Assimilating GNSS TEC with an LETKF over Yunnan, China
Abstract
:1. Introduction
2. Local Ensemble Transform Kalman Filter Assimilation Algorithm
3. Experimental Data Accuracy Assessment
3.1. Experimental Data
3.2. Accuracy Assessment
4. Results and Analysis
4.1. Ionospheric Geomagnetic Calm Conditions
4.2. Under Ionospheric Geomagnetic Disturbance Conditions
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kintner, P.M.; Ledvina, B.M. The ionosphere, radio navigation, and global navigation satellite systems. Adv. Space Res. 2005, 35, 788–811. [Google Scholar] [CrossRef]
- Dubey, S.; Wahi, R.; Gwal, A. Ionospheric effects on GPS positioning. Adv. Space Res. 2006, 38, 2478–2484. [Google Scholar] [CrossRef]
- Lejeune, S.; Wautelet, G.; Warnant, R. Ionospheric effects on relative positioning within a dense GPS network. GPS Solut. 2012, 16, 105–116. [Google Scholar] [CrossRef]
- Hajj, G.A.; Wilson, B.D.; Wang, C.; Pi, X.; Rosen, I.G. Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the kalman filter. Radio Sci. 2004, 39, RS1S05. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.; Araujo-Pradere, E.; Minter, C.; Codrescu, M.; Spencer, P.; Robertson, D.; Jacobson, A.R. US-TEC: A new data assimilation product from the space environment center characterizing the ionospheric total electron content using real-time GPS data. Radio Sci. 2006, 41, RS6003. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Lin, Y.C.; Rocken, C.; Kuo, Y.H.; Zhao, B. Data assimilation retrieval of electron density profiles from radio occultation measurements. J. Geophys. Res.-Space Phys. 2011, 116, A03317. [Google Scholar] [CrossRef] [Green Version]
- Gardner, L.C.; Schunk, R.W.; Scherliess, L.; Sojka, J.J.; Zhu, L. Global assimilation of ionospheric measurements-Gauss Markov model: Improved specifications with multiple data types. Space Weather 2014, 12, 675–688. [Google Scholar] [CrossRef]
- Aa, E.; Huang, W.; Yu, S.; Liu, S.; Shi, L.; Gong, J.; Chen, Y.; Shen, H. A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation. J. Geophys. Res.-Space Phys. 2015, 120, 5049–5061. [Google Scholar] [CrossRef] [Green Version]
- Adebiyi, S.J.; Adebesin, B.O.; Ikubanni, S.O.; Joshua, B.W. Performance evaluation of GIM-TEC assimilation of the IRI-Plas model at two equatorial stations in the American sector. Space Weather 2017, 15, 726–736. [Google Scholar] [CrossRef]
- Chen, M.; Liu, L.; Xu, C.; Wang, Y. Improved IRI-2016 model based on BeiDou GEO TEC ingestion across China. GPS Solut. 2019, 24, 20. [Google Scholar] [CrossRef]
- Ssessanga, N.; Kim, Y.H.; Habarulema, J.B.; Kwak, Y.S. On imaging south African regional ionosphere using 4D-var technique. Space Weather 2019, 17, 1584–1604. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Yue, X.; Le, H.; Ren, Z.; Wan, W. Evaluation on the quasi-realistic ionospheric prediction using an ensemble Kalman filter data assimilation algorithm. Space Weather 2020, 18, e2019SW002410. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Yue, X.; Astafyeva, E.; Le, H.; Ren, Z.; Pedatella, N.M.; Ding, F.; Wei, Y. Global gridded ionospheric electron density derivation during 2006–2016 by assimilating COSMIC TEC and its validation. J. Geophys. Res.-Space Phys. 2022, 127, e2022JA030955. [Google Scholar] [CrossRef]
- Bust, G.S.; Garner, T.W.; Gaussiran, T.L. Ionospheric data assimilation three-dimensional (IDA3D): A global, multisensor, electron density specification algorithm. J. Geophys. Res.-Space Phys. 2004, 109, A11312. [Google Scholar] [CrossRef] [Green Version]
- Mengist, C.K.; Ssessanga, N.; Jeong, S.H.; Kim, J.H.; Kim, Y.H.; Kwak, Y.S. Assimilation of multiple data types to a regional ionosphere model with a 3D-var algorithm (IDA40). Space Weather 2019, 17, 1018–1039. [Google Scholar] [CrossRef] [Green Version]
- Mengist, C.K.; Seo, K.H.; Kim, Y.H.; Eswaraiah, S.; Ssessanga, N.; Kwak, Y.S. 3-D regional imaging of ionosphere over Africa through assimilating satellite and ground-based data. J. Geophys. Res.-Space Phys. 2023, 128, e2022JA030859. [Google Scholar] [CrossRef]
- Jeong, S.H.; Kim, Y.H.; Kim, J.H.; Kwak, Y.S. A regional ionospheric assimilation study with GPS and COSMIC measurements using a 3D-Var algorithm (IDA4D). Adv. Space Res. 2022, 69, 2489–2500. [Google Scholar] [CrossRef]
- Schunk, R.W.; Scherliess, L.; Sojka, J.J.; Thompson, D.C.; Anderson, D.N.; Codrescu, M.; Minter, C.; Fuller-Rowell, T.J.; Heelis, R.A.; Hairston, M.; et al. Global assimilation of ionospheric measurements. Radio Sci. 2004, 39, RS1S02. [Google Scholar] [CrossRef]
- Lin, C.Y.; Matsuo, T.; Liu, J.Y.; Lin, C.H.; Huba, J.D.; Tsai, H.F.; Chen, C.Y. Data assimilation of ground-based GPS and radio occultation total electron content for global ionospheric specification. J. Geophys. Res.-Space Phys. 2017, 122, 10876–10886. [Google Scholar] [CrossRef]
- Yue, X.; Wan, W.; Liu, L.; Zheng, F.; Lei, J.; Zhao, B.; Xu, G.; Zhang, S.; Zhu, J. Data assimilation of incoherent scatter radar observation into a one-dimensional midlatitude ionospheric model by applying ensemble Kalman filter. Radio Sci. 2007, 42, RS6006. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Yue, X.; Hu, L.; Wang, J.; Li, M.; Ning, B.; Wan, W.; Xu, J. Observing system impact on ionospheric specification over China using EnKF assimilation. Space Weather 2020, 18, e2020SW002527. [Google Scholar] [CrossRef]
- Kosary, M.; Forootan, E.; Farzaneh, S.; Schumacher, M. A sequential calibration approach based on the ensemble Kalman filter (C-EnKF) for forecasting total electron content (TEC). J. Geod. 2022, 96, 29. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, S.; Huo, X.; Wu, X. Ionospheric assimilation of GNSS TEC into IRI model using a local ensemble Kalman filter. Remote Sens. 2022, 14, 3267. [Google Scholar] [CrossRef]
- Forootan, E.; Kosary, M.; Farzaneh, S.; Schumacher, M. Empirical data assimilation for merging total electron content data with empirical and physical models. Surv. Geophys. 2023. [Google Scholar] [CrossRef]
- Hunt, B.R.; Kostelich, E.J.; Szunyogh, I. Efficient data assimilation for spatiotemporal chaos: A local ensemble Kalman filter. Phys. D 2007, 230, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Durazo, J.A.; Kostelich, E.J.; Mahalov, A. Local ensemble transform Kalman filter for ionospheric data assimilation: Observation influence analysis during a geomagnetic storm event. J. Geophys. Res.-Space Phys. 2017, 122, 9652–9669. [Google Scholar] [CrossRef] [Green Version]
- Szunyogh, I.; Kostelich, E.J.; Gyarmati, G.; Patil, D.J.; Hunt, B.R.; Kalnay, E.; Ott, E.; Yorke, J.A. Assessing a local ensemble Kalman filter: Perfect model experiments with the National Centers for Environmental Prediction global model. Tellus A 2005, 57, 528–545. [Google Scholar] [CrossRef]
- Bishop, C.H.; Etherton, B.J.; Majumdar, S.J. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 2001, 129, 420–436. [Google Scholar] [CrossRef]
- Bishop, C.H.; Whitaker, J.S.; Lei, L. Gain form of the ensemble transform Kalman filter and its relevance to satellite data assimilation with model space ensemble covariance localization. Mon. Weather Rev. 2017, 145, 4575–4592. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Z.; Wang, N.; Zhang, B.; Li, H.; Li, M.; Huo, X.; Ou, J. Monitoring the ionosphere based on the crustal movement observation network of China. Geod. Geodyn. 2015, 6, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Scherliess, L.; Schunk, R.W.; Sojka, J.J.; Thompson, D.C.; Zhu, L. Utah State university global assimilation of ionospheric measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation. J. Geophys. Res.-Space Phys. 2006, 111, A11315. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Zhang, S.; Yang, D.; Wu, X. Assimilating GNSS TEC with an LETKF over Yunnan, China. Remote Sens. 2023, 15, 3547. https://doi.org/10.3390/rs15143547
Tang J, Zhang S, Yang D, Wu X. Assimilating GNSS TEC with an LETKF over Yunnan, China. Remote Sensing. 2023; 15(14):3547. https://doi.org/10.3390/rs15143547
Chicago/Turabian StyleTang, Jun, Shimeng Zhang, Dengpan Yang, and Xuequn Wu. 2023. "Assimilating GNSS TEC with an LETKF over Yunnan, China" Remote Sensing 15, no. 14: 3547. https://doi.org/10.3390/rs15143547
APA StyleTang, J., Zhang, S., Yang, D., & Wu, X. (2023). Assimilating GNSS TEC with an LETKF over Yunnan, China. Remote Sensing, 15(14), 3547. https://doi.org/10.3390/rs15143547