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Abstract: Research on the inversion of forest aboveground biomass based on airborne light detection
and ranging (LiDAR) data focuses on finding the relationship between the two, such as established
linear or nonlinear models. However, these models may have poorer estimation accuracy for tree-
components biomass and cannot guarantee the additivity of each component. Therefore, we aimed
to develop an error-in-variable biomass model system that ensures both the compatibility of the
individual tree component biomass with the diameter at breast height and the additivity of component
biomass. The system we developed used the airborne LiDAR data and field-measured data of
principis-rupprechtii (Larix gmelinii var.) trees, collected from north China. Our model system
not only ensured the additivity of nonlinear biomass models, it also accounted for the impact
of measurement errors. We first selected the airborne LiDAR-derived variable with the highest
contribution to the biomass of each component and then developed an inversion model system
with that variable as an independent variable and with the biomass of each component as the
dependent variable using allometric functions. Moreover, two model estimation methods, two-stage
error (TSEM) and nonlinear seemingly unrelated regression (NSUR) with one-step, two-step, and
summation methods, were also applied, and their performances were compared. The results showed
that both NSUR-one-step and TSEM-one-step led to similar parameter estimates and performance for
a system, and the fitting accuracy of a model system was not very attractive. The variance function
included in a model system reduced the heteroscedasticity effectively and improved the model
accuracy. Overall, this study successfully combined the error-in-variable modeling with the airborne
LiDAR data, proposed methods that can be used for the extension of component biomass from an
individual tree to a stand and that might improve the estimation accuracy of carbon storage. A
compatible model system can be further improved if various sources of error in the variables are
identified, and their impacts on the system are effectively accounted for.

Keywords: airborne LiDAR; tree-components biomass; error-in-variable model; nonlinear seemingly
unrelated regression

1. Introduction

As a basis of estimating forest carbon storage and evaluating the contribution to the
forest carbon cycle, forest biomass plays an important role in forest ecosystems, and above-
ground biomass (AGB) accounts for a large proportion of it [1]. Therefore, the accurate
quantification of forest AGB is of great significance to forest managers. Accurate biomass
measurement requires the cutting down of individual trees and drying and weighting them.
However, this is not practically feasible for a large forest area. Alternatively, developing
allometric biomass equations using the diameters at breast height (DBH) and tree height
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(H) of some representative sample trees as independent variables is another method. Many
studies have also proved that DBH used as the predictor in the tree biomass model per-
formed adequately well [2,3]. Allometric equations are also used to estimate the biomasses
of different tree components (henceforth tree-components). Different tree-components are
widely used. For example, bark can be used as a soil conditioner [4,5], and foliage plays
an important role in protecting soil from water erosion and maintaining biodiversity [6,7].
Thus, quickly and easily estimating tree-component biomass is also an important part of
forest management. However, it can be time-consuming and costly while destructively
measuring tree variables in a large forest area.

Light detection and ranging (LiDAR) technology has been applied to forestry research
since the mid-1980s. Previous studies found that the LiDAR system can estimate tree
height [8,9]. MacLean and Krabill [10] found that tree canopy volume could be estimated
using the laser radar reconstruction of the canopy profile. Subsequently, many studies
demonstrated that the LiDAR system could accurately estimate forest parameters, such as
basal area, stock volume, and biomass [11–15]. For instance, the estimation of biomass using
LiDAR is primarily divided into two aspects: plot-level and individual-tree level. The plot-
level estimation is achieved by establishing mathematical relationships between LiDAR
variables and the biomass, with an emphasis on model forms and parameter estimation
methods [16–19]. The individual-tree level requires accurate segmentation of individual
trees from LiDAR data in order to model and estimate the biomass of specific components
or the entire tree [14,20]. Therefore, the acquisition of inventory factors by remote sensing
techniques gradually matured [20–24].

Nonlinear least square regression (NLS) is a common method for estimating param-
eters of the allometric equations, such as tree growth equations [20,25,26]. NLS has a
number of assumptions while modeling, and a violation of any assumption leads to the
biased estimates of the parameters [27,28]. To deal with this problem, estimation of the
NLS equation needs to be estimated using the seemingly uncorrelated regression (SUR)
method [29–34]. Previous methods of estimating tree biomass include: (1) only stem is
considered for construction with one equation, which results in the univariate model and
binary model; and (2) all the tree-components are considered for a model system construc-
tion using different models. The former method is not complete, and the latter method has
a remarkable drawback, such as low accuracy, because of different responses to the factors
for different tree-components. Different tree-component biomass models are constructed
independently, which leads to the ignorance of the correlation between the components [35].
To solve the additivity problems, additive biomass equations can be developed [34,36,37].

Similarly, tree biomass estimation based on LiDAR data has the same problems, as
pointed out above. The independent variables in a biomass equation should be free of
measurement errors, which is a prerequisite for the use of the nonlinear seemingly uncor-
related regression (NSUR) simultaneous equations. However, the independent variables,
such as DBH, H, crown width, etc., can be derived from remote sensing products and used
for data processing and analysis and may contain substantial random errors and system-
atic errors [38,39]. The potential solution to these problems is to develop LiDAR-based
biomass models using error-in-variable modeling, which ensures the additivity of tree-
component biomass models while taking measurement errors into account [25,27,39–41].
However, only a few of the existing biomass modeling studies have considered the additiv-
ity of biomass equations and have failed to recognize the inherent correlation between the
tree-component biomass and DBH.

Therefore, we developed the error-in-variable biomass models for predicting for-
est aboveground biomass based on airborne LiDAR data, with the aim of ensuring the
compatibility of the individual tree component biomass with DBH and the additivity of
components when estimating biomass. The main elements of this study were as follows:
(i) The error-in-variable modeling approach was used to develop a system of compatible
AGB and individual tree-components biomass with airborne LiDAR data; and (ii) NSUR
was applied as the parameter estimation method. This study can be novel, as it considers
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the measurement errors and ensures the additivity of tree-components biomass on the
airborne LiDAR data. This method may be applied for a large-scale biomass prediction
purpose (from individual to stand), and the model-considering the additivity of each
component would accurately estimate stand biomass.

2. Materials and Methods

In Figure 1, we present a flowchart of the developed, compatible individual tree DBH
and the tree-components biomass model system using airborne LiDAR data. The main
steps included: (1) acquisition of LiDAR data and field-measured data; (2) derivation of
LiDAR-based variables for individual trees; (3) development of the LiDAR-DBH model and
LiDAR-tree-components model; (4) construction of the biomass model prediction system
through three model forms (one-step, two-step, and summation) and two parameter
estimation methods (TSEM and NSUR); and (5) elimination of model heteroscedasticity
using weighting functions.
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Figure 1. The flowchart of the developed, compatible individual tree diameter at breast height (DBH)
and tree-components biomass model system using airborne LiDAR data.

2.1. Study Area

The study area was located at the 2022 Winter Olympics Core of Chongli County,
Hebei Province, China (Figure 2). The area covered about 20 sq. km, and the average
altitude was 1400 m. The forest of this area was dominated by Larix gmelinii var. principis-
rupprechtii and Betula platyphylla Suk., where Larix gmelinii var. principis-rupprechtii was
artificial forest, and Betula platyphylla Suk. was natural forest.
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Figure 2. Location of the study area: the 40 permanent sample plots of 30 m × 30 m (CGCS2000
3-degree Gauss Kruger CM 114E) established in the 2022 Winter Olympics Core of Chongli County,
Hebei Province, China.

2.2. Data Collection
2.2.1. Field Data Collection

Forty permanent sample plots were established in the pure Larix gmelinii var. principis-
rupprechtii forest covering the entire age class in August 2021. For each sample plot, all
trees with DBH > 2 cm were measured for DBH. The coordinates of the four corners of the
sample plot and the positions of the trees were measured using RTK (real-time kinematic)
to improve the accuracy of the sample plot establishment and the convenience of repetitive
measurements. The distribution of the sample plots and the statistical analysis of measured
data are presented in Figure 2 and Table 1, respectively.

2.2.2. Airborne LiDAR Data Acquisition

Airborne LiDAR data were acquired simultaneously with field survey works using a
multi-rotor UAV equipped with an AS-1300HL laser radar measurement system. The laser
scanner was GL-52, with a wavelength of 780~3000 nm. The celestial angle was −33◦~33◦,
and the pulse emission frequency was 600 kHz. The mean flight speed was 6 m s−1, the
mean flight height was 150 m, the point cloud side overlap rate was 50%, and the mean
density was 46 pts m−2. The LiDAR carried an orthographic camera during flight to take
an orthographic image of the flight area, which allowed the researchers to visualize the
study area (Figure 3).
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Table 1. Summary statistics of individual tree variables (WP , protoxylem biomass; WB, branch
biomass; WBK , bark biomass; WF, foliage biomass; WAG, aboveground biomass; WS, stem biomass;
WC, crown biomass; LH, LiDAR-derived tree height; DBH, field-measured diameter at breast height;
CD, crown diameter; CPA, crown projection area; and SD, standard deviation).

Variable Min Mean Max SD

WP (kg) 0.24 42.51 164.08 29.76
WB (kg) 0.22 16.5 53.5 10.1

WBK (kg) 0.12 8.11 25.53 4.85
WF (kg) 0.17 4.82 12.59 2.44
WS (kg) 0.37 50.62 189.61 34.59
WC (kg) 0.38 21.32 66.09 12.53

WAG (kg) 0.75 71.94 55.70 47.09
LH (m) 1.05 9.68 17.27 3.07

DBH (cm) 2.1 15.76 29.4 5.40
CD (m) 0.79 2.69 5.52 0.8

CPA (m2) 0.35 6.17 24 3.66
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Figure 3. Four images of the study area (CGCS2000 3-degree Gauss–Kruger CM 114E); (a) the
Trajectory line with airborne LiDAR; (b) the ortho image with airborne LiDAR; (c) the spatial
distribution of elevation (m ASL—above sea level); (d) the density of the laser points (points per m2).
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2.2.3. LiDAR-Based Extraction of Individual Tree Characteristics

Similar to most LiDAR inversion studies [42,43], the canopy height model was ob-
tained by subtracting the digital elevation model from the digital surface model to further
extract individual tree information. The first mainstream individual tree crown delineation
method was known as the ‘watershed method’ [44], and another mainstream method was
segmenting the LiDAR point into polygons based on the tree crown edges and considering
the maximum value in the polygon as the top of the crown. Although previous studies
indicated that tree crown-related factors, such as asymmetric crown shape, tree overlap,
and short tree crowns, could result in the under-segmentation of individual tree crowns,
the impact was less pronounced for conifer tree species with distinct tree tops [45]. Addi-
tionally, the resolution of raster data played a dominant role in segmentation accuracy [20].
Furthermore, several studies showed that the first method could obtain more accurate
results of tree crown segmentation, and therefore, we applied this method [46].

The LiDAR point cloud data processing involved: (1) classifying ground LiDAR
points to obtain the digital elevation model and carrying out the normalization process;
(2) obtaining the digital surface model, which applied the maximum height interpolation
method [46]; and (3) obtaining individual tree information by using the canopy height
model, including LiDAR-derived tree height (LH), crown diameter (CD), and crown pro-
jection area (CPA). The digital elevation model, digital surface model, and canopy height
model had a resolution of 0.5 m × 0.5 m. To ensure the canopy was not under-segmented,
the Gaussian smoothing filter was used with a sigma value of 0.5.

A total of 947 individual principis-rupprechtii tree crowns were delineated based
on the above method. Generally, forest biomass modeling and the application of the
model needs field measurements, which not only demands more time and more financial
resources but also causes a destruction of forests. The forest biomass models based on
remote sensing data are often constructed without the destruction of forests. Application
of this method could have a high accuracy in forest biomass prediction [47]. We used
the empirical allometric models developed by Fu et al. [48] to estimate the biomasses of
947 individual trees, which contained protoxylem, branch, foliage, bark, and aboveground
biomass (Table 2). Such a study adopted the allometric biomass equation, with DBH as a
single independent variable; the variables of individual trees are summarized in Table 1.

Table 2. Empirical models of tree biomass in north China (Fu et al. [48]).

Biomass Model

Protoxylem WP = 0.0388DBH2.4696

Branch WB = 0.0462DBH2.0865

Bark WBK = 0.0274DBH2.0222

Foliage WF = 0.0496DBH1.6375

Stem WS = 0.0618DBH2.3723

Crown WC = 0.0837DBH1.9946

Above-ground WAG = 0.1431DBH2.2193

2.3. Method
2.3.1. Variables Selection and Determination of the LiDAR-DBH Base Model

Considering problems such as over-parameterization and collinearity of the model,
only those variables that contribute significantly to the variation in DBH were selected in
our modeling. We used correlation statistics and graphical analyses to select the variables.
We also examined the impacts of variable transformations on biomass models, such as
logarithmic transformations. We found that LH contributed significantly highly to the
improvement in predictions of DBH.

Five common model forms were used to develop the base model of DBH, with the
only predictor variable being the LiDAR-derived tree height. Version 4.1 of R software was
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used to estimate models with the NLS technique nls (nonlinear least squares) function [49].
The following statistical criteria were used to evaluate the base model [50]:

R2 = 1 − ∑
(

DBHi − DB̂Hi
)2/ ∑

(
DBHi − DBH

)2 (1)

ε = ∑ εi/N = ∑
(

DBHi − DB̂Hi
)
/N (2)

TRE = 100
∑
(
DBHi − DB̂Hi

)
∑ DB̂Hi

(3)

RMSE =
√

ε2 + σ2 (4)

where DBHi and DB̂Hi are the observed and predicted DBHs for the ith observation
(i = 1, . . . , N), N is the total number of samples, DBH is the mean of the DBH observations,
ε is the mean bias, R2 is the coefficient of determination, TRE is the total relative error, σ2 is
the bias variance, and RMSE is the root mean square error.

In this study, LiDAR-derived tree height largely contributed to the tree-components
biomass models. Therefore, based on the evaluation of fitted basic models using the
statistical criteria mentioned above (Equations (1)–(4), the best performing model was
selected for further analysis. The models of biomass and DBH of different components
based on the allometric models were established (to be shown later).

2.3.2. Developing Form of a Model System

The error-in-variable model could significantly reduce the problem of the dependent
variables containing errors, including measurement errors [51,52]. The general form of
such a model is: 

f (yi, xi, β) = 0 i = 1, . . . , N
Yi = yi + ei

E(ei) = 0 Var(ei) = ∑

(5)

where N is the number of samples to construct the model; f (yi, xi, β) represents the model
form; xi and yi represent the independent variable and the dependent variables, where the
independent variable is without measurement error, and the dependent variable is with
measurement error; and ∑ is the positive definite variance–covariance matrix of an error
term ei.

We termed sub-models for LiDAR-DBH and AGB models (Table 2). On the basis
of model (5), sub-models were developed into a system to ensure the additivity of the
model. Additionally, model (5) was developed in 3 forms. The first method divided the
aboveground biomass into tree protoxylem, tree branch, tree foliage, and tree bark, and we
termed this method the one-step method. It can be expressed as:

w1i =
f1

(
y(1)i ,xi ,β1

)
f1

(
y(1)i ,xi ,β1

)
+ f2

(
y(1)i ,xi ,β2

)
+ f3

(
y(1)i ,xi ,β3

)
+ f4

(
y(1)i ,xi ,β4

)Ŵ0i

w2i =
f2

(
y(1)i ,xi ,β2

)
f1

(
y(1)i ,xi ,β1

)
+ f2

(
y(1)i ,xi ,β2

)
+ f3

(
y(1)i ,xi ,β3

)
+ f4

(
y(1)i ,xi ,β4

)Ŵ0i

w3i =
f3

(
y(1)i ,xi ,β3

)
f1

(
y(1)i ,xi ,β1

)
+ f2

(
y(1)i ,xi ,β2

)
+ f3

(
y(1)i ,xi ,β3

)
+ f4

(
y(1)i ,xi ,β4

)Ŵ0i

w4i =
f4

(
y(1)i ,xi ,β4

)
f1

(
y(1)i ,xi ,β1

)
+ f2

(
y(1)i ,xi ,β2

)
+ f3

(
y(1)i ,xi ,β3

)
+ f4

(
y(1)i ,xi ,β4

)Ŵ0i

Yi = yi + ei, Yi = (W1i, W2i, W3i, W4i(Yi)
T)

T , yi = (w1i, w2i, w3i, w4i, (yi
(1))

T
)

T

E(ei) = 0, var(ei) = σ2ψ, i = 1, . . . , N

(6)
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where i = 1, . . . , N, W0i ∼ W4i represent the observed biomass values of the above-
ground biomass, tree protoxylem, tree branch, tree foliage, and tree bark of the ith tree,
with their values containing measurement errors; and the equation function for tree-
components are represented by f1

(
y(1)i , xi, β1

)
to f4

(
y(1)i , xi, β4

)
. w1i ∼ w4i and Ŵoi are

the measured values.
The structural matrix ψ explains the internal correlation between the tree-components

of an individual tree [53].
The second method divided the aboveground biomass into the tree stem and the tree

crown, the crown into the tree branch and tree foliage, and the stem into tree protoxylem
and tree bark. We termed this method the two-step method. This ensured that tree crown =
tree branch + tree foliage, and tree stem = tree protoxylem + tree bark. Its expression was
as follows:

w1i =
f1

(
y(1)i ,xi ,β1

)
f1

(
y(1)i ,xi ,β1

)
+ f3

(
y(1)i ,xi ,β3

) f5

(
y(1)i ,xi ,β1

)
f5

(
y(1)i ,xi ,β1

)
+ f6

(
y(1)i ,xi ,β3

)Ŵ0i

w2i =
f2

(
y(1)i ,xi ,β2

)
f2

(
y(1)i ,xi ,β2

)
+ f4

(
y(1)i ,xi ,β4

) f6

(
y(1)i ,xi ,β1

)
f5

(
y(1)i ,xi ,β1

)
+ f6

(
y(1)i ,xi ,β3

)Ŵ0i

w3i =
f3

(
y(1)i ,xi ,β3

)
f1

(
y(1)i ,xi ,β1

)
+ f3

(
y(1)i ,xi ,β4

) f5

(
y(1)i ,xi ,β1

)
f5

(
y(1)i ,xi ,β1

)
+ f6

(
y(1)i ,xi ,β3

)Ŵ0i

w4i =
f4

(
y(1)i ,xi ,β4

)
f2

(
y(1)i ,xi ,β2

)
+ f4

(
y(1)i ,xi ,β4

) f6

(
y(1)i ,xi ,β1

)
f5

(
y(1)i ,xi ,β1

)
+ f6

(
y(1)i ,xi ,β3

)Ŵ0i

Yi = yi + ei, Yi = (W1i, W2i, W3i, W4i(Yi)
T)

T , yi = (w1i, w2i, w3i, w4i, (yi
(1))

T
)

T

E(ei) = 0, var(ei) = σ2ψ, i = 1, . . . , N

(7)

where f5

(
y(1)i , xi, β1

)
and f6

(
y(1)i , xi, β1

)
are the equations corresponding to the tree stem

and crown, and the meanings of the other variables are the same as in Equation (6).
The one-step and two-step methods were based on the biomass model of the pro-

portion method (Equations (6) and (7), respectively). The third method was based on the
biomass model of the summation method (Equation (8)).

w0i = f1

(
y(1)i , xi, β1

)
+ f2

(
y(1)i , xi, β2

)
+ f3

(
y(1)i , xi, β3

)
+ f4

(
y(1)i , xi, β4

)
+ ζ0i

w1i = f1

(
y(1)i , xi, β1

)
+ ζ1i

w2i = f2

(
y(1)i , xi, β2

)
+ ζ2i

w3i = f3

(
y(1)i , xi, β3

)
+ ζ3i

w4i = f3

(
y(1)i , xi, β4

)
+ ζ4i

(8)

where ζ0i, ζ1i, ζ2i, ζ3i, and ζ4i represent the aboveground biomass and the residuals of
protoxylem, branch, foliage, and bark, respectively, and the meanings of the other variables
are the same as in Equation (6).

2.3.3. Nonlinear Error-in-Variable Models (NEIVM) and Nonlinear Seemingly Unrelated
Regression (NSUR)

The form of the NEIVM was proposed by Fuller [41]. Tang et al. developed this model
and divided the variables into two categories, based on whether the variables included
measurement errors: error-in-variables and error-out-variables [54]. In this study, the
models (6) and (7) were estimated by the two-stage error (TSEM) algorithm in Forstat
3.0 [55]. We selected the biomasses of different components as error variables, with LH as
the true value. The specific estimation processes can be found in Tang 2001 [54].

The NSUR is also a common algorithm used to estimate the measurement error model,
which uses a feasible generalized least square regression [31,55]. We used NSUR to estimate
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the biomass model of the proportion method (Equation (7)) and the summation method
(Equation (8)).

There still existed a controversial issue of whether the sample needed to be divided
into modeling data and test data [56,57]. Beak and Shao argued that it was unconvincing to
evaluate the model only by the indices obtained from the modeling data [58,59]; Weisheng
Zeng (1999) also believed that it was not advisable to collect a single set of the test samples
for adaptability testing, and all the samples should be used to build the model [60]. To make
full use of the sampled data, this study did not distinguish between modeling samples and
testing samples.

2.3.4. Heteroscedasticity

For nonlinear joint estimation of biomass models, elimination of the heteroscedas-
ticity was an indispensable step. The common way to eliminate heteroscedasticity is

to use the weighted regression method. We used 1/ 3
√

fi(y
(1)
i , xi, β1), 1/

√
fi(y

(1)
i , xi, β1),

1/ fi(y
(1)
i , xi, β1) and 1/ fi(y

(1)
i , xi, β1)

2 as weight functions.

3. Results
3.1. LiDAR-DBH Models

Table 3 shows the fitting results for models I.1 to I.5. In contrast, model I.3 and I.4
were slightly better than others (larger R2), although the differences in fit statistics between
the five models were not significant. We also chose model I.4 as the basic nonlinear model
because model I.4 was simpler than model I.3.

Table 3. Evaluation statistics for five candidate base models (RMSE, root mean square error; R2,
coefficient of determination; εDBH, mean prediction error; TRE, total relative error; α1 − α3, model
parameters; and εDBH, error term).

Model Model Model Form RMSE R2 εDBH TRE

I.1 DBH = α1 + α2LH + εDBH Linear 4.0462 0.51626 0.00000 6.0526
I.2 DBH = α1LHβ1 + εDBH Empirical 4.0276 0.52072 −0.01672 5.9935
I.3 DBH = α1/[1 + α2 exp(−α3LH)] + εDBH Logistic 4.0127 0.52439 −0.005258 5.9469
I.4 DBH = α1[1 − exp(−α2LH)] + εDBH Richards 4.0154 0.52362 −0.01672 5.9551
I.5 DBH = α1 exp(−α2LH) + εDBH Exponential 4.1903 0.48120 −0.04616 6.5199

Table 4 shows the models of biomass and DBH of different components, based on
the allometric models. The stem biomass was summed by the protoxylem and bark, the
crown biomass was summed by the branch and foliage, and the aboveground biomass was
summed by the protoxylem, branch, bark, and foliage.

Table 4. Seven different tree-component base models of biomass estimation and their evaluation
statistics (εW , mean prediction error; β1 − β3, model parameters; and εW , error term).

Model Model Components RMSE R2 εW TRE

II.1 WP = β1DBHβ2 + εW Protoxylem 8.6527 0.5900 −0.0717 11.8530
II.2 WB = β3DBHβ4 + εW Branch 22.7314 0.5657 −0.1633 15.8248
II.3 WBK = β5DBHβ6 + εW Bark 3.1095 0.5882 −0.0257 12.1274
II.4 WF = β7DBHβ8 + εW Foliage 6.5137 0.5839 −0.0534 12.7763
II.5 WAG = β9DBHβ10 + εW Aboveground 31.5338 0.5753 −0.2478 14.1597
II.6 WS = β11DBHβ12 + εW Stem 19.7480 0.5598 −0.1305 16.9231
II.7 WC = β13DBHβ14 + εW Crown 1.5162 0.6143 −0.0114 8.5341
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3.2. Model Parameter Estimates

Table 5 lists the parameter estimates of the models fitted by NEIVM and NSUR using
a full data set. The parameter estimates of all the models were significant (p < 0.05), and
their magnitudes were consistent with biological logics.

Table 5. Parameter estimates of the models (nonlinear error-in-variable models, NEIVM; nonlinear
seemingly unrelated regression, NSUR).

Parameters Model I.4 Model II
TSEM NSUR

Model (6) Model (7) Model (8) Model (6) Model (7) Model (8)

α1 49.7128
α2 0.04028
β1 0.0768 0.0667 0.0735 0.0859 0.0108 3.2675 0.0794
β2 2.2550 2.3065 2.2827 2.2280 2.3317 1.7254 2.2435
β3 0.1266 0.0735 0.0691 0.0721 0.0107 0.0603 0.0737
β4 1.8635 1.9435 0.0477 1.9545 2.0060 2.5465 1.9387
β5 0.0737 0.0431 1.8584 0.0406 0.0062 0.5010 0.0409
β6 1.9386 1.8826 2.2196 1.9064 1.9466 1.7892 1.8961
β7 0.0421 0.0726 0.0667 0.0555 0.0107 0.0007 0.0449
β8 1.8861 1.5177 1.5461 1.6099 1.5746 1.6928 1.6776
β9 0.2465 0.1514 0.1769 0.2096 0.1924
β10 2.0474 2.1951 2.1359 2.0877 2.1169
β11 0.1160 1.9600 0.1925
β12 2.1738 0.0995 2.3012
β13 0.0613 0.1289 0.3223
β14 1.5708 1.8295 1.8211

3.3. Model Evaluation

Table 6 shows the comparisons of the performances of different component models
of NEIVM and NSUR with one-step, two-step, and summation (Equations (6)–(8)). The
fitting precisions of all the components with one-step were slightly higher than those of
TSEM and NSUR. For example, for bark, R2 with NSUR-one-step was 0.5883, which was
1.94% higher than models with NSUR-two-step. For the nonlinear seemingly unrelated
regression, the difference in the fitting effects of all the components with different methods
were very small; TSEM also had this effect. The order of the fitting precision of different
tree-component biomass models were: protoxylem model < branch model < bark model <
foliage model.

Table 6. The performance of the three model systems with two-parameter estimation methods.

Component Method R2 εW TRE RMSE

Protoxylem

TSEM-one-step 0.5585 0.7367 17.3555 19.7769
TSEM-two-step 0.5571 1.3899 18.1241 19.8083

TSEM-summation 0.5567 −1.6579 15.9434 19.8157
NSUR-one-step 0.5598 −0.1139 16.9208 19.7469
NSUR-two-step 0.5598 −0.1386 16.9182 19.7470

NSUR-summation 0.5597 −0.1631 16.9260 19.7482

Branch

TSEM-one-step 0.5831 0.2232 13.0848 6.5200
TSEM-two-step 0.5818 0.4157 13.5562 6.5306

TSEM-summation 0.5820 −0.4344 12.2372 6.5287
NSUR-one-step 0.5841 −0.0557 12.7713 6.5124
NSUR-two-step 0.5843 0.0163 12.7756 6.5111

NSUR-summation 0.5839 −0.0522 12.7779 6.5137
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Table 6. Cont.

Component Method R2 εW TRE RMSE

Bark

TSEM-one-step 0.5875 0.1046 12.4149 3.1123
TSEM-two-step 0.5861 0.1944 12.8460 3.1175

TSEM-summation 0.5864 −0.1985 11.6462 3.1163
NSUR-one-step 0.5883 −0.0306 12.1221 3.1089
NSUR-two-step 0.5710 0.2621 12.7672 3.1736

NSUR-summation 0.5882 −0.0190 12.1310 3.1096

Foliage

TSEM-one-step 0.6141 0.0445 8.7044 1.5164
TSEM-two-step 0.6126 0.0829 8.9405 1.5195

TSEM-summation 0.6131 −0.0693 8.3161 1.5185
NSUR-one-step 0.6139 −0.0333 8.5344 1.5169
NSUR-two-step 0.5840 −0.1341 9.2154 1.5746

NSUR-summation 0.6125 0.0268 8.5872 1.5196

Above-ground

TSEM-one-step 0.5753 −0.2478 14.1597 31.5338
TSEM-two-step 0.5753 −0.2478 14.1597 31.5338

TSEM-summation 0.5685 −2.3602 14.0111 30.9364
NSUR-one-step 0.5753 −0.2478 14.1597 31.5338
NSUR-two-step 0.5753 −0.2478 14.1597 31.5338

NSUR-summation 0.5710 −0.2075 14.7572 30.8468

3.4. Reduction of Heteroscedasticity

We tested weight functions 1/ 3
√

fi(y
(1)
i , xi, β1), 1/

√
fi(y

(1)
i , xi, β1), 1/ fi(y

(1)
i , xi, β1)

and 1/ fi(y
(1)
i , xi, β1)

2 to reduce the heteroscedasticity. Finally, the weight function

1/
√

fi(y
(1)
i , xi, β1) showed a better performance (Figure 4). This study confirms that the

heteroscedasticity of the joint system of equations can be reduced using a weight function,

and therefore, we suggest using the equation 1/
√

fi(y
(1)
i , xi, β1).
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4. Discussion

Forests are the mainstays of the terrestrial ecosystem [61]. Precise quantification of
forest biomass for the evaluation of ecosystem functions and productivities is necessary.
Methods of obtaining forestry data, including biomass, carbon storage, and some other
forest survey data that are timely and effective have always been a concern in forest
science [62]. In our study, we used error-in-variable modeling to develop an additive
model system of tree protoxylem, branch, bark, and foliage with the use of the airborne
LiDAR data. A model system not only ensured the compatibility of DBH and different
component biomasses, it also ensured the additivity of different component biomasses. In
the first step, we built the correlations between the DBH and different component biomasses
with the assumptions that the observations of the independent variables would have no
measurement error in them, while the observations of the dependent variable would
contain measurement errors. Generally, if a measurement error existed in the observed
value of the independent variable, the estimation of the model might be largely biased.
However, the error-in-variable model could be theoretically unbiased [63], and the findings
of Fu et al. [37] also supported this.

In our study, only LiDAR-derived tree height was included in a biomass model
system. As an individual, LH had the highest contribution to DBH and was consistent
with statistical modeling principles [64]. From a remote sensing perspective, the canopy
diameter would be more difficult to measure than LH and CPA because of a complex
crown shape [65]. Several studies found a strong relationship between canopy diameter
and DBH [66,67]. For example, several researchers [68–70] mentioned that canopy diameter
could be measured based on the geometric method of the crown projection area. In
our study, both the effects of canopy diameter and crown projection area on the LiDAR-
DBH model were evaluated, and it was found that canopy diameter did not significantly
contribute to the model improvement; however, the crown projection area had a significant
contribution to improving the LiDAR-DBH model. Additionally, the crown projection area
had a significant collinearity problem, and that was why we chose to exclude this. The
main reasons were: (i) although the CPA could reflect the crown effects, LH had a stronger
relationship with DBH, and (ii) adding the CPA diameter into the model would provide a
weaker predictability, as this would increase the model complexity; these variables would
significantly correlate with each other. Considering all of this, only the LH was selected
as a predictor in our biomass model system. This resulted in the two-parameter model,
which could enhance the robustness and stability of the models when the model system is
embedded into a complete algorithm in the future.
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A previous study showed that the measurement error model was more advantageous
when DBH had measurement errors [21,25,62]. In practice, the sources of random error
largely vary and are not easy to avoid, such as the airborne LiDAR system, due to weather,
space, and other factors. In the process of single-tree segmentation, height estimation accu-
racy is one of the many factors [71]. In our study, we identified the most suitable parameter
estimation method of the measurement error model through a rigorous comparison. For
NSUR, the one-step method had only a slight advantage over the two-step method (Table 6).
The reason was that we let the stem = protoxylem + bark and the crown = branch + foliage,
and there were still some errors between the stem and the crown of the biomass model and
the aboveground biomass model, which would lead to an increase in model error. However,
the two-step method provided an idea for the LiDAR inversion of the tree biomass when the
allometric growth equations of the stem and the crown for obtaining different components
of biomass were known. For TSEM, the one-step model system form had an advantage
over the summation method (Table 6), and it was because the summation method had one
more equation than the proportion method, which increased the system complexity, and
was subjected to more constraints in the calculation process. For different components, the
performances were different. It might be related to the amounts of biomasses of different
components, and a model system was constrained to prefer components with smaller
biomasses. Overall, the NSUR one-step method was clearly more convenient and practical
than TSEM, which needed to be computed in Forstat because the R nlsystemfit (nonlinear
equation system estimation) function [72] had a wider range of users.

Generally, the fitting effect of the model should be identical within a reasonable
range [73]. However, for different components, the performance of each method may have
large variations. This may be due to fitting data, as this study included the age class of
Larix gmelinii var. principis-rupprechtii. For the whole tree, the order of the biomasses
was protoxylem > branch > bark > foliage (Table 1). The biomasses of bark and leaves
in the juvenile forest were small but not much different from that of other age classes.
However, the small biomass of protoxylem led to irregularity in the protoxylem data
structure. Therefore, we suggest the establishment of different model systems as per age
groups in practical applications to improve the estimation accuracies of biomasses.

Heteroscedasticity is a problem that must be solved [74], and the solution is to linearize
the model or increase the weight function. In contrast, the former method might increase
the complexity of the calculation. Thus, it is necessary to select the appropriate weight
function. However, a larger or smaller weight function might cause poor heteroscedas-
ticity reduction; this might be because weight function cannot regulate well the weights
of residuals. To explore and select the weight function, we found that the effect of het-
eroscedasticity reduction would be largely related to the size of the data. This provided
a scheme and a suggestion for other similar studies to select the weight function while
reducing heteroscedasticity.

We developed this a biomass model system not only to ensure the compatibility of
DBH and tree-components but also to ensure the additivity of the aboveground biomass
and the different components biomass. This would potentially expend the use of LiDAR
data for estimating AGB from tree-components to individual tree and then to stand, which
does not require the field measurement data; NSUR-one-step appeared to be the best
method. Even though the final fitting effect of each model system was not attractive, the
best R2 was 0.61 for components of foliage. This might be mainly due to: (i) the error
propagation, in which the LH-DBH had an error of 0.56, and the DBH-components, which
had an error of 0.97; and (ii) the uncertainty of the sources of the relationship between DBH
and different components biomass [75]. In our study, only the independent variables were
considered without error, but the uncertainties might arise from the error of using LiDAR
data, the measurement error of variables, the error of using LiDAR data to delineate tree
crowns and estimate LH and DBH, and the model parameters estimation error. Overall, if
the error sources were identified clearly, a biomass model system could be improved timely
and effectively, which will be our main task in the future.
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5. Conclusions

Based on the field measurement data and airborne LiDAR data of principis-rupprechtii
trees in north China, the error-in-variable biomass model system was developed to ensure
that the individual tree-components biomass and DBH were compatible and to ensure the
additivity of the components biomass. Three alternative parameter estimation methods and
three forms of a model system, TSEM and NSUR with one-step, two-step, and summation,
were evaluated. The performance of NSUR-one-step and TSEM-one-step were almost
identical. The models and methods we proposed could provide a reliable precision while
estimating both DBH and tree-components biomass, based on the airborne LiDAR data. Our
compatible biomass and DBH model system, similar to the one developed by a previous
study based on LiDAR data [37], required some processed remote sensing data to obtain
the DBH of individual trees and the biomasses of tree-components. Our model system
was more comprehensive by incorporating the estimation of individual tree-components
and ensured their compatibility and additivity. This meant that the forest biomass or the
carbon storage information could be obtained without field measurements. Therefore, our
methods and models could be applicable to forest management, and the methods could be
applied to other tree species as well. It would be more advantageous if we could identify
the other sources of errors to improve the prediction accuracy of a compatibility model
system.
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