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Abstract: A large number of different-sized lakes exist in the inland area of the Tibetan Plateau (TP),
which are examples of the important connection between the atmosphere and hydrosphere through
the analysis of lake surface convergence and evaporation processes. The evaporation level changes
that occur in middle–large-sized lakes (surface area > 50 km2) in the area directly influence the
regional mass and energy balance values, atmospheric boundary layer heat and humidity structures,
and weather processes occurring in the lower-reach areas. The studies conducted in the literature at
present, concerning lake evaporation processes, generally overlook the differences in lake heat storage
behavior due to the reduced amount of data in the literature concerning lake bathymetry. According
to the in situ bathymetric data obtained for 68 middle–large-sized lakes in the inner basin of the TP,
in this study, we calculated their heat storage (G) change values by using the different vertical-depth
water-temperature-change integral method, and we established a regression equation for the heat stor-
age and lake surface net radiation values for 68 lakes. The evaporation rates of 134 middle–large-sized
lakes larger than 50 km2 in the inland are of the TP were calculated by obtaining the G regression
result and adopting it into the Penman model, as well as estimating the evaporation losses of theses
134 lakes from 2002 to 2018. The result shows that the annual average evaporation rate for these
lakes is 927.39 mm/year, with an insignificant upward trend (0.10 mm/year). This method achieved
good accuracy compared with the Bowen ratio method, which estimates the evaporation rate dur-
ing the ice-free season, with a high correlation coefficient (R) value of 0.95 and least root mean
square error (RMSE) value of 61 mm. The annual mean evaporation rate can be divided into the
southern and northern lake groups along a 34◦N line with a difference of 314.41 mm/year. The
annual average evaporation volume of these lakes was 25.02 km3 and showed an upward trend
of 0.35 km3/year. Among them, the annual average evaporation volume contribution ratio of
level-1 lakes (50 km2 ≤ lake’s area < 100 km2, 61 lakes) was 14.04%, showing an upward trend, and
the contribution of level-3 lakes (lake’s area ≥ 500 km2, 10 lakes) was 41.50%, showing a downward
trend. There were no obvious changes in the level-2 lakes (100 km2 ≤ lake’s area < 500 km2, 63 lakes),
which maintained at the same level in approximately 44.46%. Air temperature is the most important
factor affecting the evaporation rate of lakes, while the lake surface area is the main factor affecting
lake evaporation volume. Our study, considering the actual lake heat storage value, provides a useful
reference for further improving lake water budget balance values and watershed hydrologic features
in the inland closed lakes located in the TP.

Keywords: lake heat storage; evaporation; Penman model; temporal and spatial variations; inland
area of the Tibetan Plateau

1. Introduction

Water resources are an important fundamental and strategic natural resource for
the survival and development of human beings that, through precipitation, evaporation,
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runoff, soil water, and other natural water cycle processes, allow us to realize the evo-
lution and transformation of lakes [1]. Lakes are an important part of ground–surface
water bodies and can provide sensitive and clear feedback regarding the occurrence of
local hydrological cycle and regional climate change, especially in the Tibetan Plateau
(TP), an environment with a high altitude, high radiation rates, and dry climate [2,3].
The TP, known as the “Third Pole” and “Asia Water Tower” of the Earth [4,5], pos-
sesses a total area of lakes accounting for more than 50% of the total area of lakes in
China [3]. At the same time, the TP contains more than 1200 lakes with an area larger
than 1 km2, and they have shown an obvious expansion during the past 30 years [6].
Many studies in the field have qualitatively and quantitatively analyzed the impacts on
the lake expansion rates in the TP from glacial melt water and precipitation levels [7–13];
however, the quantitative analyses conducted on the contribution of lake surface evapo-
ration behavior to water balance levels in the TP are still not detailed enough. Therefore,
it is difficult to accurately assess the response and feedback factors of lake water storage
changes caused by climate change.

Previous studies have shown that the annual average evapotranspiration rate oc-
curring over the TP is approximately 328 mm/year, and there is an obvious upward
trend [14–16]. Compared with other land-cover types, lake water has higher transparency,
lower albedo, lower surface roughness, and higher heat capacity and thermal conductiv-
ity values [17]; therefore, a higher evaporation rate compared to other land cover types
exists in the TP [18]. At present, there are two main methods used in the research to
study the evaporation rates of lakes located in the TP: in situ observations and remote
sensing estimations.

The observation method mainly relies on evaporation pans and the eddy covariance
(EC) observation systems to monitor water surface evaporation levels [19]. Li et al. (2001)
calculated the annual average evaporation rate of Lake Zigetang by inputting the long-
term meteorological observation data into the Penman formula, and it was approximately
950 mm/year exhibiting a downward trend [20]. Li et al. (2007) estimated that the average
annual evaporation rate of Lake Qinghai from 1959 to 2000 was about 924 mm/year using
the pan evaporation method [21]. By adding the meteorological observation data into
Penman–Monteith equation, Zhu et al. (2010) and Zhang et al. (2011) estimated that the
annual evaporation rates of Lake Nam Co were 1430 and 1184 mm/year [22,23]. Due to
the difference in heat storage levels between lakes and land, considerable errors between
evaporation pan observation, land meteorological observation, and real lake evaporation
results were evident; the EC observation system combined with the energy balance method
was gradually used to monitor lake evaporation values [24]. Li et al. (2015), through a flux
analysis of Lake Ngoring, using the EC observation system combined with the Bowen ratio
energy balance method, observed that the intrusion of dry and cold air with strong wind
could result in significant increases in sensible heat flux (H) and latent heat flux (LE) values
that were approximately 2.0–4.5 times as much as those during normal days, and the heat
storage change in the lake water levels dramatically decreased and could even provide 70%
of the energy for lake surface H and LE [25]. The same method was used to monitor the
evaporation rate for Lake Qinghai, and the results showed that the annual evaporation
level for Lake Qinghai was approximately 830 mm/year [26].

As a result of the limited coverage ability and high maintenance cost of the observation
stations, the effect of lake microclimate and heat storage change activity in middle–large-
sized lake on lake surface evaporation levels could not be adequately reproduced in this
research [27]. The remote sensing estimation method can make up for the shortcomings
of the observation method through the use of modularized data, a lake model, and a
parameter scheme [28]. Lazhu et al. (2016) used the China meteorological forcing dataset
(CMFD)-driven Flake model and Bowen ratio energy balance method to estimate the annual
evaporation rates for Lake Nam Co, which was about 832 mm/year and presented an
obvious upward trend [29]. Ma et al. (2016) estimated that the annual average evaporation
rate for Lake Nam Co was approximately 632 mm/year by using the CMFD data-driven
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CRLE model, and a downward trend was exhibited [30]. Wang et al. (2020) used CMFD data
and the Bowen ratio energy balance model to quantitatively analyze the evaporation rated
for 75 large lakes in the TP, and the results showed that the average annual evaporation
rate was about 29.4 ± 1.2 km3/year [31].

The abovementioned studies show that, regardless of whether the Penman or Bowen
ratio methods are used by the researchers, lake heat storage change has a considerable
influence on the accuracy of lake evaporation outcomes. Since middle–large-sized lakes
have a greater impact on evaporation levels compared to small lakes due to their higher
heat storage capacity, it is key to estimate the heat storage levels of these lakes for accurately
quantifying lake evaporation levels in this research [32]. However, due to the limited avail-
ability of in situ bathymetric data for most lakes located in the TP, it is difficult to accurately
estimate lake heat storage capacity according to the lake water-temperature vertical integral
method. In this study, we establish an empirical procedure that can rapidly estimate the
lake heat storage change value for a group of lakes with different characteristics based on
the relationship between lake heat storage calculated using the lake water-temperature
vertical integral method and available remote sensing meteorological variables in the lakes
with bathymetric data. Using this method, we analyze the evaporation levels of an in-
creased number of middle–large-sized lakes and elucidate the spatio-temporal-variation
characteristics of evaporation occurrence in different types of lakes located in the inland
area of the TP.

2. Study Area and Data
2.1. Study Area

The inland area of the TP that we studied covered a total area of approximately
7.08 × 105 km2 with an average elevation level greater than 4960 m, and it accounts for
1/3 of the TP’s total area [33,34]. The lakes in the area account for the highest lake density
level, and most lakes are closed without outflow runoff activity. Water loss level is mainly
composed of evaporation, which has a significant impact on climate change [35,36]. Human
activity is reduced in this area; therefore, lake evaporation levels can reflect the impact and
response of natural processes [37]. By 2018, 1032 lakes had an area greater than 1 km2, and
the total area of these lakes was 35,243.27 km2 in the inland area of the TP. Among them,
the total area of 143 middle–large-sized lakes (lake surface area greater than 50 km2) was
28,738.75 km2; this accounted for approximately 81.54% of the total lake area in the inland
of the TP and 56.92% of the total lake area in the entire TP.

Previous studies have discovered that the evaporation process of lakes is affected by
many factors, such as the latitude and longitude, the climate condition in the lake basin,
lake water physicochemical property, and human activities [38]. However, the similar
geographical and climatic environments of lake groups composed of neighboring lakes
leads to results of similar evaporation characteristics occurring in the same region [39].
Therefore, according to the spatial positions, the main land-cover types in the lake basin,
and the average elevations of middle–large-sized lakes in the inland area of the TP, we
divided all the middle–large-sized lakes into seven relatively concentrated lake groups
to estimate and analyze lake evaporation levels. The summary information and spatial
distribution patterns of lake group zones are shown in Table 1 and Figure 1. In S01, S02, and
S03 regions, the main land-cover type is barren vegetated; however, the areas have large
average elevation differences between them. S04 and S05 regions have similar elevations;
however, they have different latitudes, and the main land-cover type is a mixture of
grasslands and barren vegetation with different ratios. S06 and S07 regions possess the
same main land-cover type of grasslands and the same latitudes; however, they present a
137 m difference in elevation.
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Table 1. Summary of lake group zones.

Zone
Proportion of Land-Cover Types

Elevation (m)
Water Open Shrublands Grasslands Snow and Ice Barren Vegetated

S01 1.38% 0.00% 4.90% 0.27% 93.45% 4020
S02 1.06% 0.24% 4.47% 2.50% 91.74% 5119
S03 2.47% 0.00% 15.84% 1.09% 80.59% 4979
S04 2.14% 0.27% 62.90% 0.89% 33.80% 5096
S05 2.45% 4.19% 50.03% 0.18% 43.16% 5056
S06 5.19% 0.23% 86.01% 0.02% 8.55% 4984
S07 7.34% 0.00% 87.97% 0.06% 4.64% 4847
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Figure 1. Locations of the studied 134 middle–large-sized lakes and distributions of the main land-
cover types in the inland of the TP. The red boundaries represent seven major lake groups. The red
and green points represent the locations of lakes with and without in situ bathymetric data.

In this study, the middle–large-sized lakes in the inland area of the TP are defined
as lakes with water surface areas greater than 50 km2. The lake area data of the TP were
obtained from Zhang et al. (2019) [40] and are available from the Tibetan Plateau Scientific
Data Center. In order to further clarify the target lakes and match the remote sensing data,
134 lakes with areas greater than 50 km2 for five consecutive years from 2002 to 2018 were
selected as the final research target lakes. Detailed information of all 134 lakes can be found
in the Supplementary Materials (Table S1). The spatial distribution values are shown in
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Figure 1. Additionally, variations in the middle–large-sized lakes in the inland area of the
TP from 1979 to 2018 are presented in the Supplementary Materials (Figure S1).

2.2. Data
2.2.1. In Situ Meteorological Station Data

The in situ meteorological data were used to calibrate the downscaled data obtained
from the China Meteorological Forcing Dataset (CMFD) [41] and MODIS land surface
temperature datasets (MODIS LST) [42], which were used to drive the Penman formula
and lake models. The spatial distribution values of the meteorological observation stations
presented in this paper are shown in Figure 2, and the detailed information of each station
is shown in Table 2. The applied meteorological data include temperature at a 2 m altitude,
relative humidity at a 2 m altitude, wind speed at a 10 m altitude, and surface radiation
data (including downward short-wave radiation, downward long-wave radiation, and net
radiation). The in situ daily meteorological data were used to calibrate the CMFD, and a
monthly mean value of 0 m soil temperature was used to calibrate MODIS LST (MOD11A2
and MYD11A2).
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Table 2. List of the geographic characteristics of the 11 Tibetan Observation and Research Platform
(TORP) sites and observation variables.

Site Latitude,
Longitude Elevation (m) Period Land Cover Variables (Units) References

MAWORS 38.42◦N, 75.03◦E 3668 2005–2016 Alpine desert

2 m-Air
temperature (◦C)

0 m-Soil
temperature (◦C)

10 m-Wind speed (m/s)
2 m-Humidity

(%)Radiations (w/m2)

Ma et al.,
2020 [43]

NADORS 33.39◦N, 79.7◦E 4270 2005–2016 Alpine desert
QOMS 28.36◦N, 86.95◦E 4298 2005–2016 Alpine desert

NAMORS 30.77◦N, 90.96◦E 4730 2005–2016 Alpine steppe
NAQU 31.37◦N, 91.9◦E 4509 2005–2016 Alpine meadow

SETORS 29.77◦N, 94.74◦E 3327 2005–2016 Alpine meadow

SHENZHA 30.95◦N, 88.7◦E 4750 2016–2018 Wetland

Wei et al.,
2021 [44]

BATANG 32.85◦N, 96.95◦E 4003 2017–2018 Meadow
DASHALONG 38.84◦N, 98.94◦E 3739 2015 Wetland

AROU 38.03◦N, 100.45◦E 3033 2015 Meadow
YAKOU 38.01◦N, 100.24◦E 4148 2015 Meadow
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2.2.2. Lake Spatial Grid and Meteorological Datasets

A global surface water dataset (GSWD) [45] was used to create lake basin grids
for middle–large-sized lakes with bathymetric data to perform water bathymetric data
interpolations in the inland area of the TP. In order to obtain lake heat storage change
results, resampled CMFD data were used to create a lake model for each lake to obtain
the water temperature level results for different water depths. Resampled MODIS land
surface temperature (LST) datasets (i.e., MOD11A2 and MYD11A2) were combined with
CMFD data to estimate lake surface net radiation levels. Detailed information about remote
sensing datasets is summarized in Table 3.

Table 3. Data used for lake surface evaporation levels.

Data Name Spatial Resolution Temporal Resolution Purpose Web Link

Lakes larger than 1 km2 in
TP dataset [40]

Shapefile 1–10 year Lake mask http://data.tpdc.ac.cn
(accessed on 1 May 2023)

Global surface water
dataset occurrence

(GSWD) [45]
30 m (resample to 0.01◦) Time invariant

Water area grid extraction
and interpolation

boundary

https://global-surface-
water.appspot.com

(accessed on 1 May 2023)

China Meteorological
Forcing Dataset

(CMFD) [41]
0.1◦ Daily Driving lake and

Penman models
http://data.tpdc.ac.cn

(accessed on 1 May 2023)

MODIS Terra LST
(MOD11A2) [42] 1 km (resample to 0.01◦) 8 days Water surface temperature

and net radiation

https://search.earthdata.
nasa.gov (accessed on

1 May 2023)

MODIS Aqua LST
(MYD11A2) [42] 1 km (resample to 0.01◦) 8 days Water surface temperature

and net radiation

https://search.earthdata.
nasa.gov (accessed on

1 May 2023)

The spatial meteorological data collected from the CMFD, including 2 m temperature
(CMFD TEMP), 2 m relative humidity (CMFD RHUM), downward long-wave radiation
(CMFD LRAD), and downward short-wave radiation (CMFD SRAD), are key variables
of the Penman formula and lake models that are used to estimate lake evaporation rate
and simulate lake water temperature results. Figure 3 shows the correction equations for
these variables using in situ measurements obtained from 11 TORP stations. The accuracy
test indexes mainly include correlation coefficients (R), root mean square error (RMSE),
and percent BIAS (PBIAS). The specific calculation methods used can be observed in the
Supplementary Materials.

Because the TP is characterized by high altitude, low temperature, and long winter
period, lake ice can block the energy exchange occurring between the water and atmosphere
and thus influence lake surface evaporation levels. The ice-cover degree can be divided
into ice-free, ice and water mixing, and freeze-up periods with a decrease in the tempera-
ture [31]. Therefore, MODIS LST datasets (MOD11A2 and MYD11A2) were resampled as
0.01◦ × 0.01◦ of spatial resolution, and the monthly time resolution was adjusted and used
to determine whether the lake ice blocked the energy exchange occurring between the
water column and atmosphere. Similar to the CMFD meteorological data, the accuracy
values of MODIS LST data were also tested and corrected by using in situ measurements
of land surface temperature data. The results show a correlation coefficient of 0.94, RMSE
value of 3.04 K, and PBIAS of 0.05%, and a linear fitting equation of y = 0.9334x + 18.6346
(Figure 4) can decrease the bias of the monthly mean MODIS LST dataset.

http://data.tpdc.ac.cn
https://global-surface-water.appspot.com
https://global-surface-water.appspot.com
http://data.tpdc.ac.cn
https://search.earthdata.nasa.gov
https://search.earthdata.nasa.gov
https://search.earthdata.nasa.gov
https://search.earthdata.nasa.gov
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2.2.3. Bathymetric Data of Lake

Numerous studies used water-depth values to calculate lake heat storage change
occurrence using the Penman formula due to a lack of spatial bathymetric data for the
lake; however, these depth values can lead to uncertain errors in the real heat storage and
evaporation values [24,29,31,40,42]. In this paper, we used the bathymetric data of 68 lakes
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with areas greater than 50 km2, which were surveyed by our research group to estimate
lake water heat storage values. The bathymetric device used was a Lowrance HDS5, which
had a vertical accuracy of 0.01 m, and bathymetric data were recorded once per second.
The measured route examples for 14 out of the 68 lakes are presented in Supplementary
Materials Figure S2. The underwater lake topography was established with grid units of
0.01◦ × 0.01◦ using spatial analyst tools (Topo to Raster) in ArcGIS 10.2 for the 68 lakes.
Topo to Raster is an iterative finite difference interpolation technique designed for the
creation of a hydrological correct digital elevation model (DEM), which was developed by
Hutchinson (1988, 1989) [46]. Previous studies have shown that the accuracy of this method
can achieve average error values of less than 1.6 m [39,47], which was suitable for use in
our research to estimate lake heat storage changes as the core parameter of algorithms
concerning open water surface evaporation levels.

3. Methodology
3.1. Algorithm for Evaporation Rate

The Penman formula is a classical method with good precision and physical signif-
icance outcomes used in this research to estimate evaporation rate levels and is widely
used in open water all over the world, including the TP [42,48]. Therefore, the Penman
formula was selected as the best method to estimate the evaporation rate levels in middle–
large-sized lakes located in the inland area of the TP. The evaporation volume of lakes was
obtained through multiplying the evaporation rate by the lake area. The core equation,
calculation of important parameters, and value of constant term of the Penman formula are
shown in the following equation:

Erate =
∆(Rn − G)

λν(∆ + γ)︸ ︷︷ ︸
ER

+
γ f (µ)(es − ea)

λν(∆ + γ)︸ ︷︷ ︸
EA

(1)

where Erate is the lake or reservoir evaporation rate (mm); ∆ is the slope of the saturation
vapor pressure curve (kPa/◦C); Rn is the net radiation (W/m2); G is the heat storage
change in the lake water (W/m2); γ is the psychrometric constant (kPa/◦C); f (µ) is the
wind function; es is the saturated vapor pressure at air temperature (kPa); ea is the air vapor
pressure at air temperature (kPa); and λν is the latent heat of vaporization.

Erate consists of two components: the aerodynamic component EA and the radiative
component ER. For the calculation of EA, the wind function f (µ) is the horizontal aero-
dynamics function. Here, we used a TP generally applicable wind function Equation (2),
which was presented by Lin et al. [18]:

f (u) = 0.26(1.0 + 0.536u2) (2)

where f (u) is the wind function; u2 is the wind speed at the height of 2 m (m/s).
The meteorological dataset used in this paper was obtained from the CMFD and the

wind speed data height of the CMFD was 10 m. Equation (3) was used as the different
height wind speed conversion formula in this paper:

u2 = uz·
4.87

ln(67.8z− 5.42)
(3)

where uz is the wind speed at the height of z m (m/s). Rn and G are two core parameters
in the ER section. In this paper, we used the radiation balance method to obtain the net
radiation value, which is expressed as Equation (4) [49]:

Rn = (1− a)Rs↓ + Rl↓ − Rl↑ (4)

where Rs↓ is the total downward short-wave radiation (W/m2), a = 0.055 is the albedo of
water, Rl↓ is the downward long-wave radiation amount (W/m2), and Rl↑ is the upward
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long-wave radiation amount (W/m2), Rl↑ = εσT4
S ; ε = 0.98 is the emissivity coefficient of

water, σ = 5.67× 10−8 (W/m2K2) is the Stephen–Boltzmann constant, and TS is the lake
water surface temperature value.

3.2. Algorithm for Lake Heat Storage Change

In the Penman formula, meteorological driving parameters (such as air temperature,
air pressure, wind speed, humidity, and radiation) can be obtained in a wide variety of
ways; however, it is very difficult to accurately obtain the change in lake heat storage
(G) values, which is one of the core parameters required. The energy balance method
(G = Rn − H − LE) replacing lake heat storage change occurrence can reduce the error
of evaporation estimation results to a certain extent, when there is a lack of water depth
data [50,51]. However, this method is still unprecise due to the energy including not only
lake water, but also lake sediments and groundwater [49,50]. At present, the most widely
used method in the world still attempts to obtain lake heat storage change values based
on the vertical integral of lake water temperature change at different depths. However, on
the one hand, a lack of detailed bathymetric data of lakes in the inland of the TP causes
the water temperature levels at different lake depths to be hardly stimulated by combining
remote sensing data and the lake model. On the other hand, it is difficult to conduct in situ
surveys of vertical water temperature in more middle–large-sized lakes. Considering the
abovementioned factors, we used two schemes to calculate the lake heat storage values of
all 134 middle–large-sized lakes (68 lakes with and 66 lakes without bathymetric data) in the
study area. The time-series data for detailed lake heat storage changes were implemented
in the following 4 steps, and the created flowchart is presented in Figure 5.
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Nam Co as, an example, is shown in the flowchart).

First, the time-series lookup table of vertical water temperature profiles of 68 middle–
large-sized lakes with bathymetric data was obtained by using the CMFD data to drive the
LAKE model (V2.3). Then, the freezing periods and ice-coverage percentages of these lakes
were obtained by using the CMFD data to drive the Hostetler model.

Second, by using each lake water temperature profile lookup table result combined
with the in situ bathymetric interpolation data, each water column heat storage value was
estimated by the vertical integrated lake water temperature using a one-by-one pixel. This is
represented by Equation (5) [52]. In winter, lake ice will block the energy exchange between
water and atmosphere because the sublimation process will replace the evaporation process.
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The process of determining lake ice is divided into three steps. Firstly, the Hostetler model
was forced by CMFD data in order to obtain the monthly average whole lake ice cover
percent (ICP). An ICP of less than 10% of the lake state is determined to be open water;
an ICP greater than 90% of the lake state is determined to freeze up; an ICP between
10% and 90% of the lake state is determined to be an ice–water mixing state. When the
lake state is determined as open water and freeze up, evaporation and sublimation rates
were introduced in Sections 3.1 and 3.4, respectively. Then, the corrected MODIS monthly
average LST data product was used to determine the ice-cover state of the water column
surface by using the threshold LST value 273 K. A water column surface LST less than
273 K is determined to be ice and greater than 273 K is determined to be water. Finally, the
change in heat storage capacity was defined as the difference between the sums of each
pixel lake water column heat storage capacity in the first and final months. The LAKE and
Hostetler models used in this step are introduced in Section 3.3.

G = ρwcpw
d
dt

∫ i=n

i=0
Twidz (5)

Here, t is the current time step (d); ρw is the density of the water (kg·m−3); cpw is
the specific heat of the water (J·kg−1·◦C−1); and Twi is the water temperature in the water
layer i (◦C).

Third, for the seven lake groups (S01–S07), the time series of the average lake heat
storage changes in each lake group obtained in the second step were used as the training
samples to obtain the regression equation related to the meteorological parameters. The
general regression equation of each lake group was obtained to calculate the heat storage
changes in the lakes without bathymetric data. The regression equation is resented in
Equation (6):

G = A·X + B (6)

where A and B are the regression coefficients, and X is the meteorological parameter that
has the best correlation with G.

Fourth, based on the specific estimation equation of each lake group obtained in the
previous step, combined with the lake surface meteorological parameter (the main variable
of the equation) and the lake surface temperature (used to determine the state of lake water:
frozen up, ice water mixed, or open water), the parameters of lake heat storage variations
in the water body of the lakes without bathymetric were obtained.

3.3. The One-Dimensional Numerical Lake Model

Two widely used classical one-dimensional lake models, including the Lake and
Hostetler models [53–55], were used in the study to simulate lake water temperature profiles
and lake the ice-coverage ratio of the middle–large-sized lakes sampled in
this study.

The Lake model is a comprehensive, turbulent, closed, one-dimensional lake model
developed by V.M. Stepanenko et al. [56]. The model uses the finite difference method
to solve lake stratification parameters. The Lake model not only simulates the internal
thermodynamic processes of lakes, but also includes biogeochemical modules to simulate
the exchange counts of O2, CO2, and H2O between lakes and the atmosphere. The kinetic
process of the model is expressed by the horizontal mean Reynolds convection-diffusion
equation, as shown in Equation (7):

c
∂ f
∂t

= − c
A

∫
ΓA(z)

f (uh·n)dl +
1
A

∂

∂z

(
Ak f

∂ f
∂z

)
− 1

A
∂AFnz

∂z
+

1
A

dA
dz

(Fnz,b(z) + Ftz,b(z)) + R f

(
f , . . .

)
(7)

where f is the target parameter velocity component, such as temperature, gas concentration,
turbulence kinetic energy, and dissipation rate. Additionally, the first item on the right of
Equation (7) is the convection activity caused by inflow and groundwater; the second item
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is the turbulent diffusion; the third item is a turbulent flux divergence; the fourth item is
the total vertical flux at bottom of the lake; and the final item is a source and sink for other
values. In this study, because we only needed to consider the temperature diffusion process
of lake water, Equation (7) can be rewritten as Equation (8). When only considering the
thermodynamic process, f is replaced by water temperature T. z is the depth. The lake
surface depth is defined as z = 0, and the vertical downward value is positive. h = h(t) is
the lake depth at time t. ξ = z/h is defined as the coordinate for convenience.

cwρ
∂T
∂t

=
c

h2
∂

∂ξ

(
λ

∂T
∂ξ

)
+ cwρ

dh
dt

ξ

h
∂T
∂ξ
− cwρ

1
h

dh0

dt
∂T
∂ξ
− 1

h
∂S
∂ξ

+ M (8)

Here, cw is the specific heat capacity of the water; ρ is the density of the water; λ is the
eddy diffusivity; dh0/dt is the water balance on the lake surface; S is solar radiation flux;
penetration to depth is z; and M is buoyancy mixing behavior (convection).

The Hostetler model is a typical vorticity diffusion model that divides the entire lake
into several water layers to obtain the lake water temperature profile by solving the vertical
thermal diffusion equation [57,58]. The basic thermal mixing processes occurring in lake
water include wind-driven eddy turbulence, parameterized thermal conductivity based
on Henderson-sellers, buoyant convection, and molecular thermal diffusion processes.
Important factors, such as heat, water, wind force, and radiation flux, were also considered
in the model. The governing equation of the Hostetler model is presented in Equation (9).
The Hostetler model simulates the thermal diffusion process of lake water by inputting
driving and lake water depth data, and it can directly output the water ice phenology
change process. Based on the simulated lake ice-coverage ratio (ICR) and the ice thick-
ness, we classified the lake water status as ice-free (ICR ≤ 10%), ice and water mixing
(10% ≤ ICR ≤ 90%), and freeze-up (ICR ≥ 90%) periods.

∂Tz,t

∂t
=

1
Az,t

∂

∂z

[
Az,t(κm + κE,z,t)

∂Tz,t

∂z

]
+

1
Az,t

1
cw,z,t

∂(Kz,t Az,t)

∂z
(9)

Here, Tz,t is the water temperature at depth z and time t; Az,t is the water area at
depth z and time t; κm is the molecular diffusivity (1.39 × 10−7 m2s−1); κE,z,t is the eddy
diffusivities (m2s−1); cw,z,t is the specific heat capacity of lake water at depth z and time t;
and Kz,t is the transmitted short-wave energy at depth z.

3.4. Empirical Formula Method for Lake Ice Sublimation

Due to the high altitude and low air temperature and pressure prevalent in the inland
area of the TP, the lake water bodies in this region present longer ice phenology of freeze
onset (approximately 3 months) and ice–water mixing periods (include ice freeze-up and
break-up, approximately 2 months) than lakes in low-altitude regions [31]. Therefore,
ignoring the sublimation contribution of lake ice may lead to some errors in analyzing the
spatial and temporal variations in lake evaporation levels in the inland areas of the TP.
Sublimation can occur as long as the relative humidity level is lower than 100% and the
temperatures of the ice–vapor interface is less than 273 K [59]. In this paper, we elected an
empirical method to estimate the sublimation rate; the detailed formula and calculation
process is follows:

Srate = 3.96
u2(es − ea)

(273.16 + T)ρice
(10)

where Srate is the sublimation rate (cm), T is the air temperature (◦C), and ρice is the density
of ice (0.92 g cm−3).

3.5. Attribution Analysis

The “detrending” method [60,61] was used to analyze the contributions of change in
related variables (such as meteorological variables and surface reservoir area) to the trend of
evaporation volume/rate. First, the base case of the evaporation volume/rate (ETbase) was
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calculated using all the detrended variables. Then, the evaporation volume/rate affected by
variable X (ETX) was calculated using the original variable X, and the rest of the detrended
variables, for example, the evaporation volume/rate affected by Ta, were calculated using
the original Ta and the rest of the detrended variables. The contribution of variable X to the
evaporation volume/rate was calculated as follows:

ConX =
TrendETX − TrendETbase

TrendEToriginal

× 100% (11)

where ConX is the contribution of variable X to the evaporation volume/rate, and EToriginal
was calculated using all the original variables. All trends and significance indexes used to
achieve process parameters and evaporation results in this study were calculated using the
nonparametric Mann–Kendall test.

4. Result
4.1. The Lake Heat Storage Change

For the lakes without available bathymetric data, it was difficult to estimate lake heat
storage changes using the Penman formula. Here, according to the method presented
in Section 3.2, we used the monthly heat storage change value results of the lakes with
bathymetric data obtained from 2002 to 2018 as the model training sample data to calcu-
late the correlation values between the heat storage changes in lakes and meteorological
parameters, and we created a grid diagram of the correlation coefficients among all the
parameters (Figure 6).
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As can be observed from Figure 6, since the heat exchange between the lake surface
and atmosphere was almost negligible during the lake surface freeze-up period, the lake
heat storage change value presented a low correlation for almost all the meteorological
parameters. However, there was a good correlation between the lake heat storage change
and lake surface net radiation in the whole, ice and water mixing, and ice-free periods, and
the correlation coefficient R values were 0.68, 0.89, and 0.79, respectively. Therefore, it was
feasible to establish the one-dimensional linear regression equation of lake heat storage
changes based on the net radiation of lake surface. The one-dimensional linear regression
equation of each lake group is shown in Equation (6) X in Section 3.2. The parameter list
obtained through the regression analysis is shown in Table 4. The lake heat storage change
value that was estimated by the water temperature vertical integrate method was used as
verification data. Compared with the linear regression results, it can be observed that linear
regression method can rapidly estimate the heat storage changes in lakes without in situ
bathymetric data and presents good accuracy, with R2 values ranging from 0.51 to 0.77 and
root mean square error of values 23.43 to 31.25 w/m2.

Table 4. Summary of the locally calibrated coefficients of the linear regression equation for
the heat storage change and the statistical agreement between linear regression and vertical
integrate methods.

Lake Groups
No. Lakes with Measured
Depth/No. Lakes without

Measured Depth

No. of
Data Pairs

G = a × Rn + b Statistical Agreement

a b (w/m2) R2 RMSE
(w/m2) NSE

S01 2/1 196 0.97 −77.57 0.66 28.78 0.45
S02 9/14 673 1.00 −80.66 0.59 26.88 0.30
S03 8/22 543 1.03 −89.78 0.65 27.13 0.45
S04 14/11 1275 0.85 −84.75 0.51 29.13 0.30
S05 8/8 968 1.02 −107.84 0.62 31.25 0.40
S06 19/8 2429 1.15 −117.80 0.71 28.89 0.55
S07 9/1 1178 1.09 −107.28 0.77 23.43 0.52

The change in monthly heat storage values between different lake groups from 2002 to
2018 showed that all lake groups had the same seasonal characteristics (Figure 7). In spring,
because the air temperature began to rise and lake surface ice begins to break up, the cold
lake water begins to absorb heat, which causes the lake heat storage change to positively
increase and reach the maximum heat absorption level in summer. In the early autumn,
due to the decrease in the air temperature, the heat absorption rate of lake water decreases;
the heat absorption process of lake water remains positive for a certain period of time. In
late autumn, the air temperature and sun radiation levels are below a certain threshold
value, and the temperature of the lake water is higher than that of the atmosphere. The
lake starts to release heat from lake water surface into atmosphere until the lake water and
atmosphere temperature become relatively balanced. In winter, as the lake surface freezes,
the heat exchange between the lake surface and atmosphere reduces until the lake water
surface is completely frozen and the heat exchange almost ceases. The heat storage change
value is close to 0 w/m2, and a complete cycle is formed. Although the general pattern is
similar, there are still some differences among different lake groups. Lake groups S05, S06,
and S07 have a shorter glaciation period due to their lower latitude, and the absorption
and release peak interval of ±80 w/m2 is significantly higher than that of lake groups S02,
S03, and S04, which is ±50 w/m2.
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4.2. Spatial–Temporal Variations in the Lake Evaporation Rate

For the 134 middle–large-sized lakes in the inland are of the TP as a whole, the lake
evaporation rate showed an insignificant upward trend of about 0.10 mm/year from
2002 to 2018. The maximum evaporation rate was 976.41 mm/year in 2010, and the
minimum was 859.12 mm/year in 2002. The average annual evaporation rate in 2018 was
933.83 mm/year. For the seven lake groups, S05 had the largest annual mean evaporation
rate value of 1148.05 mm/year in 2018. The minimum average annual evaporation rate in
the S03 region was 718.73 mm/year. Spatially, the evaporation rate increased from north to
south ranging from 594.17 to 1309.27 mm/year, with a median value of 918.24 mm/year.

It can be observed from the lake evaporation rate spatial distribution diagram that
there is an obvious north–south difference in lake evaporation rate values in the inland
area of the TP (Figure 8). When using the 34◦ N latitude as the dividing line, the 134 lakes
in the inland area of the TP were divided into north and south lake groups for which the
time-series difference changes in lake evaporation rate are shown in Figure 9. There were
59 middle–large-sized lakes located in the north and 75 lakes in the south. From 2002
to 2018, the annual evaporation rate in the southern lakes showed an upward trend of
about 0.62 mm/year, while that in the northern lakes showed a downward trend of about
−0.80 mm/year. From 2002 to 2018, the annual evaporation rate for the northern lakes was
750.09 mm/year; the annual evaporation rate for the southern lakes was 1064.50 mm/year;
and the difference between the annual evaporation rates of the northern and southern
lakes was 314.41 mm/year. The maximum, minimum, and median differences between the
evaporation rates for south and north middle–large-sized lakes in the inland area of the
TP were 350.49, 268.65, and 308.52 mm/year, which appeared, respectively, in 2009, 2013,
and 2012.
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4.3. Spatial–Temporal Variations in the Lake Evaporation Volume

For the 134 middle–large-sized lakes located in the inland area of the TP, the total
average annual evaporation volume from 2002 to 2018 was 25.02 km3. The maximum
evaporation volume of 27.53 km3 occurred in 2016, and the minimum evaporation volume
of 20.27 km3 occurred in 2002. In 2018, the total evaporation volume for middle–large-sized
lakes was 27.38 km3. Among the lake groups, S06 presented the maximum evaporation
volume with 9.20 km3 and accounted for 34.85% of the total lake evaporation volume in
the same year; S01 presented the minimum evaporation volume with 1.13 km3 accounting
for 4.18%. For the 134 middle–large-sized lakes in the inland area of the TP, their annual
average evaporation volumes had large spatial heterogeneity ranging from 0.03 to 2.61 km3,
with a median value of 0.09 km3 (Figure 10).
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In order to explore the contribution of the lakes’ evaporation volumes from different-
sized lakes, we divided 134 middle–large-sized lakes into three levels based on the water
area, including level 1: 50 km2 ≤ lake’s area < 100 km2 (61 lakes), level 2: 100 km2 ≤ lake’s
area < 500 km2 (63 lakes), and level 3: 500 km2 ≤ lake’s area (10 lakes), and performed a
statistical numerical analysis of the evaporation volume. Among them, from 2002 to 2018,
the annual average value of total evaporation volume of all level-1 lakes was 3.53 km3; the
maximum value was 4.14 km3; and the minimum value was 2.47 km3. The mean value
of total evaporation of level-2 lakes was 11.13 km3; the maximum value was 12.26 km3;
and the minimum value was 9.04 km3. The annual mean, maximum, and minimum values
of total evaporation volume of level-3 lakes were 10.37, 11.13, and 8.76 km3, respectively.
The three levels’ maximum and minimum values of annual total evaporation volume
all occurred in 2016 and 2002, respectively (Figure 11). We also performed a statistical
analysis of the different levels’ lake evaporation volume contribution ratios to the total
middle–large-sized lakes’ evaporation volumes in the inland area of the TP. The results
show that, from 2002 to 2018, level-1, –2, and -3 lakes contributed 14.04%, 44.46%, and
41.50% of the total annual average evaporation volume levels, respectively. At the same
time, the three levels of lakes showed different trends. The contribution of level-1 lakes
showed an upward trend from 12.18% in 2002 to 15.07% in 2018, and the contribution of
level-3 lakes showed a downward trend from 43.21% to 40.22% in 2002 to 2018. There was
no obvious change in the level-2 lakes, which was maintained at 44.50% (Figure 11).
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4.4. Magnitudes and Trends of Lake Evaporation

The spatio-temporal variations in lake evaporation rates in the seven lake groups
are shown in Figure 12. S02 and S07 showed an obvious upward trend, with increased
values of 5.81 and 5.95 mm/year, respectively. S01, S03, and S04 showed a decreasing
evaporation rate trend, and S01 showed the fastest decreasing rate of −8.10 mm/year,
while S04 showed the slowest decreasing rate of −3.16 mm/year. Meanwhile, although the
annual evaporation rates of S05 and S06 showed a decreasing trend, the trends change were
not obvious, which were −0.36 and −0.67 mm/year, respectively. Among the 134 middle–
large-sized lakes, 71 showed a decreasing trend in the evaporation rate, while 63 lakes
showed an increasing trend. Although the number of lakes with decreasing evaporation
rates was higher than that with increasing evaporation rates, the increasing trend was more
significant than the decreasing trend in the intensity of change. The lake with the greatest
decreasing trend in evaporation rate was Lake Ayakkum Co (−18.28 mm/year), and the
lake with the greatest increasing trend was Lake Dong Co (10.71 mm/year).
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Due to the increasing trends in lake area and lake surface evaporation rate from 2002
to 2018, the total evaporation volume of middle–large-sized lakes in the inland area of
the TP also showed an obvious upward trend, with a value of about 0.35 km3/year. For
the seven lake groups, the annual total volume of lake evaporation rates showed varying
upward-trend levels, among which the maximum upward trend was 0.10 km3/year in
S03 and the minimum upward trend was 0.002 km3/year in S05. A total of 108 lakes
showed an upward trend in lake evaporation volume, and 26 lakes showed a downward
trend (Figure 13). Lake Zhuonai showed the greatest decreasing trend in evaporation
volume of −0.0054 km3/year, and Lake Serling Co showed the greatest increasing trend of
0.0362 km3/year.

4.5. Attribution Analysis

For each middle–large-sized lake in the inland area of the TP, the “Attribution analysis”
method was used to analyze the contributions of the changes occurring in all parameters,
which participated in the evaporation rate estimating method, such as lake heat storage
(G), net radiation of lake surface (Rn), air pressure (Pres), air specific humidity (Shum), air
temperature (Temp), vapor pressure deficit (VPD), and air wind speed (Wind), to the trend
of evaporation rate. The result showed that the median values of contributions of the seven
variables (G, Rn, Pres, Shum, Temp, VPD, and Wind) to the evaporation rate trend were
−21.05%, 60.44%, −0.82%, 0%, 90.18%, 0%, and 0%, respectively (Figure 14a). Among the
134 lakes studied, the numbers of lakes with G, Rn, Shum, and Temp as main contribution
variables were 9, 34, 1, and 90, respectively (Figure 14b). Therefore, air temperature is the
main dominant factor affecting evaporation rate, followed by the net radiation of the lake’s
surface and lake heat storage value.
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In addition to the variables related to the evaporation rate, lake area was added to the
“Attribution analysis” method to analyze the contributions of change in each variable to
the trend of evaporation volume for each lake. The median values of contributions of the
eight variables (G, Rn, Pres, Shum, Temp, VPD, Wind, and lake surface area (Area)) to the
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trend of evaporation volume in the 134 lakes were 2.83%, −4.05%, −0.13%, 0%, 12.20%,
0%, 0%, and 72.62%, respectively (Figure 15a). Among the 134 lakes, the numbers of lakes
with G, Rn, Temp, and Area as the main contribution variables were 3, 10, 39, and 81,
respectively (Figure 15b). Thus, the change in lake surface area dominated the trend of
evaporation volume.
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5. Discussion
5.1. Comparison between Evaporation Rate in This Paper and Previous Studies

To date, few studies focus on the evaporation rates of the middle–large-sized lake
groups in the TP. The most detailed analysis of lake evaporation in the TP were published
by Wang et al. (2021), whose study covers 75 different-sized lakes’ evaporation rates over
the whole TP based on the Bowen ratio method combined with CMFD datasets [31], and
among them, there were 57 middle–large-sized lakes that overlapped with our studied
134 lakes. The result determined by Wang et al. (2021) an be used as a reference: the average
annual evaporation rates compared to our results and the reference for the overlapped
57 middle–large-sized lakes show that the correlation coefficient (R), root mean square error
(RMSE), percent bias (PBIAS), and Nash–Sutcliffe efficiency (NSE) are 0.95, 61.00 mm, 1.29%,
and 0.90, respectively (Figure 16). The good agreement indicates that our method is reliable
to calculate middle–large-sized lakes’ evaporation rates in the inland of the TP. On the one
hand, the good accuracy between the two methods indicates that it is feasible to estimate the
middle–large-sized lakes’ heat storage change values by using the regression equation. On
the other hand, the Penman method can better estimate lake evaporation levels without in
situ bathymetric data and thus obtain evaporation spatio-temporal variation characteristics.

However, compared with the reference results, 2.71% and 0.38% underestimations
are evident our results for the lake groups S01–S04 and S05–S07. These differences were
mainly due to the following reasons: (1) different locations of the lakes produce different
evaporation rates due to water depth differences. In order to quantitatively analyze the
evaporation rate influenced by water heat storage value in Lake Serling Co, a previous
study found that the deeper the lake depth, the lower the evaporation rate of the lake’s
surface [62]. This produces some errors when calculating the evaporation rate by only
using the center point water depth or average lake depth values. (2) The duration of
the ice-free season regarding the water column surface influences the evaporation rate
directly. Reference data and our study showed that the ice-free period was about 152.4 and
124.3 days in average in the lake groups S01–S04. This was probably the main reason for
the evaporation underestimation that occurred in lake groups S01–S04. (3) The difference
in correction methods of the basic data can also cause some differences between the
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reference results and our study. By the reference data, we determined the average land
surface temperature and air temperature values as 283.5 K and 279.1 K in lake groups
S01–S04, and 285.6 K and 282.5 K in lake groups S05–S07; however, they were lower in lake
groups S01–S07 in our study. This can explain the difference between reference result and
evaporation rate values in our study.
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5.2. Uncertainty

Some uncertainties exist in this study due to the data availability and model param-
eters design. First, because of the extreme natural environment of the TP, the mainte-
nance of 11 TORP observation station instruments and the in situ bathymetric survey of
68 lakes were difficult to conduct, resulting in some errors in the measured data. It was
necessary to conduct the timely meteorological instrument calibration and maintenance of
the observation stations and supplementation of lake surveys. At the same time, the remote
sensing data errors were inevitable, although CMFD and MODIS data which were used
in this paper were corrected. So, in the future we will find more suitable data to replace
them. Secondly, the application prerequisite of the one-dimensional lake model was that
the lake water body was fully mixed, and the difference of water bodies in the vertical
direction was more significant than that it was in the horizontal direction. However, the
horizonal differences of the water bodies still existed due to strong wind in the inland
area of the TP. It was therefore necessary to develop 3D lake models considering the in
situ lake bathymetrical data to reduce this potential uncertainty. Finally, compared with
the previous studies, the sublimation model of lakes during the freezing-up and ice-water
mixing periods was considered in this paper. However, the sublimation model used in this
paper is still a typical semi-empirical model used in the research; with its lack of detailed
physical significance, it causes some uncertainties regarding lake evaporation rate and
volume data.

6. Conclusions

Combined with the detailed in situ bathymetric data of the lakes, the difference in lake
heat storage changes was considered in the Penman formula to estimate lake evaporation
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occurrence in a large number of middle–large-sized lakes located in the inland area of the
TP. Our results show the following outcomes:

(1) The lake heat storage changes in lakes without available bathymetric data may be
estimated by the regional regression model, which is established between the lake
heat storage changes in lakes with available water depth and lake surface net radia-
tion values.

(2) There is a high degree of accordance of evaporation rates estimated by both the Bowen
ratio and Penman methods in 57 middle–large-sized lakes. The correlation coefficient
(R) is 0.95; the root mean square error (RMSE) is 61 mm; the percentage bias (PBIAS)
is 1.29%; and the Nash–Sutcliffe efficiency (NSE) is 0.90. The good accuracy of the
evaporation results make it abundantly clear that the heat storage change regression
equations are credible.

(3) From 2002 to 2018, the average annual evaporation rates of the 134 middle–large-
sized lakes in the inland of the TP show an insignificant upward trend at about
0.10 mm/year but presented obvious spatial differences. The annual evaporation
rate in the southern lakes was 1064.50 mm/year with an upward trend of about
0.62 mm/year, while that in the northern lakes was 750.09 mm/year with a down-
ward trend of about −0.80 mm/year. Temperature is the main factor affecting the
evaporation rate of 134 middle–large-sized lakes.

(4) For the 134 middle–large-sized lakes we studied, the average annual evaporation
volume from 2002 to 2018 was 25.02 km3 with an obvious upward trend of about
0.35 km3/year. The lake evaporation results did not show obvious spatial distribution
differences; however, the total evaporation volume of different levels lakes showed
obvious results. The results show that, from 2002 to 2018, the middle–large-sized lakes
annual average evaporation volume contribution ratios were 14.04%, 44.46%, and
41.50% from 61 lakes with an area of 50–100 km2, 63 lakes with an area of 100–500 km2,
and 10 lakes with an area greater than 500 km2, respectively. Lake area is the key
influence factor of the total lake evaporation volume occurring in the inland area of
the TP.
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https://www.mdpi.com/article/10.3390/rs15143460/s1, Figure S1: Variation of the total area of the
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2018 (b); variation of lake area of 7 lake groups from 1979 to 2018 (c) and variation trends in the area
of each middle-large lakes from 1979 to 2018 (d). Figure S2. The bathymetric maps of the 14 example
lakes. Table S1: Detail information of all 134 middle-large-sized lakes.
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