Mapping Alteration Minerals Using ZY-1 02D Hyperspectral Remote Sensing Data in Coalbed Methane Enrichment Areas
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data
2.2.1. Hyperspectral Remote Sensing Data
2.2.2. Field Sample Data
3. Methods
3.1. Hydrocarbon Microseepage Theory and Diagnostic Hyperspectral Characteristics of Alteration Minerals
3.1.1. Clay Minerals
3.1.2. Carbonate Minerals
3.2. Data Preprocessing
3.3. Extraction Method of Alteration Minerals
3.3.1. Spectral Feature Matching Method
3.3.2. Diagnostic Characteristic Parameters
3.3.3. Integrated Method of Spectral Feature Matching and Diagnostic Characteristic Parameters
3.4. Accuracy Assessment
4. Results and Analysis
4.1. Extraction Results of the Diagnostic Characteristic Parameters of Typical Minerals
4.1.1. Clay Mineral
4.1.2. Carbonate Mineral
4.2. Extraction Results Using the Integrated Method of Spectral Feature Matching and Diagnostic Characteristic Parameters
4.2.1. Clay Minerals
4.2.2. Carbonate Minerals
4.3. Accuracy Assessment
5. Discussion
5.1. Analysis of the Influence of Different Hyperspectral Satellite Remote Sensing Data
5.2. Analysis of Extraction Efficiency of Different Alteration Minerals
6. Conclusions
- (1)
- The extraction of alteration minerals, including clay and carbonate minerals, was successfully achieved using ZY-1 02D and Hyperion data. The distribution of clay and carbonate minerals exhibited good accuracy (81.67% and 79.03%, respectively) when analyzed using XRD.
- (2)
- Comparing the extraction results of Hyperion data and ZY-1 02D data, the PA, UA, and OA for clay mineral extraction were higher with ZY-1 02D data than with Hyperion data. However, the UA for carbonate mineral extraction using ZY-1 02D data was 1.51% lower than with Hyperion data.
- (3)
- The study illustrated the potential geological application of hyperspectral satellite remote sensing data in identifying CBM enrichment regions. This method offers a large-scale, convenient, and highly efficient approach compared with traditional seismic exploration and drilling methods.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moore, T.A. Coalbed methane: A review. Int. J. Coal Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Fu, X.; Qin, Y.; Wang, G.G.X.; Rudolph, V. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology. Fuel 2009, 88, 2269–2277. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Qin, Q.M.; Chen, L.; Nan, W.; Zhao, S.S.; Hui, J. Rapid determination of coalbed methane exploration target region utilizing hyperspectral remote sensing. Int. J. Coal Geol. 2015, 150–151, 19–34. [Google Scholar] [CrossRef]
- Song, X.; Ma, H.; Saalidong, B.M.; Li, K. Petrography, Mineralogy, and Geochemistry of Thermally Altered Coal in the Tashan Coal Mine, Datong Coalfield, China. Minerals 2021, 11, 1024. [Google Scholar] [CrossRef]
- Gan, F.P.; Dong, X.F.; Yan, B.K.; Liang, S.N. Research progress of spectrometry geological remote sensing. J. Nanjing Univ. Inf. Sci. Technol. Nat. Sci. Ed. 2018, 10, 44–62. [Google Scholar] [CrossRef]
- Zheng, X.W.; Peng, B.; Shang, K. Assessment of the interpretation ability of domestic satellites in geological remote sensing. Remote Sens. Nat. Resour. 2021, 33, 1–10. [Google Scholar] [CrossRef]
- Yao, F.; Xu, X.; Yang, J.; Geng, X. A Remote-Sensing-Based alteration zonation model of the Duolong Porphyry Copper Ore District, Tibet. Remote Sens. 2021, 13, 5073. [Google Scholar] [CrossRef]
- Maghsoudi Moud, F.; van Ruitenbeek, F.; Hewson, R.; van der Meijde, M. An approach to accuracy assessment of ASTER derived mineral maps. Remote Sens. 2021, 13, 2499. [Google Scholar] [CrossRef]
- Chen, L.; Qin, Q.M.; Chen, C.; Jiang, H.B. Remote sensing information of mineralizing alteration extraction methods. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5947–5950. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.; Yang, G.; Sun, W. Spatio-temporal distribution of harmful algal blooms and their correlations with marine hydrological elements in offshore areas, China. Ocean. Coast. Manag. 2023, 238, 106554. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Jin, H.; Chen, L.; Liu, Z.; Sun, H.; Hong, J.; Wang, H.; Fang, S.; Zhang, X. 3D model construction and ecological environment investigation on a regional scale using UAV remote sensing. Intell. Autom. Soft Comput. 2023, 37, 1655–1672. [Google Scholar] [CrossRef]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; Meijde, M.V.D.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Mohamed, A.; Emam, A.; Zoheir, B. SAM-HIT: A simulated annealing multispectral to hyperspectral imagery data transformation. Remote Sens. 2023, 15, 1154. [Google Scholar] [CrossRef]
- Islam, M.R.; Siddiqa, A.; Ibn Afjal, M.; Uddin, M.P.; Ulhaq, A. Hyperspectral image classification via information theoretic dimension reduction. Remote Sens. 2023, 15, 1147. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Wang, Y.L.; Wu, Q.M.J.; Yang, C.N.; Sun, X.M. Effective and efficient global context verification for image copy detection. IEEE Trans. Inf. Forensics Secur. 2017, 12, 48–63. [Google Scholar] [CrossRef]
- Boubanga-Tombet, S.; Huot, A.; Vitins, I.; Heuberger, S.; Veuve, C.; Eisele, A.; Hewson, R.; Guyot, E.; Marcotte, F.; Chamberland, M. Thermal Infrared hyperspectral imaging for mineralogy mapping of a mine face. Remote Sens. 2018, 10, 1518. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.K.; Dong, X.F.; Wang, Z.; Yang, S.M.; Yu, J.C.; Li, N.; Gan, F.P. Mineral information extraction technology by airborne hyperspectral remote sensing and its application progress: An example of mineralization belts of western China. Geol. Surv. China 2016, 3, 55–62. [Google Scholar]
- Ren, Z.; Zhai, Q.; Sun, L. A novel method for hyperspectral mineral mapping based on clustering-matching and nonnegative matrix factorization. Remote Sens. 2022, 14, 1042. [Google Scholar] [CrossRef]
- Ye, B.; Tian, S.F.; Cheng, Q.M.; Ge, Y.Z. Application of lithological mapping based on advanced hyperspectral imager (AHSI) imagery onboard Gaofen-5 (GF-5) satellite. Remote Sens. 2020, 12, 3990. [Google Scholar] [CrossRef]
- Xu, D.X.; Yang, B.; Shao, Z.G.; Liu, C.F.; Wang, D.; Wang, J.P. A hyperspectral analysis of alteration zoning in the Hadamengou gold deposit and its significance for ore prospecting. Remote Sens. Nat. Resour. 2023, 35, 123–131. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.G.; Chen, Z.J. Classification of alteration zones based on drill core hyperspectral data using semi-supervised adversarial autoencoder: A case study in Pulang Porphyry Copper Deposit, China. Remote Sens. 2023, 15, 1059. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, G.L. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang. Remote Sens. Nat. Resour. 2022, 34, 277–285. [Google Scholar]
- Chen, Q.; Zhao, Z.; Zhou, J.; Zhu, R.; Xia, J.; Sun, T.; Zhao, X.; Chao, J. ASTER and GF-5 satellite data for mapping hydrothermal alteration minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sens. 2022, 14, 1253. [Google Scholar] [CrossRef]
- Huo, H.Y.; Ni, Z.Y.; Jiang, X.G.; Zhou, P.; Liu, L. Mineral mapping and ore prospecting with HyMap data over Eastern Tien Shan, Xinjiang Uyghur Autonomous Region. Remote Sens. 2014, 6, 11829–11851. [Google Scholar] [CrossRef] [Green Version]
- Molan, Y.E.; Refahi, D.; Tarashti, A.H. Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 117–127. [Google Scholar] [CrossRef]
- Dong, X.F.; Gan, F.P.; Li, N.; Yan, B.K.; Zhang, L.; Zhao, J.Q.; Yu, J.C.; Liu, R.Y.; Ma, Y.N. Fine mineral identification of GF-5 hyperspectral image. J. Remote Sens. 2020, 24, 454–464. [Google Scholar] [CrossRef]
- Pour, A.B.; Zoheir, B.; Pradhan, B.; Hashim, M. Editorial for the special issue: Multispectral and hyperspectral remote sensing data for mineral exploration and environmental monitoring of mined areas. Remote Sens. 2021, 13, 519. [Google Scholar] [CrossRef]
- Tan, W.; Wang, S.; He, H.; Qi, W. Reconstructing coastal blue with blue spectrum based on ZY-1 (02D) satellite. Optik 2021, 242, 166901. [Google Scholar]
- Tian, J.; Su, S.; Tian, Q.; Zhan, W.; Xi, Y.; Wang, N. A novel spectral index for estimating fractional cover of non-photosynthetic vegetation using near-infrared bands of Sentinel satellite. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102361. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Wang, S.; Zhang, L. Advances in spaceborne hyperspectral remote sensing in China. Geo Spat. Inform. Sci. 2021, 24, 95–120. [Google Scholar]
- Sun, W.; Liu, K.; Ren, G.; Liu, W.; Yang, G.; Meng, X.; Peng, J. A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102572. [Google Scholar] [CrossRef]
- Li, G.J.; Yang, X.S.; Zhang, X.; Li, X.M.; Li, D.L.; Du, C. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey. Remote Sens. Land Resour. 2021, 33, 134–140. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.J.; Zhai, D.G.; Liu, Z.J.; Zhang, F.F.; Zhao, Y.J.; Liu, P.F.; Wang, Z.T. Alteration minerals mapping and identification of gold mineralization belt based on ZY1-02D hyperspectral data in Fangshankounanshan area, Gansu Province. Geol. Explor. 2022, 58, 399–409. [Google Scholar] [CrossRef]
- Farooq, S.; Govil, H. Mapping Regolith and Gossan for mineral exploration in the Eastern Kumaon Himalaya, India using Hyperion data and object oriented image classification. Adv. Space Res. 2014, 53, 1676–1685. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, J.; Han, L.; Xu, X.L. Mineral mapping and ore prospecting using Landsat TM and Hyperion data, Wushitala, Xinjiang, northwestern China. Ore Geol. Rev. 2017, 81, 280–295. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.C.; Zhen, G.W. Potential of Sentinel-2 data for alteration extraction in coal-bed methane reservoirs. Ore Geol. Rev. 2019, 108, 134–146. [Google Scholar] [CrossRef]
- Wang, N.; Qin, Q.M.; Chen, L.; Bai, Y.B.; Zhao, S.S. Dynamic monitoring of coalbed methane reservoirs using Super-Low Frequency electromagnetic prospecting. Int. J. Coal Geol. 2014, 127, 24–41. [Google Scholar] [CrossRef]
- Pashin, J.C.; Mcintyre-Redden, M.R.; Mann, S.D.; Kopaska-Merkel, D.C.; Varonka, M.; Orem, W. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin. Int. J. Coal Geol. 2014, 126, 92–105. [Google Scholar] [CrossRef]
- Noomen, M.F.; van der Werff, H.M.A.; van der Meer, F.D. Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage. Ecol. Inf. 2012, 8, 55–64. [Google Scholar] [CrossRef]
- van der Meer, F.D.; van Dijk, P.V.; van der Werff, H.M.A.; Yang, H. Remote sensing and petroleum seepage: A review and case study. Terra Nova 2002, 14, 1–17. [Google Scholar] [CrossRef]
- Hunt, G.R.; Ashley, R.P. Altered rock spectra in the visible and near infrared. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Kühn, F.; Oppermann, K.; Horig, B. Hydrocarbon index—An algorithm for hyperspectral detection of hydrocarbons. Int. J. Remote Sens. 2004, 25, 2467–2473. [Google Scholar] [CrossRef]
- Cun, C.L.; Zhang, H.W.; Fan, S.T.; Li, Y.F.; Yun, X.D. Atmospheric correction and application of ZY-1-02D hyperspectral data. Remote Sens. Inf. 2022, 37, 45–50. [Google Scholar]
- Chen, S.B.; Chen, L.; Liu, Y.L.; Li, X.L. Experimental simulation on mixed spectra of leaves and calcite for inversion of carbonate minerals from EO-1 Hyperion data. GISci. Remote Sens. 2013, 50, 690–703. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Majumdar, T.J.; Rajawat, A.S.; Panigrahy, M.K.; Das, P.R. Utilization of Hyperion data over Dongargarh, India, for mapping altered/weathered and clay minerals along with field spectral measurements. Int. J. Remote Sens. 2012, 33, 5438–5450. [Google Scholar] [CrossRef]
- Gersman, R.; Ben Dor, E.; Beyth, M.; Avigad, D.; Abraha, M.; Kibreab, A. Mapping of hydrothermally altered rocks by the EO-1 Hyperion sensor, Northern Danakil Depression, Eritrea. Int. J. Remote Sens. 2008, 29, 3911–3936. [Google Scholar] [CrossRef]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Dong, X.F.; Gan, F.P.; Yan, B.K. Application evaluation of ZY-1-02D satellite hyperspectral data in geological survey. Spacecr. Eng. 2020, 29, 186–191. [Google Scholar] [CrossRef]
- Zaini, N.; van der Meer, F.; van der Werff, H. Effect of grain size and mineral mixing on carbonate absorption features in the SWIR and TIR wavelength regions. Remote Sens. 2012, 4, 987–1003. [Google Scholar] [CrossRef] [Green Version]
- Li, H.S.; Zhou, P.; Han, M.X.; Huo, H.Y.; Cui, Y.M.; Geng, L.P. Research and development of mineral recognition software module based on spectral absorption index. Comput. Mod. 2012, 198, 69–72. [Google Scholar] [CrossRef]
- Chen, X.L. Research on Emission Spectral Feature Extraction of Typical Mineral and Rock Spectral Unmixing. Ph.D. Thesis, Northeastern University, Shenyang, China, 2013. [Google Scholar]
- Sun, X.; Xu, L.L.; Wang, X.Y.; Tian, Y.; Wang, W.; Zhang, Z.Y. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method. Remote Sens. Nat. Resour. 2022, 34, 43–49. [Google Scholar] [CrossRef]
- Yang, X.C.; Chen, L. Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices. J. Appl. Remote Sens. 2017, 11, 026016. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.; Xie, F.; Hu, Z.; Sun, W.; Yang, G.; Yu, J.; Chen, L.; Wang, L.H.; Wang, L.Y.; et al. Temporal and spatial variation of coastline using remote sensing images for Zhoushan archipelago, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102711. [Google Scholar] [CrossRef]
- Chen, C.; Fu, J.; Zhang, S.; Zhao, X. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images. Estuar. Coast. Shelf Sci. 2019, 217, 281–291. [Google Scholar] [CrossRef]
- Liang, J.; Chen, C.; Song, Y.; Sun, W.; Yang, G. Long-term mapping of land use and cover changes using Landsat images on the Google Earth Engine Cloud Platform in bay area—A case study of Hangzhou Bay, China. Sustain. Horiz. 2023, 7, 100061. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.; Zhang, Z.; Lu, C.; Wang, L.; He, X.; Chu, Y.; Chen, J. Changes of the spatial and temporal characteristics of land-use landscape patterns using multi-temporal Landsat satellite data: A case study of Zhoushan Island, China. Ocean Coast. Manag. 2021, 213, 1005842. [Google Scholar] [CrossRef]
- Malenovský, Z.; Homolová, L.; Zurita-Milla, R.; Lukeš, P.; Kaplan, V.; Hanuš, J.; Gastellu-Etchegorry, J.P.; Schaepman, M.E. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sens. Environ. 2013, 131, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.Y.; Ke, Y.H.; Zhong, R.F.; Zhao, S.H.; Liu, Y. Radiance quality assessment of ZY-1-02D VNIC/AHSI image data. Remote Sens. Technol. Appl. 2022, 37, 938–952. [Google Scholar]
- Chen, L.; Li, W.; Chen, L.; Wang, M.F.; Jia, W.J. Potential prediction of coalbed methane anomaly region utilizing Landsat8 OLI and GF-2 images. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 2019; pp. 6819–6822. [Google Scholar] [CrossRef]
- Qin, Q.M.; Zhang, Z.; Chen, L.; Wang, N.; Zhang, C. Oil and gas reservoir exploration based on hyperspectral remote sensing and super-low-frequency electromagnetic detection. J. Appl. Remote Sens. 2016, 10, 016017. [Google Scholar] [CrossRef]
- Zhen, G.W.; Chen, L.; Chen, C.; Guo, B. Alteration anomaly information extraction using hyperspectral remote sensing in coalbed methane enrichment. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10 July 2016; pp. 5394–5397. [Google Scholar] [CrossRef]
Parameters | ZY-1 02D AHSI | EO-1 Hyperion |
---|---|---|
Average orbital altitude/km | 778 | 705 |
Inclination/(°) | 98.5 | 98.7 |
Width/km | 60 | 7.5 |
Spatial resolution/m | 30 | 30 |
Band number | 166 | 242 |
Band range/nm | 395–1040 (VNIR); 1005–2501 (SWIR) | 356–1058 (VNIR); 852–2577 (SWIR) |
Spectral resolution/nm | 10 (VNIR); 20 (SWIR) | 10 |
Name | Wavelength of Absorption | Wavelength of Reflection |
---|---|---|
Kaolinite | 1.403, 1.915, 2.205 | 0.720–1.263, 1.513–1.780 |
Muscovite | 1.403, 1.925, 2.205 | 0.933–1.343, 1.478–2.075 |
Montmorillonite | 1.418, 1.905, 2.225 | 0.785–1.308, 1.570–1.825 |
Chlorite | 1.388, 1.985, 2.315 | 1.825, 2.135 |
Name | Wavelength of Absorption | Wavelength of Reflection | ||
---|---|---|---|---|
Weak Absorption | Strong Absorption | Weak Reflection | Strong Reflection | |
Calcite | 1.875, 1.995, 2.155 | 2.335, 2.528 | 1.915, 2.065, 2.185 | 2.386 |
Dolomite | 1.855, 1.985 | 2.315, 2.528 | 1.885, 2.025 | 2.375 |
Siderite | 1.945 | 2.335, 2.528 | 1.855, 2.145 | 2.400 |
Name | W/nm | H | A | S | ||
---|---|---|---|---|---|---|
Endmember 1 | 2203 | 0.1392 | 162 | 0.2882 | 141.62 | 1.58 |
Endmember 2 | 2203 | 0.1446 | 121 | 0.2297 | 103.97 | 1.33 |
Kaolinite | 2203 | 0.3824 | 202 | 0.3589 | 175.70 | 2.23 |
Montmorillonite | 2203 | 0.5230 | 141 | 0.2132 | 128.23 | 1.02 |
Name | W/nm | H | A | S | ||
---|---|---|---|---|---|---|
Endmember 3 | 2335 | 0.2013 | 131 | 0.1274 | 112.19 | 2.98 |
Endmember 4 | 2335 | 0.5301 | 101 | 0.2358 | 93.68 | 2.64 |
Siderite | 2335 | 0.4119 | 202 | 0.1390 | 186.79 | 2.36 |
Calcite | 2335 | 0.5718 | 192 | 0.3286 | 161.09 | 2.92 |
Data | Minerals | |||
---|---|---|---|---|
ZY-1 02D | Clay | 81.25 | 83.87 | 81.67 |
Carbonate | 79.41 | 81.82 | 79.03 | |
Hyperion | Clay | 78.12 | 80.64 | 78.33 |
Carbonate | 73.53 | 83.33 | 76.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Sui, X.; Liu, R.; Chen, H.; Li, Y.; Zhang, X.; Chen, H. Mapping Alteration Minerals Using ZY-1 02D Hyperspectral Remote Sensing Data in Coalbed Methane Enrichment Areas. Remote Sens. 2023, 15, 3590. https://doi.org/10.3390/rs15143590
Chen L, Sui X, Liu R, Chen H, Li Y, Zhang X, Chen H. Mapping Alteration Minerals Using ZY-1 02D Hyperspectral Remote Sensing Data in Coalbed Methane Enrichment Areas. Remote Sensing. 2023; 15(14):3590. https://doi.org/10.3390/rs15143590
Chicago/Turabian StyleChen, Li, Xinxin Sui, Rongyuan Liu, Hong Chen, Yu Li, Xian Zhang, and Haomin Chen. 2023. "Mapping Alteration Minerals Using ZY-1 02D Hyperspectral Remote Sensing Data in Coalbed Methane Enrichment Areas" Remote Sensing 15, no. 14: 3590. https://doi.org/10.3390/rs15143590
APA StyleChen, L., Sui, X., Liu, R., Chen, H., Li, Y., Zhang, X., & Chen, H. (2023). Mapping Alteration Minerals Using ZY-1 02D Hyperspectral Remote Sensing Data in Coalbed Methane Enrichment Areas. Remote Sensing, 15(14), 3590. https://doi.org/10.3390/rs15143590