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Abstract: Recently, the problem of target detection in noisy environments for the Dual-Functional
Radar Communication (DFRC) integration system has been a hot topic. In this paper, to suppress
the noise and further enhance the target detection performance, a novel manifold Riemannian
Improved Armijo Search Conjugate Gradient algorithm (RIASCG) framework has been proposed
which jointly optimizes the integrated transmitting waveform and receiving filter. Therein, the
reference waveform is first designed to achieve excellent pattern matching of radar beamforming.
Furthermore, to ensure the quality of system information transmission, the energy of multi-user
interference (MUI) of communication signals is incorporated as the constraint. Additionally, the
typical similarity constraint is introduced to ensure the transmitting waveform with a good ambiguity
function. Finally, simulation results demonstrate that the designed waveform not only enhances
the system’s target detection performance in noisy environments but also achieves a relatively good
multi-user communication ability when compared with other prevalent waveforms.

Keywords: radar communication integration system; waveform design; manifold optimization;
target detection

1. Introduction

In the past decades, with the rapid development of commercial wireless communica-
tion and remote sensing image processing [1–3], the demand for available frequency bands
has also increased dramatically where most of the frequency resources are allocated to
radar requirements and also limit the communication throughput. Therein, the integration
of sensing and communication to improve spectrum utilization has become a research
hotspot [4–6].

At present, the radar communication integration system can be divided into two
categories according to whether the spectrum is shared: radar communication coexistence
(RCC) [6] and dual functional radar communication (DFRC) [7]. For RCC, it means that
radar and communication work independently on the same platform through some re-
source diversity, including frequency division multiplexing, power multiplexing and time
division multiplexing [8]. Authors in [9] presented the power allocation and subcarrier se-
lection scheme to minimize the transmission power while ensuring the presence of mutual
information between radar and communication. Authors in [10] discussed the integration
of radar communication by orthogonalizing radar and communication signals. Unlike RCC,
DFRC integrates radar and communication functions through a single integrated waveform
and allocates its power to a specific spatial area to detect targets while transmitting the
user communication signals. Early research focused on the integrated waveform design
where the digital information was embedded into the radar waveform by modifying the
traditional radar waveform and controlling its sidelobe in the direction of the objective
user [11,12]. Typically, when the communication user is in the mainlobe of the radar wave-
form, the communication rate would drop greatly, and the communication function would
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fail. Moreover, the communication symbols can also modulate the radar waveform to
achieve coexistence for dual functions [13–15]. Authors in [16,17] tried to use the existing
communication waveforms to achieve radar’s tasks. From the communication view, DFRC
signals need high-quality communication performance, such as a high communication rate,
which can be improved by minimizing multi-user interference (MUI).

Considering the scenarios involving multiple communication users and multiple
radar sensing targets, the DFRC waveform has faced more challenges [18]. For communica-
tion, the signal-to-interference-plus-noise ratio (SINR) of each user should be considered.
For radar, the SINR should also be considered. For DFRC systems, the performance of
communication and sensing is coupled together, which means that any improvement of
communication may deteriorate the radar performance, and vice versa. Therefore, in fact,
when DFRC systems work in multi-user and multi-target scenarios, they inevitably face
multiple performance tradeoffs between multi-users, multi-targets and also communication
and perception. To solve this problem, authors in [19] designed the transmitting waveform
by minimizing the joint least squares of weighted squared error and total MUI, where
the weighting factor is used to balance two systems. Moreover, in this integration, most
communication signals are modulated by multiple carriers, which will inevitably lead to a
high peak average power ratio (PAPR) and incur distortion at the RF end. To improve the
power efficiency of transmitters, PAPR constraints or constant modulus (CM) are widely
used. Authors in [20] tried to jointly optimize the MUI and radar SINR by alternating the
minimization and gradient projection frameworks. Authors in [21,22] designed the radar
transmitting waveform under a given PAPR and similarity constraints. Note that radar
waveforms as well as DFRC waveforms with constant modulus are also in need [23,24].
Authors in [25] designed a CM-integrated waveform by synthesizing different signals in
the direction of communication and radar and also proposed an iterative optimization
amplitude weighting method. No matter the PAPR/CM constraint or similarity constraint,
these prior works would have to tackle the non-convex optimization problem with a heavy
computation burden. How to design DFRC waveforms within the non-convex framework
has been a hot topic. Furthermore, authors in [26] designed the CM DFRC waveform
to minimize MUI and maximize the similarity between integrated signals and reference
radar waveforms. Authors in [27] considered the joint design of the receiving filter and
transmitting waveform with the maximum signal-to-noise ratio (SNR) and proposed a
novel algorithm based on manifold ideas which give us lots of inspiration.

In this paper, to improve the detection performance of the integration system in noisy
environments, the joint design of the system’s transmitting waveform and receiving filter
has been proposed to enhance the output SNR, which is based on the Riemannian Improved
Armijo Search Conjugate Gradient algorithm (RIASCG) framework. This framework could
transform the non-convex optimization problem into a novel convex one within Rieman-
nian manifold space. Firstly, the MIMO radar waveform, with the constant modulus and
similarity (CM&S) constraint as well as good directivity, was designed. Furthermore, the
waveform with the minimum MUI was also considered. By using the manifold principle,
the CM&S constraint was transformed into an unconstrained Riemannian space. Partic-
ularly in the Riemannian space, the final solution can be obtained through the iterative
closed-form. Finally, we compare their performance with several existing ones.

The organization of this paper is as follows. The system model and problem formula-
tion are presented in Sections 2 and 3. The DFRC waveform design by the novel algorithm
is proposed in Section 4. Section 5 presents the numerical results. Finally, conclusions are
drawn in Section 6.

Notation: Lower-case letters x and upper-case letters X denote vectors and matrices,
respectively. The symbols (·)T, (·)H and (·)∗ stand for the transpose, the conjugate trans-
pose and the conjugate operators, respectively. The set of N × N complex matrices and the
set of n-dimensional complex numbers vectors are denoted by CN×N and Cn, respectively.
The l2 norm is denoted by the symbol ||·||2, and the Frobenius norm is represented by the
symbol ||·||F. IN stands for the identity matrix of size N × N. Finally, the notations Re{x}
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and Im{x} are denoted as the real and imaginary part of x, E(·) represents the expectation
operator, the symbol ⊗ denotes the Kronecker product and the symbol � represents the
Hadamard product.

2. System Model

Cognitive radar adjusts its waveforms via artificial intelligence or machine learning as
shown in Figure 1, which is regarded as a closed-loop feedback cycle. This adaptive system
makes it more intelligent and offers higher robustness in waveform optimization compared
with the traditional one. This paper focuses on the design of transmitting waveforms and
receiving filters in DFRC systems where the integrated waveform is suitable for both target
detection and information transmission. Namely, to achieve this, the optimization problem
should satisfy the transmitted beampattern favorable for target detection while generating
minimal MUI to multiple users in the downlink. The DFRC system needs to perform
the following two tasks simultaneously: (i) target detection and (ii) communication with
single-antenna users in the downlink.
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2.1. Communication Model

Assume that the channel between the bifunctional base-station and the communication
user is flat Rayleigh fading and the channel characteristics remain unchanged for a certain
period of time. The integrated MIMO radar-antenna system has Nt transmitting antennas
and Nr receiving antennas, and the frame length of the dual-functional waveform is as-
sumed to be N. Suppose that there are M communication users subjected to the interference
from K irrelevant signals when detecting the target. Specifically, the signals received by M
communication users can be represented as

Y = HX + W (1)

where H = [h1, h2, . . . , hM]T ∈ CM×Nt is the channel matrix. The transmission signal
matrix is X = [x1, x2, . . . , xN ] ∈ CNt×N , where xi ∈ CNt×1 denotes the i-th transmitted
symbol vector, and W = [w1, w2, . . . , wN ] ∈ CM×N is the white Gaussian noise matrix of
the receiver.
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Furthermore, as the integrated system would transmit a signal matrix S ∈ CM×N to
M users, (1) can be rewritten as

Y = S + (HX− S)︸ ︷︷ ︸
MUI

+ W (2)

where the second term in (2) represents the multi-user interference [19], and its energy can

be expressed as ϕ(X) = ‖HX− S‖2
F with separable property ‖HX− S‖2

F =
N
∑

i=1
‖Hxi − si‖2.

According to [20], the achievable sum-rate of the users can be defined as

ϑ ,
M

∑
m=1

log2(1 + γm) (3)

where γm represents the SINRt of per-frame received by the m-th user, i.e.,

γm =
E
(
|sm,i|2

)
E
(∣∣∣hT

mxi − sm,i

∣∣∣2)+ N0

(4)

where sm,i represents the i-th code-unit for the m-th user, N0 is the power of the received

noise, and the energy of the (m, i) term of MUI can be expressed as E(
∣∣∣hT

mxi − sm,i

∣∣∣) . By
minimizing the energy of MUI, the achievable rate of the system can be maximized, which
is equivalent to minimizing ϕ(X).

2.2. Detection Model

This section primarily aims to synthesize waveforms to achieve beampattern matching
while maximizing SINRr. The SINRr of the MIMO system is determined by the transmitted
waveform and its covariance matrix R. By optimizing the transmitting waveform vector,
the quality of the radar-output signal can also be enhanced, which in turn improves the
SNR and anti-interference ability of radar and also improves the sensitivity and accuracy of
target detection. Assuming that a point target exists in the direction θ0, and K independent
interference sources are located at θk(θk 6= θ0, k = 1, 2, · · · , K), then the received signals at
the i-th frame (i = 1, 2, . . . , N) is formulated by

yi = α0ar(θ0)aT
t (θ0)xi +

K

∑
k=1

αkar(θk)a
T
t (θk)xi + vi (5)

where α0, α1, . . . , αK are the amplitudes of target and interference sources, and vi de-
notes the receiver noise. The ar(θ) ∈ CNr and at(θ) ∈ CNt are the propagation vector
and steering vector for the direction θ where the transmit and receive arrays are as-

sumed to be linear uniform ones with at(θ) = 1√
Nt

[
e−jπ0 sin θ , . . . , e−jπ(Nt−1) sin θ

]T
and

ar(θ) = 1√
Nr

[
e−jπ0 sin θ , . . . , e−jπ(Nr−1) sin θ

]T
. To simplify the expression, the N vectors

corresponding to yi in Equation (5) can be represented as

~
y = α0A0x̃ +

K

∑
k=1

αkAkx̃ +
~
v (6)

where Ak = IN ⊗
(
ar(θk)aT

t (θk)
)
, ỹ = [yT

1 , . . . , yT
N ]

T, x̃ = [xT
1 , . . . , xT

N ]
T,

~
v = [vT

1 , . . . , vT
N ]

T.
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To improve the detection performance, it is required to process the received signal.
Regarding the receiving filter w, the resulting output can be expressed as

r = wHỹ = α0wHA0x̃︸ ︷︷ ︸
Target

+ wH
K

∑
k=1

αkAkx̃︸ ︷︷ ︸
Interference

+ wHṽ︸︷︷︸
Noise

(7)

In Equation (7), the first term represents the desired signal, the second term represents
the interference signal, and the third term represents the noise. Thus, the SINRr of the filter
output can be expressed as

SINRr =
σ2

0

∣∣wHA0x̃
∣∣2

wH
[

K
∑

k=1
σ2

k Akx̃x̃HAH
k

]
w + σ2

v wHw
(8)

where E[|αk|2] = σ2
k represents the complex amplitude of αk. Generally, in a Gaussian

noise environment, the larger the SINRr, the better the detection performance would be.
Equation (8) can be transformed into a convex problem for a fixed x̃.

min
w

wH
[

K
∑

k=1

..
σkAkx̃x̃HAH

k + I
]

w

s.t.wHA0x̃ = 1
(9)

where
..
σk = σ2

k /σ2
0 . Furthermore, to accurately obtain some information of target or

interference in the environment, waveforms in all directions should be equipped with some
low sidelobes so as to reduce mutual interference. The beampattern power located at θ can
be expressed as

P(θ) = aH
t (θ)Rat(θ) (10)

Considering that each array has the same emission energy, i.e., unitary power, the
covariance matrix R can be designed as

Rbb =
1

Nt
, b = 1, · · · , Nt (11)

where Rbb represents the (b, b)-th element of covariance matrix R. φ(θ) denotes an expected
transmit beampattern where {θk}K

k=1 is a fine grid covering the points of interest. Assuming
that there are K̃ expected target locations, the objective is to detect the target at locations{

θ̃k

}K̃

k=1
, which can be confirmed by calculating the Capon spatial spectrum or generalized

likelihood ratio test (GLRT) [28]. Here, the dominant peak position has been calculated by

the GLRT pseudo-spectrum so as to form the desired beampattern
{

θ̃k

}^
K

k=1
, and

^
K is the

resulting estimate of K̃, i.e.,

φ(θ) =

1, θ ∈
[
θ̃k − ∆

2 , θ̃k +
∆
2

]
, k ∈

{
1, · · · ,

^
K
}

0, others
(12)

where ∆ is the beamwidth selected by each target.
Based on the aforementioned discussions, it is necessary to design a matrix R that

minimizes the least squares error between the transmitted beampattern P(θ) and the ex-
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pected beampattern φ(θ), while also minimizing the cross-correlation terms from different
backscattered signals. Consequently, the corresponding problem could be expressed as

min
R,α

J(R, α) = 1
K

K
∑

k=1
ωk
∣∣aH

t (θk)Rat(θk)− αφ(θk)
∣∣2

+ 2ωc
K̃(K̃−1)

K̃−1
∑

p=1

K̃
∑

q=p+1

∣∣∣aH
t

(
θ̃p

)
Rat

(
θ̃q

)∣∣∣2 (13)

where ωk represents the weight factor of the k-th source, ωc represents the weight factor of
the cross-correlation term, and α is a scaling factor that needs to be optimized.

Moreover, some appropriate constraints are further imposed on the covariance matrix
R, which also considers the need of the low cross-correlation beampattern. The designed
R must be positive semidefinite, and all diagonal elements of R must be equal to the uni-
form antenna power while satisfying the uniform basic-power constraint. The covariance
optimization problem can be formulated as

min
R,α

J(R, α)

s.t.R < 0
Rbb = 1

Nt
, b = 1, · · · , Nt

α > 0

(14)

To solve the optimization problem of variables (R, α), the convex optimization toolbox
CVX can be employed [29]. Note that when designing MIMO radar systems with low
cross-correlation beampatterns, it is crucial to make a balance between detection and
communication performance. It is necessary to define the optimization objectives and
constraints based on the specific application requirements. This ensures that the design
effectively meets the desired performance criteria.

3. Optimization Modeling of Radar and Communication Integrated System

In this section, the optimization objective is to maximize SINRr while considering
the signal-dependent interference. The design of the covariance matrix and transmitting
waveform of MIMO radar will be addressed simultaneously. In practical radar applications,
to improve the detection performance while maintaining the ability of multi-user commu-
nication, good ambiguity function and range resolution characteristics, it is necessary to
introduce similarity constraints, such as

1√
NNt
‖x̃− x̃0‖∞ ≤ ξ (15)

where x̃0 is the reference waveform and ξ is the similarity coefficient. To enhance detection
performance and facilitate multi-user communication, the permissible range of ξ is usually
set as 0 ≤ ξ ≤ 2cm, where cm = 1/

√
NNt. It should be noted that the communication

performance may be severely degraded under the above constraints. Once the output
result is obtained as the integrated referenced waveform X0, then it is equivalent to add the
communication information into the integrated signal. Therefore, the optimization problem
for the design of directional beamforming can be formulated as

min
X0
‖HX0 − S‖2

F

s.t. 1
N X0XH

0 = R
(16)

According to [19], the problem described in (16) can be characterized as an Orthogo-

nal Procrustes problem (OPP) with a closed-form solution X0 =
√

NFUINt×N
^
V

H
, where

R=FFH represents the Cholesky decomposition or other valid square-root decomposition,
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while UΣ
^
V

H
= FHHHS represents the singular value decomposition (SVD). Consequently,

the benchmark radar waveform X0 is uncorrelated with the power of the desired constella-
tion S.

Next, a compromise constraint, i.e., ρ‖HX− S‖2
F +(1− ρ)‖X− X0‖2

F ≤ Y, is proposed,
where Y defines the maximum permissible level for the communication performance metric
and radar waveform similarity error. By taking the limited transmission energy into
account, the optimization problem can be formulated as

min
x̃

wH
[

K
∑

k=1

..
σkAkx̃x̃HAH

k + I
]

w

s.t.ρ‖HX− S‖2
F + (1− ρ)‖X− X0‖2

F ≤ Y
1√

NNt
‖x̃− x̃0‖∞ ≤ ξ

1
N ‖X‖

2
F = PT

(17)

where 0 ≤ ρ ≤ 1 denote the weight factor, and PT represents the total power of all Nt
antennas per symbol. The constraint conditions can be transformed into the following
composite form [19], i.e.,

ρ‖HX− S‖2
F + (1− ρ)‖X− X0‖2

F

=
∥∥∥[√ρHT,

√
1− ρINt ]

TX− [
√

ρST,
√

1− ρXT
0 ]

T
∥∥∥2

F

(18)

Denoting C = [
√

ρHT,
√

1− ρINt ]
T and D = [

√
ρST,

√
1− ρXT

0 ]
T

, Equation (18) can
be rewritten and extended to

‖CX−D‖2
F = tr

(
(CX−D)H(CX−D)

)
= tr

(
XHCHCX

)
− tr

(
XHCHD

)
− tr

(
DHCX

)
+ tr

(
DHD

) (19)

Further defining Q = CHC and G = CHD, Equation (19) can be rewritten as

tr
(

XHQX
)
− 2Re

(
tr
(

XHG
))

(20)

where Q is a Hermitian matrix, Equation (20) can be written in the form of a Lagrange
multiplier with respect to the total power as follows

L(X, λ) = tr
(

XHQX
)
− 2Re

(
tr
(

XHG
))

+ λ
(
‖X‖2

F − NPT

)
(21)

where λ is the dual variable of the equality constraint. Defining
.
X and

.
λ as the optimal point

and the dual optimal point with zero duality gap, according to the trust-region subproblem
(TRS) optimality conditions [30], the following conclusions show

.
X =

(
Q +

.
λINt

)†
G∥∥∥∥(Q +

.
λINt

)†
G
∥∥∥∥2

F

=

∥∥∥∥V
(

Λ +
.
λINt

)−1
VHG

∥∥∥∥2

F
= NPT.
λ ≥ −λmin

(22)
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where the notation (·)† refers to the Moore–Penrose pseudoinverse of the matrix. Further-
more, the matrix Q can be decomposed into Q = VΛVH where λmin denotes the minimum
eigenvalue of Q. It can be further proved that formula (22) has a unique solution, i.e.,

P(λ) =
∥∥∥V(Λ + λINt)

−1VHG
∥∥∥2

F

=
Nt
∑

n=1

N
∑

j=1

(
[VHG]n,j

)2

(λ+λn)
2

(23)

From deduction of (23), it is noted that when
.
λ ≥ −λmin, the function P(λ) is strictly

decreasing and convex. Therefore, the golden-section search method can be employed to
determine the optimal solution for

.
λ.

4. Waveform Optimization Algorithm

In this section, a novel RIASCG algorithm is proposed to optimize the objective
function. The Riemann gradient of function h(x̃) is defined as gradh(x̃), which can be
obtained by projecting the gradient on the Euclidean space. Here, Gradh(x̃) represents the
Euclidean gradient of h(x̃), and the contraction operator Retr(·) maps the vector on the
tangent space Tx̃Ms at the vicinity of manifold x̃ ∈ Ms. The next iteration point x̃(l+1) is
considered when the objective value satisfies the descent condition. In each descent process,
a more accurate step size d(l) needs to be selected to ensure faster convergence. To achieve
this, an improved Riemannian manifold conjugate gradient algorithm based on the Armijo
back-tracking line-search idea is proposed, offering several advantages over the first-order
conjugate gradient algorithm [27]:

(1) Faster convergence speed: The second-order conjugate gradient algorithm, utilizing
second-order derivative information, could more accurately determine the search
direction and step size compared with the first-order conjugate gradient one, resulting
in better results in the same number of iterations.

(2) More effective optimization for high-dimensional data: The first-order conjugate gradi-
ent algorithm may have a slow convergence speed when optimizing high-dimensional
data, while the second-order conjugate gradient algorithm can better overcome this
problem.

(3) Stronger numerical stability: The second-order conjugate gradient algorithm can
better avoid numerical instability, which is particularly prominent in optimizing
high-dimensional data.

(4) Fewer iterations: Due to faster convergence, the second-order conjugate gradient
algorithm typically requires fewer iterations to achieve the same optimization effect,
which is particularly important for optimizing large-scale data.

Suppose that the above constraints can be denoted as Ms. For any z ∈ CNNt , its
projection operator of the sequence x̃(l) ∈ Ms can be expressed as

ProjMs

x̃(l)
(z) = z− Re

{
z∗ � x̃(l)

}
� x̃(l) (24)

Once the input z ∈ CNNt is given, it is possible to apply a universal compression
function to effectively address common constraints, i.e.,

Retr(z) = arg min
x̃∈Ms

‖x̃− z‖2 (25)
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The closed-form solution of w in Equation (17) can be derived, i.e.,

w =

[
K
∑

k=1

..
σkAkx̃x̃HAH

k + I
]−1

A0x̃

x̃HAH
0

[
K
∑

k=1

..
σkAkx̃x̃HAH

k + I
]−1

A0x̃

(26)

As a result, a subproblem of the optimization problem has been obtained, i.e.,

min
x̃
− x̃HAH

0

[
K
∑

k=1

..
σkAkx̃x̃HAH

k + I
]−1

A0x̃

s.t.x̃εMs

(27)

The subproblem can be further expressed as

h(x̃) = −x̃H

AH
0

[
K

∑
k=1

..
σkAkx̃x̃HAH

k + I

]−1

A0

x̃ (28)

The Euclidean gradient of the smooth extension
.
h(x̃) can be denoted as Grad

.
h(x̃), i.e.,

Grad
.
h(x̃) = −2

(
AH

0

(
K
∑

k=1

..
σkAk x̃x̃HAH

k + I
)−1

A0x̃

)
−
(

x̃H ∂
∂x̃

(
AH

0

(
K
∑

k=1

..
σkAk x̃x̃HAH

k + I
)−1

A0

))
x̃

= −2

(
AH

0

(
K
∑

k=1

..
σkAk x̃x̃HAH

k + I
)−1

A0x̃

)
−
(

1NNt ⊗ x̃HAH
0

(
K
∑

k=1

..
σkAk x̃x̃HAH

k + I
)−1

)

×
K
∑

k=1

(
..
σkINNt ⊗Ak

[
∂x̃x̃H

∂x̃1
· · · ∂x̃x̃H

∂x̃NNt

]T
AH

k

)
×
(

K
∑

k=1

..
σkAk x̃x̃HAH

k + I
)−1

A0x̃

(29)

The steps of manifold RIASCG for DFRC waveform design can be summarized in
Algorithm 1.

Algorithm 1: The Manifold RIASCG for DFRC Waveform Design.

Input: l = 0, x̃(0), β, d, v, η, X0, H, S, PT , σ1 ∈ (0, 1), σ2 ∈ (0, 1), weight factor 0 ≤ ρ ≤ 1.
Output: x̃(l), w.

While
∣∣∣h(x̃(i+1)

)
− h
(

x̃(i)
)∣∣∣ ≥ J do

1. Compute C = [
√

ρHT,
√

1− ρINt ]
T, D = [

√
ρST,

√
1− ρXT

0 ]
T

, Q = CHC and G = CHD.
2. Compute the eigenvalue decomposition Q = VΛVH of Q, set the searching interval as

[−λmin,b], where b ≥ 0 is a searching upper-bound.
3. Find the optimal solution

.
λ to (22) using golden-section search.

4. Compute X =
(

Q +
.
λIN

)†
G.

5. Once the global minimizer X is obtained, given its separability property, it can be
employed as the reference waveform for the similarity constraint, denoted as x̃0.

6. Compute Grad
.
h
(

x̃(i)
)

according to (29).

7. Compute Projx̃(i)
(

Gradh
(

x̃(i)
))

according to (24).

8. Compute the improved Armijo back-tracking line-search parameter d(i) = vηβ, β is the
smallest non-negative integer satisfying

h
(

x̃(l)
)
− h
(

x̃(l) −vηβGradh
(

x̃(l)
))
≥ σ1d(l)

∥∥∥Projx̃(l)
(

Gradh
(

x̃(l)
))∥∥∥2

2

+σ2

(
d(l)
)2∥∥∥Projx̃(l)

(
Gradh

(
x̃(l)
))∥∥∥2

2

9. Perform the projection step
.
x̃
(l+1)

= x̃(l) − d(l)Projx̃(l)
(

Gradh
(

x̃(l)
))

.

10. Obtain x̃(l+1) = Retr
(

x̃(l)
)

according to (25).

11. l = l + 1.
End while
Compute w according to (26).
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5. Numerical Result

To evaluate the performance of the designed waveforms, we first formulated the simu-
lation scenarios. A uniform linear array configuration is assumed for both the transmitting
and receiving arrays. Units in these arrays have an element spacing of half a wavelength.
The number of transmitting antennas is Nt = 10, the number of receiving antennas is
Nr = 10, and the target echo power is 10 dB. Additionally, the interference power is set to
20 dB, the noise power is 0 dB and the code-length of the waveform is N = 8, while v and
η are drawn from [0, 0.5] and [0, 1], respectively. For convenience, PT = 1 and assume that
each entry of the channel matrix H is modeled as flat fading one and also is independently
and identically distributed with a standard complex Gaussian distribution hi,j ∼ CN (0, 1).
The constellation selected for the communication users is the unit-power QPSK alphabet,
and the threshold value of

∣∣∣h(x̃(i+1)
)
− h
(

x̃(i)
)∣∣∣ is set as 10−4.

By employing Equation (14), the objective is to construct the covariance matrix R for
problem (16), and then its performance would be compared with the omni-directional
waveform. Assume that there are four users, and the direction of arrival (DoA) information
for K̃ = 3 targets with unit complex amplitude is approximately {−50◦, 0◦, 50◦}, which can
be obtained by the Capon or GLRT method. Three symmetrical beampatterns of interest are
denoted as θ̃1 = −50◦, θ̃2 = 0◦, θ̃3 = 50◦, with a beampattern width of ∆ = 20◦. Next, the
performance of the omni-directional and directional beampattern would be discussed, and
a radar-communication compromise waveform would be designed to achieve some flexible
trade-off between radar and communication for practical needs. Considering the trade-off
design for radar communication, the Pareto weight factor ρ = 0.2 is introduced, and ‘Omni’
and ‘Directional’ are denoted as the omnidirectional and directional beam-patterns. Further,
the waveforms with strict equality constraints are denoted as ‘Strict’, while the trade-off
designs are denoted as ‘Tradeoff’. In Figure 2, it is evident that the proposed method
exhibits significantly lower sidelobe levels compared to the method of [19].
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Moreover, to further assess the robustness of different algorithms, the proposed RI-
ASCG would be compared with RCG [31], MM [32], MM-SQUAREM [33] and RCG-Armijo
algorithms. To enhance the comparability, two additional constraints are also incorporated:
the constant modulus constraint [34] and the e-uncertainty constant modulus constraint [35].
As shown in Figure 3, in comparison to the first-order RCG-Armijo algorithm, the second-
order conjugate RIASCG algorithm used in this paper demonstrates faster convergence.
The first-order conjugate gradient algorithm needs some precise line searching, which
could increase computational costs and lead to some direction inconsistency in certain
cases. Particularly in ill-conditioned problems, this algorithm might encounter direction
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loss within iterations and fail to converge to the minimum value. In such scenarios, the
second-order conjugate gradient algorithm appears to be more advantageous than the
first-order one, as it utilizes more information to determine the search direction and reduces
the direction inconsistency. The RIASCG algorithm has demonstrated fewer iterations and
a faster convergence rate compared with other algorithms.
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To evaluate the scalability and robustness of algorithms, the computation runtime
comparisons were also conducted for different N in Table 1 considering the CM&S con-
straint. Obviously, the practicality and scalability of RIASCG has effectively demonstrated
that the comparative runtime performance has outperformed other prior works, such as
RCG, RCG-Armijo, MM and MM-SQUAREM, especially for larger N. These comparisons
could underscore the effectiveness and applicability of RIASCG.

Next, the effect of the similarity constraint has been discussed. As shown in Figure 4,
when the similarity coefficient between two users is lower, it indicates a lower similarity
between their signals, which can result in a greater degree of interference between them.
When multiple users transmit signals simultaneously, the interference will affect the quality
of the received signal and also result in a lower SINRr. In Figure 5, waveforms optimized
by RIASCG algorithm as ξ decreasing have shown different shapes of ambiguity function.
The similarity between the designed waveform and the reference waveform would be
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gradually increased, which would result in a better-formed ambiguity function. However,
this also leads to a reduction in the degrees of freedom for waveform design.

Table 1. Runtime comparisons of different methods under CM&S constraint.

Algorithm N=4 N=8 N=16 N=32

RIASCG 0.6875 s 2.7031 s 14.1719 s 100.0785 s
RCG 4.3751 s 9.9843 s 188.2811 s 709.3284 s

RCG-Armijo 0.8281 s 3.6718 s 40.1406 s 232.0167 s
MM 6.7968 s 14.4375 s 328.3755 s 2562.1734 s

MM-SQUAREM 1.5937 s 5.5156 s 113.8751 s 630.3911 s
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Furthermore, given a specified radar beampattern, the design of dual-function wave-
forms is further analyzed. As demonstrated in Figure 6, we define the transmit SNR
as SNR = PT/N0, and then examine the relationship between the transmit SNR of the
communication signal and the average achievable sum-rate. Here, ε represents the stop-
ping criterion for the golden-section search iteration. As the transmit SNR increases,
the effect of the signal synthesis error on the average achievable sum-rate increases.
Therefore, the sum-rate of the synthesized signal is slightly lower than that of a single
communication signal.
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Moreover, in Figure 7, the relationship between the average achievable rate per-user
vs. the detection probability is illustrated when the receive SNR has −6 dB and the false-
alarm probability has PFA = 10−7. With an increase in the number of users, the detection
probability would be decreased for a fixed average achievable rate per-user, which suggests
that the increasing degrees of freedom could further minimize MUI energy. In Figure 8,
the relationship between the average achievable rate per-user vs. the number of iterations
has been demonstrated. Once the number of communication users increases, the feasible
solution space decreases, which leads to a decline in the average achievable rate.
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6. Conclusions

In this paper, we aimed to design an integrated waveform for DFRC using an RI-
ASCG framework, which offers a flexible trade-off between radar and communication
performance. To accomplish this, the manifold principle was leveraged to transform the
constrained CM&S problem into unconstrained Riemann spaces, ensuring radar beam-
pattern constraints and their trade-offs. Simulations have demonstrated the convergence
performance and superiority of RIASCG when compared with other existing algorithms.
Moreover, by adjusting the similarity coefficient, the designed waveform exhibited de-
sirable properties in terms of the ambiguity function. As this paper demonstrated, we
mainly focused on presenting a novel optimizing idea to tackle the joint optimization of
integrated transmitting waveforms and receiving filters, which ignores the relative motion
or Doppler shift. Next, in our future research, we will investigate the influence of relative
motion and the Doppler shift and try to assess the robustness and adaptability of the
proposed techniques in realistic scenarios. Additionally, we will also investigate the impact
of varying channel conditions and different fading models, such as frequency-selective
fading or multipath fading.
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