5.27% to 10.93% at the location of dial gage #1 and from 5.57% to 7.68% at the middle
of the upper chord. The combination of 136, 245, and 345 showed better accuracy than
the rest of the combinations. Among them, the displacements from the combinations of
136 were the closest to the real displacements at both validation locations and had the best
overall RMSD values: 5.27% and 5.57%. Therefore, a hypothesis on the optimal control
node locations for obtaining the most accurate overall predicted displacement could be
obtained; of the three control nodes, two nodes should be symmetrical at about the middle
of the upper chord, and the remaining one should be next to it.
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To verify this hypothesis, the predicted displacements from the symmetry group of
these three combinations (135 corresponding to 145, 245 corresponding to 235, and 345 cor-
responding to 234) were also estimated, and the results are plotted in Figure 12. The results
showed a good accuracy, and still, the combination of 146, which corresponded to 135, had
the best performance (RMSD: 5.83% and 5.45%). Thus, the optimum combination of control
nodes for obtaining an accurate displacement estimation of the upper chord was that two
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of the three control points should be symmetrical at about the middle of the upper chord
and distributed at the extreme ends as much as possible, and the remaining one should be
next to the center on either side.
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6. Conclusions

In this paper, a novel algorithm based on real-time data fusion of the acceleration and
strain measurements was developed to estimate the dynamic displacements of bridges
without relying on a static reference frame. The algorithm was recursive and used noisy
measurements observed over time from both of the sensor units, including statistical noise
and other inaccuracies, and estimated the state of the bridge dynamics, which tends to
be more accurate than the measurements based on only one type of sensor. A SmartRock,
enclosing a triaxial accelerometer, multiple strain gauges, and a Micro Controlling Unit
(MCU), was also developed to execute the real-time built-in algorithm. The sensor was
applied to laboratory-scale wood truss bridge tests to estimate the dynamic displacement.
The results were compared with the real displacement recordings by both the LVDT and
dial gages to validate the accuracy and effectiveness of the proposed methodology. Based
on the results of this study, the following conclusions were reached:

(1) SmartRock with a built-in smart computing algorithm is capable of estimating bridge
displacements in real time and can improve the accuracy compared to using only one
type of sensor.

(2) The predicted displacements using the proposed algorithm at the sensor locations (S1–S6)
under a harmonic load showed a good match with the dial and gauge measured ‘real’
displacements in both harmonic trend and displacement magnitude. The RMSD of the
predicted displacements were 4.91% and 4.25% at the two selected locations.

(3) The modal expansion method was utilized to project the full-field displacements of the
upper chord of the truss and yielded an excellent match with the real displacements.

(4) The locations of the control nodes selected affected the accuracy of the displacement
estimations when predicting the full-field displacements using three control nodes.
The optimum combination of the control nodes for obtaining accurate displacement
estimations of the upper chord was that two of the three control nodes should be
symmetrical at about the middle of the upper chord and distributed at the extreme
ends as much as possible, and the remaining one should be next to the center.
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