remote sensing

Article

Inversion of Leaf Area Index in Citrus Trees Based on
Multi-Modal Data Fusion from UAV Platform

Xiaoyang Lu 123, Wanjian Li 1'23, Junqi Xiao ">, Hongyun Zhu !, Dacheng Yang %3, Jing Yang 1:2-3,
Xidan Xu ", Yubin Lan 234 and Yali Zhang 1.2-3*

check for
updates

Citation: Lu, X.; Li, W,; Xiao, J.; Zhu,
H.; Yang, D.; Yang, J.; Xu, X.; Lan, Y.;
Zhang, Y. Inversion of Leaf Area
Index in Citrus Trees Based on
Multi-Modal Data Fusion from UAV
Platform. Remote Sens. 2023, 15, 3523.
https:/ /doi.org/10.3390/rs15143523

Academic Editors: Abdul Rashid
Mohamed Sharif, Redmond
R. Shamshiri, Sanaz Shafian and Siva

Kumar Balasundram

Received: 2 June 2023
Revised: 5 July 2023
Accepted: 10 July 2023
Published: 12 July 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China;
luxiaoyang@stu.scau.edu.cn (X.L.); 19981002@stu.scau.edu.cn (W.L.); 20213142028@stu.scau.edu.cn (J.X.);
hongyun@scau.edu.cn (H.Z.); 20223142009@stu.scau.edu.cn (D.Y.); 2022yj@stu.scau.edu.cn (J.Y.);
xxxjy@stu.scau.edu.cn (X.X.)

Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; ylan@scau.edu.cn
National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide
Spraying Technology, Guangzhou 510642, China

College of Electronic Engineering and College of Artificial Intelligence, South China Agricultural University,
Wushan Road, Guangzhou 510642, China

*  Correspondence: ylzhang@scau.edu.cn

Abstract: The leaf area index (LAI) is an important growth indicator used to assess the health status
and growth of citrus trees. Although LAI estimation based on unmanned aerial vehicle (UAV)
platforms has been widely used for field crops, mainly focusing on food crops, less research has been
reported on the application to fruit trees, especially citrus trees. In addition, most studies have used
single-modal data for modeling, but some studies have shown that multi-modal data can be effective
in improving experimental results. This study utilizes data collected from a UAV platform, including
RGB images and point cloud data, to construct single-modal regression models named VoVNet
(using RGB data) and PCNet (using point cloud data), as well as a multi-modal regression model
called VPNet (using both RGB data and point cloud data). The LAI of citrus trees was estimated
using deep neural networks, and the results of two experimental hyperparameters (loss function
and learning rate) were compared under different parameters. The results of the study showed
that VoVNet had Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-Squared (R2) of
0.129, 0.028, and 0.647, respectively. In comparison, PCNet decreased by 0.051 and 0.014 to 0.078
and 0.014 for MAE and MSE, respectively, while R? increased by 0.168 to 0.815. VPNet decreased by
0% and 42.9% relative to PCNet in terms of MAE and MSE to 0.078 and 0.008, respectively, while
R? increased by 5.6% to 0.861. In addition, the use of loss function L1 gave better results than L2,
while a lower learning rate gave better results. It is concluded that the fusion of RGB data and point
cloud data collected by the UAV platform for LAI estimation is capable of monitoring citrus trees’
growth process, which can help farmers to track the growth condition of citrus trees and improve the
efficiency and quality of orchard management.

Keywords: leaf area index; UAV; data fusion; citrus trees; deep neural network

1. Introduction

Citrus trees are an important cash crop belonging to the genus Citrus (Rutaceae). It
has a wide area of cultivation worldwide and is an economic pillar in many developing
countries [1]. The healthy growth and development of citrus trees is an important guarantee
of yield [2]. In order to ensure the high yield and quality of citrus trees, their growth needs
to be monitored in a timely manner.

In the field of agriculture, UAVs equipped with various intelligent sensors and de-
vices [3] can be utilized for multiple tasks, including pesticide spraying [4], harvesting [5],
field planning [6], and crop growth monitoring [7-9]. Among them, the monitoring of
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crop growth is an important function of UAVs [10]. By using various sensors and cameras
to acquire crop growth data, and subsequently processing and analyzing the data [11],
information such as plant height [12], yield prediction [13], leaf area index [14], and
carotenoid content [15] can be obtained. Particularly, the leaf area index is crucial for
monitoring crop growth [16] as it enables the accurate diagnosis and management of crop
growth conditions.

The leaf area index (LAI) is the sum of plant leaf area per unit of land area and is an
important indicator of plant growth and ecosystems [17]. LAl is very important in ecological
biophysics. By monitoring and analyzing LAI, it is possible to assess the growth rate, health
status, and growth potential of crops and to take timely management measures, such as
applying fertilizers, irrigation, and pest control, to maximize crop yield and quality [18].
Generally, the measurement of LAl is divided into direct and indirect methods [19]. The
direct method is traditional and destructive, and although it gives the most accurate results,
it is difficult to apply it to large-scale farmland measurements [20]. Indirect methods
mainly use optical methods and inclined point sampling methods to obtain LAI [20]. The
current widely used optical instruments are classified as radiation-based and image-based
measurements. Representative instruments of the former are LAI-2000 (Licor Inc., Lincoln,
NE, USA), TRAC (Wave Engineering Co., Nepean, ON, Canada), Sunscan (Delta-T Inc.,
Cambridge, UK), etc. The advantage of radiation measurement instruments is that they are
fast and easy to measure, but they are susceptible to weather and often need to work on
sunny days and correct for aggregation effects [21]. Typical instruments for image-based
measurements are CI-110 (CID Inc., Washington, DC, USA), Image Analysis System (Delta-
T Inc., Cambridge, UK), WinScanopy (Regent Inc., Thunder Bay, ON, Canada), etc. Among
them, CI-110 is suitable for a low plant canopy and has high measurement accuracy, which
is popular for LAI measurements in agricultural fields [22-24].

For estimating the LAI of citrus trees, optical instruments are currently the common
measurement tools, but they require labor-intensive and costly efforts to measure the LAI
of each citrus tree. In contrast, the use of remote sensing to estimate the LAI of citrus
trees can save significant time and labor costs, where multiple data sources are often
utilized for estimation. For instance, vegetation feature parameters such as the leaf area
and leaf distribution density can be extracted from RGB images to calculate the LAI [25,26].
Additionally, point cloud data can be utilized to estimate the leaf area index by measuring
the height and density of the plant canopy [27]. Hyperspectral data, on the other hand,
can infer the leaf area index by continuously acquiring spectral reflectance information
of vegetation within a narrow wavelength range [28]. Furthermore, vegetation indices
can be employed to estimate the leaf area index by analyzing the spectral reflectance of
vegetation [29].

In terms of data type selection, the use of remotely sensed images taken by UAVs
for estimation can reduce the time to obtain LAI and reduce the effects of topographic
difficulties [30]. Hasan et al. [31] used parameters from UAV RGB images to estimate
the LAI of winter wheat. Based on gray correlation analysis, five vegetation indices,
such as Visible Atmospheric Resistance Index (VARI), were selected to develop models
for estimating the LAI of winter wheat. The results showed that partial least squares
regression (PLSR) models based on VARI, RGBVI, B, and GLA had the best prediction
accuracy among all regression models (R? = 0.776, root mean square error (RMSE) = 0.468,
and residual prediction deviation (RPD) = 1.838). Yamaguchi et al. [32] compared the
LAI estimation model developed via deep learning (DL) using RGB images with three
other practical methods: a plant canopy analyzer (PCA), regression models based on
color indices (ClIs) obtained from an RGB camera, and vegetation indices (VIs) obtained
from a multispectral camera. The results showed that the estimation accuracy of the DL
model built with RGB images (R? = 0.963, RMSE = 0.334) was higher than that of the
PCA (R? = 0.934, RMSE = 0.555) and Cls-based regression models (RZ = 0.802-0.947,
RMSE = 0.401-1.13), and was comparable to that of the VIs-based regression models
(R? = 0.917-0.976, RMSE = 0.332-0.644).
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Point cloud data can provide very high measurement accuracy, which can avoid
human error and measurement errors and improve the reliability and accuracy of data
compared to traditional measurement methods [27,33,34]. Yang et al. [35] proposed a 3-D
point cloud method using UAV to automatically calculate crop-effective LAI (LAle). The
method accurately estimated LAle by projecting 3-D point cloud data of winter wheat
onto the hemisphere and calculating the gap fraction using both single-angle inversion
and multi-angle inversion methods. The results showed that the calculated LAle had a
good linear correlation with the LAle measured via digital hemispheric photography in
the field, and the stereographic projection multi-angle inversion method had the highest
accuracy, with an R? of 0.63. Song et al. [36] used 3-D point cloud data based on UAVs to
automatically calculate LAle. The method used high-resolution RGB images to generate
point cloud data and the 3-D spatial distribution of vegetation and bare ground points
and calculate the gap fraction and LAle from a UAV-based 3-D point cloud dataset. The
results showed a strong correlation between the derived LAle and ground-based digital
hemispherical photography (R? = 0.76).

Although the estimation of LAI has been widely studied, it has been applied to fruit
trees in large fields with relatively little and less than optimal results, and relatively little
research has been conducted on citrus trees. Mazzini et al. [37] found that the leaf length,
leaf width, and leaf length times leaf width were all strongly correlated with the leaf area
and that a linear equation using leaf length times leaf width as a variable was the most
accurate and reliable model. Dutra et al. [38] developed separate empirical equations for
LALI for single and compound-leafed citrus trees. Raj et al. [39] used RGB images taken by
UAV to estimate the LAI of a citrus canopy, and the R? of the estimated value with the LAI
value measured by the ground instrument was 0.73.

In some studies, better estimation results can be obtained by fusing multi-modal data
than using single-modal data. Maimaitijiang et al. [40] estimated soybean yields (R? = 0.72,
RMSE = 0.159) using RGB and multispectral and thermal sensors within the framework
of a deep neural network. Zhang et al. [41] used UAV spectral parameters with texture
feature data to estimate the LAI of kiwifruit orchard via the stepwise regression method
and random forest approach (R? = 0.947, RMSE = 0.048, nRMSE = 7.99%). Wu et al. [42]
used UAV images and spectral, structural, and thermal characteristics of a wheat canopy to
estimate the LAI of wheat using the random forest approach and support vector machine
regression (R? = 0.679, RMSE = 1.231).

LAI estimation using deep neural networks is the main method for connecting different
data sources, and the main advantage is its ability to learn complex, nonlinear mapping
relationships. Compared to traditional linear models, deep neural networks have stronger
capabilities in capturing the nonlinear mapping patterns between LAI and input data. By
learning from large-scale training data, deep neural networks can accurately estimate LAI
values. The multi-modal data fusion used in this study is a combination of RGB data and
point cloud data, thus increasing the richness of the data. RGB data provide color and
texture information, while point cloud data provide information on position, size, and
orientation in 3-D space. This fusion enhances data robustness, reduces reliance on a single
data source, and improves model stability and adaptability.

In this study, RGB data and point cloud data acquired by a UAV platform were used
to construct regression models for single-modal data and multi-modal data to estimate
the LAI of citrus trees using deep neural networks, and a comparative analysis was con-
ducted to verify whether multi-modal data are more beneficial for estimating the LAI of
citrus trees.

2. Materials and Methods
2.1. Study Area Overview

The study site is located in a citrus orchard plantation in Huangtian Town, Sihui City,
Zhaoqing City, Guangdong Province, China (23°36’N, 112°68'E), as shown in Figure 1.
The climatic conditions were subtropical monsoonal, with an average annual temperature
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of 21 °C and an annual precipitation of 1800 mm. The 110 citrus trees selected for this
study were of similar age and growing in good environmental conditions in March of 2023.
These citrus trees were at the stage of spring shoot growth. The management of this stage
involves two aspects: promoting shoot growth and preventing pests and diseases, as well
as managing the flowering of mature and young trees. Effective management at this stage
is crucial for subsequent flowering and fruiting.
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Figure 1. Study site.

2.2. Data Acquisition
2.2.1. Measuring LAI of Citrus Trees

Two image-acquisition measurements were taken using Plant Canopy Imager CI-110
(CID Inc., Washington, DC, USA) on 110 citrus trees at approximately 20 cm from the
ground and 20 cm from the trunk, and the average was taken as the LAI value of the
citrus tree [22,43]. CI-110 is a non-destructive and efficient tool for measuring plant canopy
characteristics with a self-leveling hemispherical lens, a built-in touchscreen display, a GPS
and compass, and 24 PAR sensors. LAI was calculated using the CI-110 Plant Canopy
Analysis software. During image acquisition, the brightness and contrast were adjusted so
that all plant parts in the image appeared green to obtain an accurate processing section.
The captured images were imported into this software for further processing by adjusting
parameters such as brightness, contrast, and gamma to derive a more accurate LAL The data
collection was conducted on the mornings of 2-3 March 2023. The weather was overcast,
which provided favorable lighting conditions for image acquisition and minimized the
impact of intense sunlight [44].
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2.2.2. UAV RGB Image Acquisition

The DJI Phantom 4 RTK (SZ DJI Technology Co., Shenzhen, China) was used for
aerial oblique images to obtain high-quality RGB images for 3-D reconstruction and point
cloud data generation of the citrus orchard. The UAV has a 1-inch, 20-megapixel CMOS
sensor with a centimeter-level navigation and positioning system and a high-performance
imaging system to accurately locate and photograph the area, thus ensuring image quality.
The flight time was chosen at midday, with clear and stable weather and good lighting
conditions. In this study, a GS RTK APP platform supporting route planning was used for
setup to automate flight and route planning. This made the whole process more efficient,
accurate, and safe. The specific flight parameters are shown in Table 1. A total of 1072
images were captured, each with a size of 5472 x 3648 pixels. During the process, the UAV
automatically recorded the latitude, longitude, and altitude at that time for subsequent 3-D
reconstruction. The acquisition process is shown in Figure 2, which coincides with the LAI
data collection time.

Table 1. Flight parameter settings.

Parameter Value/Method
Flight altitude 50 m
Flight speed 3m/s
Shooting mode Timed shooting
Pitch gimbal —90, —60, —45
Side overlap rate 80%
Forward overlap rate 80%

Figure 2. Data-acquisition process.
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2.3. Data Pre-Processing
2.3.1. Acquisition of RGB Images of Citrus Trees

The You Only Look Once-v5s (YOLO-v5s) model [45] was used to accurately extract
a single citrus tree from the UAV RGB image for target recognition. The model adopts a
lightweight structure design and optimization, which can improve the detection speed
while ensuring accuracy and achieving the requirement of real-time detection. The YOLO-
v5s model has the advantages of high accuracy, high efficiency, and wide scalability and
is an excellent target-detection algorithm with a weight size of 13.7 MB. The structural
diagram is shown in Figure 3. A total of 635 images of citrus trees were used as the model
training dataset, and the images were labeled with the labellmg software to label the
location and category of citrus trees, with a total of 76,665 labeled boxes. The accuracy,
recall, and map_0.5 of the model were 0.98, 0.98, and 0.99, respectively, which had good
recognition accuracy. The recognized target citrus trees would be cropped and saved as
RGB images with 3 channels of red, green, and blue, as shown in Figure 4.

Backbone

Prediction

Figure 3. YOLO-v5s structure.

Figure 4. Acquisition of RGB images of citrus trees.

2.3.2. Acquisition of Point Cloud Data of Citrus Tree

The first step was to reconstruct the 3-D model of the oblique images acquired by
the UAV using Pix4Dmapper software (Pix4D Co., Prilly, Switzerland). Pix4Dmapper can



Remote Sens. 2023, 15, 3523

7 of 22

convert UAV or other aerial image data into high-precision maps, models, and point cloud
data and supports the input and output of multiple data formats. Import the oblique images
into Pix4Dmapper, determine the datum as World Geodetic System 1984, the coordinate
system as WGS 84, the camera model as FC6310R_8.8_5472 x 3648 (RGB), and select the
“3D Models” processing option template. The 3-D reconstruction model of the citrus
orchard was finally obtained after processing by the program. The point cloud data of
the citrus orchard were imported into CloudCompare software, which provides powerful
point cloud processing and analysis functions, including point cloud alignment, filtering,
segmentation, reconstruction, analysis, and visualization operations. In the software, the
citrus orchard was first cropped to remove point clouds outside the study area, which can
be more convenient for manipulating the 3-D model. Next, the citrus trees were cropped to
remove the ground point clouds to obtain the point cloud data of independent citrus trees.
The specific process is shown in Figure 5. The citrus tree point cloud data were saved in txt
file format, and each piece of point cloud data contained 6 parameter values, which were
X-axis, Y-axis, Z-axis, red channel, green channel, and blue channel, as shown in Table 2.
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Figure 5. The process of acquiring point cloud of citrus trees.

Table 2. Point cloud data display.

Point Cloud Y-Axis Z-Axis Red Green Blue
1 655,215.95899963 2,592,974.80603027  6.21799994 113 138 92
2 655,215.96000671 2,592,974.75402832  6.15500021 146 178 123
3 655,215.96400452 2,592,974.74298096  6.14599991 149 178 123

2.3.3. RGB Data Model

When processing RGB image data, models need to effectively capture features of
different scales because RGB images contain rich color and texture information. Addition-
ally, models need to have fast training and inference capabilities and operate efficiently in
situations with limited computing resources. Therefore, VoVNet [46] is a good choice. The
VoVNet is a convolutional neural network based on One-Shot Aggregation (OSA) modules,
which is mainly available in three different configurations, vovnet-27-slim, vovnet-39, and
vovnet-57. vovnet-27-slim was chosen for this study. The VoVNet is a Stage 1 consisting of
three 3 x 3 convolutional layers, followed by a max pooling layer and four OSA modules
connected to form Stages 2-5, and finally, an adaptive average pooling layer and a fully
connected layer to form Stage 6. The OSA module is a modified DenseNet [47]; it only
aggregates all the previous layers at once at the end, which can reduce the memory access
cost and improve the GPU computational efficiency, and it can capture the multiscale
receptive domain and effectively present a diverse representation of features, which is good
for handling multiscale objects. Its network diagram is shown in Figure 6.
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Figure 6. VoVNet structure.

2.3.4. Point Cloud Data Model

Point cloud data contain rich geometric and spatial information. To capture both local
and global features of the point cloud, the model needs to incorporate one-dimensional
convolutional layers for convolution operations on the data. However, due to the large
quantity of point cloud data, not reducing or aggregating the data will result in a significant
computational load and waste of computational resources. Therefore, PCNet was used
as a model for point cloud data processing, as shown in Figure 7. The PCNet contains
multiple convolutional layers, pooling layers, fully connected layers, and activation func-
tions. Specifically, the first layer of the model is a 1-dimensional convolutional layer with
1 input channels, 10 output channels, a convolutional kernel size of 3, and a step size of 2,
followed by a SELU activation function. The subsequent layers are similarly structured,
where the number of input channels in each layer is the number of output channels in the
previous layer. The last three layers of the model are fully connected layers, with 2048- and
1024-dimensional inputs and 1024- and 512-dimensional outputs for the first two layers,
and each layer is followed by a ReLU activation function. The final fully connected layer
has 512 and 1-dimensional inputs and outputs, respectively. It also includes an adaptive
average pooling layer and a maximum pooling layer for extracting important information

from the input features.

Convld (1, 10, 3,2)
Conv1d (10,20,3,2)
Convld (20,10,3,2)

Figure 7. PCNet structure.

MaxPloolld(3, 2)
A4
Linear(2048, 1024)
RellU
A4
Linear(1024, 512)
Relll
A4
Linear(512, 1)

Conv1d (10,1, 3,2)

AdaptiveAvgPool14(2048)
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2.3.5. Multi-Modal Data Model

The network combining VoVNet and PCNet is VPNet, as shown in Figure 8. VoVNet
removes the fully connected layer of Stage 6 from the original and keeps the adaptive level
pooling layer, which is used for the adaptive connection between the convolutional layer
and the fully connected layer to project high-dimensional features into the low-dimensional
space. Stage 6 of VoVNet is connected to the penultimate fully connected layer of PCNet.
The connection is followed by five fully connected layers, each of which has a ReLU
activation function that enhances the nonlinear capability of the model. The input of the
first fully connected layer is a vector of length 1024. The number of neurons in the fully
connected layers is 2048, 1024, 512, and 10, and the last layer is 1 neuron for the output of
the final prediction. The network is able to make full use of the features of different data,
thus improving the prediction accuracy of the model.

Stage6

)

7g_pool2

e av

d(512, -1)

Adaptivi

ReLU

Linear(1024, 2048)
Linear(2048, 1024)
Linear(1024, 512)

Linear(1024, 512)

Figure 8. VPNet structure.

2.4. Model Evaluation

In this study, three evaluation metrics, mean squared error (MSE), mean absolute error
(MAE), and R-Squared (R?), were chosen to measure the predictive ability of the model.

MSE measures the predictive power of the model by calculating the squared difference
between the predicted and true values. Its calculation formula is as follows:

AN 2
Yisg <Yi - Yi)

n

MSE = 1)

MAE measures the predictive power of a model by calculating the absolute difference
between the predicted and true values. It is calculated by the following formula:

n

i=1|Yi — Vi

n

MAE = ()

R? calculates the proportion of variance between the predicted and true values to
measure the predictive power of the model. It is calculated by the following formula:
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AN 2
Vit (Yi - Yi)
R?=1— — 3)
Yit1 (Yi - Yi)
where n denotes the number of samples and y; denotes the true value, §; denotes the pre-

dicted value, and y; denotes the average of the true values. Smaller MSE and MAE indicate
better predictive ability of the model. Compared with MSE, MAE is more concerned with
the absolute difference between the predicted and true values and has less influence on the
outliers. R? has a range from 0 to 1, and the closer the value is to 1, the better the model’s
prediction ability is.

3. Results

Different training hyperparameters can lead to different training results. Therefore,
researchers typically refer to the experimental parameters used by others and combine them
with their own experience to select appropriate model hyperparameters. In the preliminary
experiments, different values and methods of hyperparameters were tried, and it was found
that the loss function and learning rate were two hyperparameters that had a significant
impact on the results. For the comparison experiments of these two hyperparameters, the
full-scale experiment method was used, and the hyperparameters of the model were set
as shown in Table 3, with six sets of experiments. There were 110 groups of data in the
dataset, and the ratio of the number of training, validation, and test set was 7:2:1.

Table 3. Hyperparameter settings.

Parameter Value/Method
Epochs 500
Batch Size 16
Optimizer Adam
. L1
Loss Function L2
0.001
Learning Rate 0.0001
0.00001

3.1. Single-Modal Data for LAI Estimation of Citrus Trees
3.1.1. RGB Data for LAI Estimation of Citrus Trees

The training process of VoVNet using RGB data as training data is shown in
Figure 9, and the results of the validation and test sets are shown in Table 4. Experi-
mental parameter L1 + LR0.001 had larger data fluctuations during the training process
than the other experimental parameters but had the best performance, possibly due to the
larger learning rate setting, which caused the training data to constantly change during
the search for the optimal solution, resulting in a strong fitting ability. The convergence
speed of each experimental parameter group was relatively fast and had already converged
before epoch 100. Experimental parameter L2 + LR0.00001 had the smallest data fluc-
tuations during the training process and remained in a stable state, possibly due to the
smaller learning rate setting, which found the local optimal solution and maintained a
stable state.
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—— LI+LR0.00001 —— L2+LR0.00001
—— LI+LR0.0001 — L2+LR0.0001
L1+LR0.001 —— L2+LR0.001

MAE

MSE

0 100 200 300 400 500
Epochs

Figure 9. Training process of VoVNet with RGB images as training data.

Table 4. Training results of VoVNet with RGB images as training data.

Experimental Validation Test

Parameters MAE MSE R? MAE MSE R?
L1+ LR0.001 0.087 0.013 0.814 0.149 0.037 0.535
L1 + LR0.0001 0.092 0.015 0.795 0.15 0.034 0.575
L1 + LR0.00001 0.11 0.019 0.731 0.129 0.028 0.647
L2 + LR0.001 0.09 0.014 0.802 0.174 0.047 0.407
L2 + LR0.0001 0.092 0.013 0.813 0.149 0.035 0.561
L2 + LR0.00001 0.112 0.02 0.727 0.159 0.04 0.494

The experimental results indicated that there was a significant difference between the
evaluation metrics of the validation set and the test set. The MAE and MSE metrics of the
validation set were between 0.087-0.112 and 0.013-0.02, respectively, and the R? metrics
were between 0.727-0.814. However, the MAE and MSE metrics of the test set were between
0.129-0.174 and 0.028-0.047, respectively, and the R? metrics were between 0.407—0.647.
Among them, the experimental parameters L1 + LR0.001 and L1 + LR0.00001 performed
the best in the validation set and the test set, respectively. It was worth noting that the
evaluation indicators on the test set were relatively lower than those on the validation set.
This was because the test set was used to evaluate the generalization ability of the model,
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and the model may have overfit the training data during the training process, resulting in
poor performance on the test set.

3.1.2. Point Cloud Data for LAI Estimation of Citrus Trees

The training process of PCNet using point cloud data as training data is shown in
Figure 10, and the results of the validation and test sets are shown in Table 5. In the figure,
it can be seen that the smaller the learning rate was, the slower the training convergence
speed. Experimental parameter L1 + LR0.001 began to converge at about 50 epochs,
while experimental parameter L1 + LR0.00001 began to converge at about 200 epochs.
Experimental parameter L2 + LR0.001 showed significant data fluctuations during training,
which may have been due to the large learning rate setting, hovering near the optimal
value and accidentally causing gradient explosion.

— LI+LR0.00001 —— L2+LR0.00001

—— LI+LR0.000I  —— L2+LR0.0001

L1+LR0O.001 - L2+LR0O.001
[8a)
<
=

0 100 200 300 400 500

88
72}
2

0 100 200 300 400 500

0 100 200 300 400 500
Epochs

Figure 10. PCNet training process with point cloud data as training data.

Table 5. PCNet training results with point cloud data as training data.

Experimental Validation Test
Parameters MAE MSE R? MAE MSE R?
L1 + LR0.001 0.079 0.01 0.864 0.123 0.021 0.74
L1 + LR0.0001 0.096 0.014 0.797 0.11 0.017 0.783
L1 + LR0.00001 0.085 0.01 0.863 0.078 0.014 0.815
L2 + LR0.001 0.133 0.026 0.644 0.194 0.058 0.279
L2 + LR0.0001 0.082 0.01 0.86 0.096 0.016 0.796

L2 + LR0.00001 0.093 0.015 0.791 0.126 0.026 0.671
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MAE

MSE

In summary, the performance of experimental parameter L1 + LR0.00001 was the
best. From the experimental data, the evaluation metrics of the test set were relatively
lower than those of the validation set, indicating the possibility of overfitting, with the
most obvious being experimental parameter L2 + LR0.001, which had MAE, MSE, and R?
differences of —0.061, —0.032, and 0.365 between the validation and test sets, respectively.
Compared with the results of point cloud data and RGB data, the test set of RGB data
had more severe overfitting. In the test set, the MAE and MSE values of point cloud data
were 0.051 and 0.014 lower than those of RGB data, respectively, and the R? value was
0.168 higher than that of RGB data. Overall, the results of point cloud data were better
than those of RGB data, which may have been due to the fact that point cloud data are
three-dimensional, while RGB data are two-dimensional, providing more information and
resulting in better results.

3.2. Multi-Modal Data for LAI Estimation of Citrus Trees

The training process of VPNet using RGB and point cloud data as training data is
shown in Figure 11, and the results of the validation and test sets are presented in Table 6.
The training models of all experimental parameters converged quickly, with most of them
having already converged by epoch 50. The amplitude of data fluctuations was generally
small, with the most stable being the experimental parameter L2 + LR0.00001, which
converged to a straight line after convergence, while the most volatile was the experimental
parameter L1 + LR0.001, although it was the most effective. The training data of each
experimental parameter were relatively close, and the results were better.

—— LI+LR0.00001 —— L2+LR0.00001
—— LI+LR0.0001 —— L2+LR0.0001
L1+LR0.001 —— L2+LR0.001

100 200 300 400 500

100 200 300 400 500

T T
100 200 300 400 500
Epochs

Figure 11. Training process of VPNet with multi-modal data as training data.
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Table 6. Training results of VPNet with multi-modal data as training data.
Experimental Validation Test
Parameters MAE MSE R? MAE MSE R?
L1 + LR0.001 0.062 0.005 0.914 0.078 0.008 0.861
L1 + LR0.0001 0.114 0.019 0.825 0.08 0.009 0.829
L1 + LR0.00001 0.117 0.017 0.841 0.066 0.010 0.805
L2 + LR0.001 0.076 0.009 0.834 0.079 0.009 0.849
L2 + LR0.0001 0.115 0.019 0.804 0.101 0.017 0.813
L2 + LR0.00001 0.124 0.02 0.816 0.081 0.012 0.765

The MAE values in the test set data were generally below 0.1, the majority of the MSE
values were below 0.01, and the majority of the R? values were above 0.8. The evaluation
metrics were better than those of RGB and point cloud data, which may have been due
to the fusion of data supplementing some information and achieving optimal training
results. The performance of the experimental parameter L1 + LR0.001 was the best, possibly
because the larger learning rate parameter setting made it easier for the model to avoid the
limitations of locally optimal solutions and find better results, but the problem it brought
was that the volatility of the training data was higher, and the stability was poorer.

The multi-modal data were tested under the experimental parameter L1 + LR0.001,
and the results are shown in Figure 12. By observing the graphs, it is clear that the fit of the
multi-modal data is good.

3
y=0.6931x + 0.6993
=z R2=0.861
= 2.5
=
S
T
E 2
7
&
1.5 I I

1.5 2 2.5 3
Measurements(LLAI)

Figure 12. Comparison of LAI from ground measurements with LAI estimated by the inverse model.

3.3. Exploding and Vanishing Gradients of Multi-Modal Data Problem

In the experiments, it was found that the point cloud data have special properties,
which may lead to the exploding gradients problem. The point cloud data consist of a large
number of discrete points, each with 3-D coordinates and color information, for a total of
six parameters. However, the values of these parameters vary greatly from one another, and
this instability may be exacerbated when transformed into a 3-D tensor in a deep-learning
model, leading to the emergence of the exploding gradients problem. Specifically, as the
number of layers of the neural network increases, each layer of the activation function
generates a certain amount of gradients. If these gradient values are large, the gradients
accumulate during the backpropagation process, which may eventually cause the gradient
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values to become very large, even beyond the representation range of the computer, leading
to the exploding gradients problem. This problem usually leads to models that do not
converge or produce unstable results. To solve this problem, the data can be normalized
to limit the values to the range of 0 to 1 to avoid the problems of neuron saturation and
non-uniformity of the underlying metric units, thus avoiding the exploding gradients
and speeding up the convergence of the neural network. The principle of normalization
processing is shown in Formula (4). Examples of the normalization process are shown in
Table 7.
X — min(x)

max(x) — min(x)

f(x) =

In PCNet, the problem of vanishing gradients could occur when using the ReLU
activation function after the convolution and pooling layers. This was due to the fact that
the weights may have negative values during backpropagation, which would become 0
after ReLU processing, resulting in vanishing gradients. Additionally, if the number of
network layers was too high, the signal would decay during propagation, causing the
gradient to approach 0 in later layers, making the network unable to continue learning.
To address this issue, PCNet used the SELU activation function after the convolution and
pooling layers [48]. SELU did not have a dead zone when the weight was less than 0, while
it could be scaled up when the weight was greater than 0, effectively avoiding vanishing
gradients. Therefore, the use of the SELU activation function could effectively solve the
problem of vanishing gradients in PCNet.

The experimental parameter L1 + LR0.001 was used as the basis, the activation function
and batch normalization were used as the variable parameters, and the specific parameter
settings are shown in Table 8. As shown in Figure 13, different parameter settings can have
a great impact on the performance of PCNet. When using the ReLU activation function,
the MAE, MSE, and R? fluctuated slightly around 0.2, 0.08, and 0, respectively, due to
vanishing gradients. When no normalization was used, the MAE fluctuated widely above
0.2, the MSE fluctuated widely above 0.08, and the R? fluctuated widely below 0. Therefore,
proper activation function and normalization were crucial to the performance of PCNet.
The principles of ReLU and SELU are shown in Formulas (5) and (6).

4)

ReLU(x) = max(0,x) ®)
X x>0
SELUG) =AY 6)

where Formula (6) of o is 1.6732632423543772848170429916717, and A is 1.05070098735548
04934193349852946.
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Table 7. Example of normalized point cloud data processing.

Method Point Cloud X-Axis Y-Axis Z-Axis Red Green Blue
. 1 655,215.95899963 2,592,974.80603027 6.21799994 113 138 92
Original 2 655,215.96000671 2,592,974.75402832 6.15500021 146 178 123
Data 3 655,215.96400452 2,592,974.74298096 6.14599991 149 178 123
, 1 0.010779881646158174 0.8936204728670418 0.049631731939932866  0.2924528301886793  0.3368983957219251  0.2431192660550459
Min-Max 2 0.00040218885987997055 0.8812293692026287 0.018224273530279778  0.48584905660377353  0.588235294117647 0.408256880733945
Normalization 3 0.0019987597479484975 0.8763324494939297 0.014734433142619796 0.5 0.588235294117647 0.408256880733945
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Table 8. Combinations of different parameter settings for PCNet.

Group Activation Function Batch Normalization
Group A ReLU YES
Group B SELU YES
Group C SELU NO
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Figure 13. Training process of PCNet with different parameter settings.

4. Discussion
4.1. Feasibility of Estimating LAI from RGB Data and Point Cloud Data

UAV RGB data can provide a wealth of information about vegetation, including
vegetation color, texture, and morphology. Among the acquired images of citrus trees, new
leaves appear in some images, which are characterized by a more lime green color, and
older leaves appear darker in comparison. In addition, the new leaves are also relatively
smaller in size, and these characteristics may help to estimate the LAI Point cloud data
are composed of a large number of discrete points, each containing 3-D coordinates and
color information of the vegetation. These data can be used to construct a 3-D model of
the vegetation, providing additional vegetation information, such as vegetation height,
density, and structure, which can be used to further optimize the LAI estimation results.
However, there may be some limitations and errors in using these two types of data alone,
so fusing them to estimate LAI can improve the precision and accuracy of LAI estimation.
The fused use of drone RGB data and point cloud data can make full use of the data and
improve data utilization, thus better supporting agricultural production. Deep-learning
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networks have been very successful in areas such as image recognition and regression
prediction [49], and their application in LAI estimation also has great potential. Deep-
learning networks can learn features and relationships automatically without the need
for manual feature extraction [50], thus improving the precision and accuracy of LAI
estimation. By designing a suitable deep-learning network, the generalization ability and
robustness of the model can be improved, making the results of LAI estimation more reliable
and accurate.

4.2. Setting of Loss Function and Learning Rate Hyperparameters

In the training process of the three models, using L1 regularization and a larger
learning rate (LR0.001) leads to optimal training results with the smallest MAE and MSE
values and the highest R? value. In contrast, using L2 regularization and a smaller learning
rate (LR0.00001) results in poorer training, with larger MAE and MSE and lower R2.
Overall, L1 regularization is more effective than L2 regularization, which indicates that L1
regularization can effectively control the complexity of the model and avoid overfitting.
This may be due to the sparsity of L1 regularization, which can select some features with
weight values of 0, thus reducing the complexity of the model, as well as having stronger
penalties to better suppress the growth of weights. In addition, using a larger learning rate
can also obtain better results. This may be due to the fact that a larger learning rate can
better capture the information in the data when the data distribution is sparse or noisy,
thus improving the model’s effectiveness and enabling a better convergence rate. However,
it is important to note that a larger learning rate may lead to model instability, so the choice
needs to be made on a case-by-case basis.

4.3. The Role of Multi-Modal Data in Estimation Result Improvement

Different data sources can provide different information; for example, RGB data can
provide color and texture information, while point cloud data can provide shape and
depth information. Using multi-modal data can combine this information to provide more
comprehensive data, which in turn can improve the accuracy and precision of prediction
results. In fact, prediction results using multi-modal data are more accurate than single
data sources [41,51-53]. According to the experimental data, the results of using multi-
modal data for estimation showed that compared to the estimation results of RGB data
and point cloud data, the MAE was reduced by 0.024 and 0.016, the MSE was reduced by
0.008 and 0.005, and the R? was improved by 0.105 and 0.055, respectively. Our method
was compared with the method of Raj [39], which used RGB images taken by UAV to
estimate the LAI of the citrus canopy, and the results showed that the R? of our method was
0.131 higher than Raj’s method. These indicate that increasing the data types can improve
the generalization ability and robustness of the model, making the estimation results more
reliable. Another important advantage of using multi-modal data is that they can reduce
the dependence of the model on a single data source, thus improving the robustness
of the model. This means that the model can still operate normally even if there is an
anomaly in a particular data type, thus making the model more robust to anomalous
data. Therefore, adding more data sources can improve the expressiveness of the model,
thus allowing the model to better adapt to complex real-world scenarios and improve the
precision and accuracy of the prediction results. In practical applications, multi-modal data
should be used as much as possible so as to improve the performance and reliability of
the model.

4.4. Estimation Model Optimization for Multi-Modal Data

RGB data and point cloud data were used for the LAI estimation of citrus trees. The
acquisition of point cloud data takes a long time for extraction, so in future studies, we can
try to use faster LIDAR data or other fast-acquired data sources (thermal infrared images,
hyperspectral images, etc.) instead to improve data acquisition efficiency and accuracy.
This will provide new ideas and possibilities for the LAI estimation of citrus trees. In future
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research, more datasets with more time periods can be added. The current dataset was
collected at a single time, and adding more data from different time periods can provide
the model with a stronger generalization ability and improve the prediction ability of the
model in different seasons and growth stages. Also, increasing the number of datasets can
enhance the robustness of the model and reduce the risk of overfitting. Data fusion is the
key to achieving LAI estimation of citrus trees in this study. The methods and techniques of
data fusion need to be continuously optimized and improved. For example, attempts can be
made to extract fewer features to reduce the amount of data and improve the accuracy and
reliability of the data. Meanwhile, more efficient data-fusion algorithms can be explored to
improve the accuracy and stability of estimation models. In addition, in the data-fusion
network, a more lightweight estimation model can be attempted to achieve a function that
can be loaded on the UAV platform for online real-time LAI estimation. This will provide
more efficient and accurate decision support for agricultural production and improve the
efficiency and quality of agricultural production. Therefore, future research can explore
a variety of different lightweight models to achieve the need for real-time estimation
of LAL

5. Conclusions

RGB data and point cloud data collected by a UAV platform were used to estimate
the LAI of citrus trees using deep neural networks, and three models, VoVNet, PCNet,
and VPNet, were constructed for the LAI estimation of RGB data, point cloud data, and
multi-modal data, respectively. The experimental results demonstrate that the use of multi-
modal data yielded the best results in estimating the LAI of citrus trees, and it showed
the highest performance in terms of evaluation metrics. Additionally, the use of point
cloud data also yielded good results. Specifically, both types of data achieved an R? value
above 0.8. This confirms that multi-modal data have a better predictive effect on LAI
estimation for citrus trees compared to single-modal data, and they effectively improve
the accuracy of prediction. Furthermore, the choice of the loss function and learning
rate settings significantly impacted the results. In general, the use of the L1 loss function
achieved better results than L2, and training with a smaller learning rate resulted in better
performance. In conclusion, the proposed method of estimating the LAI of citrus trees via
the fusion of RGB data and point cloud data collected by the UAV platform provides a new
non-destructive means for agricultural production, which can help farmers better grasp
the growth condition of citrus trees and improve the efficiency and quality of agricultural
production. In the future, we will further explore the application of the UAV platform
in agricultural production and make a greater contribution to the modernization and
sustainable development of agriculture.
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