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Abstract: Rock geochemical methods are effective for geological surveys, but typical sampling and
laboratory-based analytical methods are time-consuming and costly. However, using visible–near-
infrared spectroscopy to estimate the metal element content of rock is an alternative method. This
study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental
content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in
Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and
characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were
investigated. The results show that when the spectral resolution is 5 nm, good results are obtained
for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching
0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with
continuum removal, inverse transformation, continuum removal, and logarithmic transformation,
respectively. In addition, the accuracy of the estimation models constructed by combining band
indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654,
MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805,
MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results
indicate that using band indices can provide a more accurate estimation of metal element content,
providing a new technical method for the efficient acquisition of regional mineralization indicator
element content distribution.

Keywords: visible–near-infrared; partial least squares; band indices; polymetallic element content

1. Introduction

The rock geochemical method is an essential tool for mineral exploration and is one of
the most effective chemical exploration methods for finding occult deposits of hydrothermal
origin [1–6]. A traditional rock geochemical survey is performed by collecting many rock
samples in the field, analyzing them in the laboratory to determine the metal content, and
then tracing the survey area based on geochemical anomalies. Although this method has
high measurement accuracy, it is inefficient, costly, and problematic to obtain a continuous,
large-area spatial distribution of elemental content [7–9]. Although it has been shown that
handheld XRF can directly determine the essential content in the field, this method can
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only obtain sample point data and then get the regional elemental distribution according
to the spatial interpolation method. The accuracy of the results is related to the number
and spatial distribution of the test sample points [10,11]. The inability to obtain samples of
areas where the natural environment is harsh and particularly inaccessible to humans will
result in a lack of data in the area [12,13].

On the contrary, remote sensing technology has the advantages of a wide detection
range, high efficiency, and low cost. The rapid development of hyperspectral remote
sensing, which has hundreds of bands in the entire wavelength range, has enabled the
technology to characterize the finer features of the target [14,15]. For example, soil organic
matter and iron oxide have unique spectral absorption characteristics in the visible-NIR due
to the presence of cations such as Fe2+, Fe3+, and Cr3+; overtone and combined vibrations
of OH−, H2O, and CO3

2− and clay minerals have specific absorption characteristics in
the shortwave infrared interval [16–21]. Additional studies have shown a quantitative
relationship between elemental aluminum content and absorption position in the shortwave
infrared gap [22]. However, metallic elements such as Cu, Pb, Zn, Ni, and Cr strongly
correlate with these characteristic bands, providing a theoretical basis for the rapid and
nondestructive estimation of metallic elemental content from hyperspectral data [23–27].
In recent years, many scholars have attempted to estimate the metal element content, soil
organic matter content, and vegetation stress level using linear or nonlinear methods, such
as partial least squares regression, stepwise regression, multiple regression, random forest,
support vector machines, extreme machine learning, and neural networks, and they have
achieved high estimation accuracy [28–39]. These results show that using hyperspectral
techniques to estimate elemental content is feasible and practical.

However, the previous use of remote sensing technology to estimate elemental content
has mostly been constrained to a single element; for mineral resource exploration, the
formation process is more complex, and using only one fundamental content anomaly area
to circle the exploration area will increase the uncertainty of mineral prediction [40–42].
Therefore, combining anomalous areas of mineralized elemental content and the abnormal
regions of significantly related elements of mineralized elements for survey de-construction
can make up for the shortcomings of single fundamental anomalies and thus improve the
accuracy of mineral resource prediction [43,44]. Much research has been conducted on the
factors affecting single-element estimation models, and an appropriate spectral resolution
can reduce spectral redundancy and improve the model’s accuracy [45,46]. Appropriate
preprocessing of the spectra before model construction, such as spectral smoothing and
spectral transformation, can reduce the random noise and baseline drift generated by
the instrument or external environment on the spectra, thus improving the prediction
accuracy [39,47–49]. However, more research is required on whether estimating multiple
elemental contents at the exact spectral resolution or with the same spectral transformation
method has the same effect.

The greatest advantage of hyperspectral remote sensing is its high spectral resolution,
but it also increases the redundancy of spectral information. Many studies have shown that
the accuracy of models constructed by selecting feature bands is higher than that of models
built using full bands, as features that introduce noise reduce model performance [50–52].
Furthermore, feature variable selection attempts to reduce the complexity of the model
and improve its robustness. In feature variable selection, methods such as continuous
projection algorithms (SPA), genetic algorithms (GA), stepwise regression (SRA), competing
adaptive reweighting sampling (CARS), variable importance of projection (VIP), artificially
introduced noise for uninformative variable elimination (NVE), and interval selection
strategies are often used for optimal subset selection of spectra before the model constructed
using the spectral subsets [53–60]. However, whether the models are built in a full band
or feature interval bands, they are models constructed based on one-dimensional spectral
data [61]. In practice, the quality of the spectral data strongly influences the model’s
accuracy. Recent studies have shown that using multidimensional spectral data formed by
combining multiple bands, such as two-band and three-band spectral indices, gives better
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results in terms of soil properties. These results not only improve the predictive power of
the model but also enhance the robustness of the model [62–65]. The application of band
indices has good potential for estimating the elemental content of a wide range of metals,
which is a critical guideline for delineating mineral resource exploration areas.

Therefore, the objectives of this study were (1) to explore the best spectral resolution
for estimating metals’ elemental content and the optimal spectral transformation method
for different elemental content estimations; (2) to compare the performance of different
three-band spectral indices for elemental content estimation; and (3) to determine whether
it is possible to construct a multimetal elemental content estimation model with a simple
model and good robustness using the characteristic indices selected from the three-band
spectral indices.

2. Materials and Methods
2.1. Study Area and Sampling

The study area is located in Wubao Township, Hami City, Xinjiang, at the southern
edge of the Tuha Basin in the Eastern Tianshan metallogenic belt, in the Kalatage area,
about 140 km from Hami City. Study area: longitude 91◦42′52.19′′ to 91◦47′4.60′′E; latitude
42◦41′3.03′′ to 42◦42′46.32′′N. The study area is part of the Gobi Desert, with expansive
valley hills, relatively flat terrain, and an average altitude of about 500–600 m [66]. The
study area has a typical continental arid climate, with an average annual precipitation and
temperature of 34.9 mm and 38 ◦C, respectively, and a maximum temperature of over 40 ◦C
from June to August. The study area has no vegetation cover on the ground surface and is
suitable for exploration work using remote-sensing techniques [67,68].

Ninety-five rock chip samples were collected from the study area on 18 September
2017 (Figure 1). Samples were collected and mixed into a sample bag (approximately 500 g)
at five locations within a 1 m × 1 m area, while the coordinates of the sample centroid
were recorded as the coordinates of the mixed sample point using a global positioning
system (GPS). The collected samples were sent to the Xinjiang Nonferrous Geological
Exploration Bureau Analysis and Testing Center for elemental content analysis. Before
elemental content analysis, all samples were ground into powder with a particle diameter
of less than 75 microns. The samples were then digested with nitric acid, hydrochloric acid,
perchloric acid, and hydrofluoric acid, respectively; the Ti elemental content was measured
using inductively coupled plasma emission spectrometry (ICP-OES), and the remaining
elemental content was measured via inductively coupled plasma mass spectrometry (ICP-
MS). Sample processing, analysis testing, and quality control were carried out by the
“Specification for Geochemical Survey” (DZ/T0011-2010) and the “Quality Management
Specification for Geological and Mineral Laboratories”.

2.2. Spectral Measurements and Preprocessing

The sample spectra were measured in a laboratory darkroom environment using
an Analytical Spectral Device (ASD) FieldSpec4 (Malvern Panalytical Ltd., Malvern, UK,
formerly Analytical Spectral Devices Inc., Westborough, MA, USA) spectrometer. The
spectrometer probe field of view was 25◦, with a reflective domain of 350–2500 nm. From
350 to 1000 nm, the spectral sampling interval is 1.4 nm for a spectral resolution of 3 nm,
and from 1000 to 2500 nm, the spectral sampling interval is 2 nm for a spectral resolution
of 10 nm https://www.malvernpanalytical.com/en/products/product-range/asd-range
(accessed on 14 July 2023). The probe is located 10 cm directly above the sample, and
the reflectance output to users was resampled with ViewSpecPro (Version 6.20, Malvern
Panalytical Ltd., Malvern, UK) to 1 nm for both spectral ranges, resulting in 2151 spectral
bands. During the measurement process, it is difficult to hold the spectrometer probe
stationary by hand, because when exploring, the shaking will unnecessarily increase
spectral noise. Therefore, this experiment uses the stationary test platform shown in
Figure 2. Five pieces of spectral data were collected for each sample, and the average of the
remaining spectra was taken as the spectral data of the sample after removing the spectra

https://www.malvernpanalytical.com/en/products/product-range/asd-range
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with significant differences. The 350–400 nm spectral data with a low signal-to-noise ratio
were excluded before data analysis. It was also shown that smoothing the spectra can
reduce the effect of noise on the spectra [69]. Compared with other spectral smoothing
methods, the Savitzky–Golay smoothing filter has apparent advantages for information
noise removal; so, this study uses a Savitzky–Golay filter with a window of 7 for spectral
smoothing [70].
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11—Honghai VMS-type deposit. 
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Figure 1. Geological map of the study area and distribution of sampling points: (a). geological
map of the Kalatage area (modified from [41]); (b). distribution of sampling points. 1—Cenozoic;
2—Shangonghe Formation; 3—Aqikebulake Formation; 4—Qishan Formation; 5—Dananhu Forma-
tion; 6—Kalatage group; 7—Huangcaopo group; 8—Late Paleozoic granitic intrusion; 9—Early
Paleozoic granitic intrusion; 10—other volcanic hydrothermal/porphyry/skarn type deposits;
11—Honghai VMS-type deposit.
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Figure 2. Test environment and spectrometer.

2.3. Spectral Preprocessing

Spectral preprocessing involves a series of enhanced preprocessing operations on
the original spectrum to highlight the characteristic spectrum of a characterization target
by reducing the effect of the background environment, illumination, and atmospheric
scattering on the spectrum [71]. In this study, spectral preprocessing such as continuum
removal, logarithmic, inverse, and derivative methods were used. Continuum removal
can highlight absorption valleys and reflection peaks in the spectral profile, facilitating the
extraction of characteristic bands between similar spectra [72–74]. Logarithmic transforma-
tion can reduce the effects of light variations by reducing the covariance and anisotropy
between the data [40,75,76]. For discrete spectral data, difference techniques are often used
to calculate spectral derivatives, with lower-order derivatives removing background noise
and topographic shadows and higher-order derivatives removing atmospheric Rayleigh
scattering [61,77,78].

R′(λi) =
R(λi)− R(λi−1)

∆λ
(1)

R′′ (λi) =
R(λi+1)− 2R(λi) + R(λi−1)

∆λ2 (2)

where λi denotes the wavelength of the band i; R′(λi) and R′′ (λi) are the first- and second-
order derivatives of wavelength λi, respectively; and ∆λ is the interval between two
adjacent wavelengths.

2.4. Three-Band Index

Band indices are used to extract target spectral parameters by selecting characteris-
tic bands for combination, and three-band index are used to determine three bands for
combination to obtain parameters that can identify target features [20,62,79,80]. In this
study, six band index methods were formed using combinations of bands (Table 1). Each
band index calculation is obtained by traversing all band combinations and analyzing the
correlation coefficient r between all band indices and elemental content, sorting the |r|
values in descending order and extracting the band combination with the most significant
|r| value for subsequent modeling. The optimal band combination algorithm is calculated
in Python.

Where Ra, Rb, and Rc are the spectral values at wavelengths a, b, and c, respectively,
with a, b, and c taking values in the 400–2500 nm range, while a 6= b 6= c.
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Table 1. Calculation of band indices.

Band Index Calculation Formula

BI1
Ra−Rb
Ra+Rc

BI2
Ra

Rb+Rc

BI3 Ra − 2Rb + Rc

BI4
Ra

Rb×Rc

BI5
Ra−Rb
Rb+Rc

BI6 Ra−Rb
Rc

2.5. Stepwise Regression Analysis

Hyperspectral data have a strong correlation between adjacent bands, leading to a
high information redundancy level [81]. The complexity of models constructed based
on full-band spectral data is increased, thus reducing the robustness of the model [82].
Therefore, selecting a subset of characteristic spectra that can characterize the target from a
large number of bands not only reduces the spectral dimensionality but also improves the
computational efficiency and enhances the model’s generalization capability [51,83]. This
study uses a stepwise regression analysis method to select the characteristic spectral bands.
The stepwise regression analysis method adds bands to the model one by one from many
bands, adding bands based on a p-value of 0.05 for the F-statistic and removing bands if
the p-value is 0.1. After the new bands are added, an F-test is performed on all bands to
remove bands with insignificant sums of squares for the partial regression. This process is
repeated until no bands are added or removed [84,85].

2.6. Model Building and Validation

In this paper, in order to effectively analyze the relationship between the spectral
estimation of the metal element content of rocks, the 95 sample data were sorted; 1 sample
was taken every 2 samples at an interval from the 2nd sample onwards, and a total of
32 samples were taken for the validation set, and the remaining samples were used for
the training set. A partial least squares regression model was developed using spectral
reflectance (the independent variable) and metal element content (the dependent variable).
Partial least squares is a multivariate regression model that combines multiple regression
analysis, principal component analysis, and typical correlation analysis and has been
successfully applied to remote sensing data to quantify vegetation characteristics and
elemental content [19,86,87]. To avoid the degradation of model performance due to a low
amount of training sample data, the model was constructed using leave-one-out cross-
validation in the training set [61,88]. We use three statistical parameters—the coefficient
of determination (R2), mean absolute error (MAE), and the ratio of the performance to
deviation (RPD)—to evaluate the performance of the model. The closer the coefficient of
determination is to 1, the smaller the MAE and the larger the RPD value, and the better the
model performance. The range of RPD values can be divided into good models (RPD > 2.0),
better models (2.0 > RPD > 1.4), and failed models (RPD < 1.4) [89,90]. This paper defines
the best model performance as having a high coefficient of determination, a petite MAE,
and a large RPD in the validation set.

3. Results
3.1. Elemental Correlation Analysis

The descriptive statistics of the content of the nine elements for all samples are shown
in Table 2. With the exception of As and Ni, all the other seven elements have a wide range
of content. The range of Fe content was the largest, with minimum and maximum values of
0.21% and 9.15%, respectively, and the range of As content was the smallest, with minimum
and maximum values of 0.5 ppm and 12.45 ppm, respectively, indicating that there were



Remote Sens. 2023, 15, 3591 7 of 21

significant gradients in the content of the nine elements, which provided primary data for
the subsequent spectral estimation analysis.

Table 2. Descriptive statistics for the content of each element (ppm).

Element Type Min Max Mean Standard Deviation Coefficient of Variation (%)

Fe 0.21% 9.15% 3.41% 1.99% 0.58
Mn 259.39 3035.49 1054.30 558.83 0.53
As 0.50 12.45 3.94 2.49 0.63
Zn 17.58 233.40 60.30 29.79 0.49
Cu 3.71 257.63 52.31 50.11 0.96
Ni 2.04 21.51 9.30 5.06 0.54
S 69.00 5550.00 1035.54 928.25 0.90
Ti 0.12% 0.46% 0.28% 0.07% 0.23
Co 1.02 32.06 11.58 7.18 0.62

At the same time, we aimed to identify abnormal areas for the mineralizing element
Cu via remote sensing, where using a single element may result in information asymmetry
or loss of information due to elemental imbalance effects [41]. For this reason, we propose
to use multiple elemental combinations of anomalies to compensate for the lack of single
elemental anomalies. The correlation between the content of nine elements (Table 3) was
used to screen for elements significantly correlated with the mineralizing element Cu. The
lower left part of Table 3 shows the correlation between the content of the two elements,
and the upper right part shows the confidence ellipse between the content of the two
elements. The results show that Fe, Mn, Ti, and Co are significantly correlated with Cu at
the 0.05 level, with correlations of 0.72, 0.3, 0.61, and 0.73, respectively [44]. For this reason,
we selected Fe, Ti, and Co, which are significantly correlated with Cu at the 0.05 level
and have a correlation greater than 0.5, as the strange combination of elements. Thus, it
is shown that the mineralized Cu elements are significantly correlated with these three
elements [91].

Table 3. Correlation and confidence ellipse for contents of 9 elements.

Fe Mn As Zn Cu Ni S Ti Co

Fe 1
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Ti 0.56 ** 0.29 ** 0.05 0.30 ** 0.61 ** 0.34 ** −0.23 * 1 
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* Significantly correlated at the 0.01 level. ** Significantly correlated at the 0.05 level. 

3.2. Element Content and Spectral Analysis 
The mean content and CV of the total samples for the four elements Fe, Cu, Ti, and 

Co were 0.34% and 58%, 52.31 ppm and 96%, 0.28%, and 23%, and 11.58 ppm and 62%, 
respectively (Figure 3). The variation in the content of all three elements was significant, 
except for the relatively small variation in the content of Ti. 

 
Figure 3. Data densities and corresponding descriptive statistics for Fe, Cu, Ti, and Co: (a) Fe, (b) 
Cu, (c) Ti, and (d) Co. 

The average spectral reflectance and continuum removal spectra for all sample sets 
are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
to Fe electron leaps; absorption valleys at 0.58 µm, 1.04 µm, 1.12 µm, and 1.34 µm 
associated with organic matter; absorption valleys at 1.41 µm, 1.91 µm, and 2.22 µm 
associated with water oscillations; O-H stretching or Al-OH bending at 2.25 µm and 2.33 
µm; and clay minerals associated with OH groups or carbonate at 2.25 µm and 2.33 µm 
[19,35,92]. In summary, these initial analyses of spectral reflectivity provide the basis for 
subsequent spectral modeling. 
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The average spectral reflectance and continuum removal spectra for all sample sets 
are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
to Fe electron leaps; absorption valleys at 0.58 µm, 1.04 µm, 1.12 µm, and 1.34 µm 
associated with organic matter; absorption valleys at 1.41 µm, 1.91 µm, and 2.22 µm 
associated with water oscillations; O-H stretching or Al-OH bending at 2.25 µm and 2.33 
µm; and clay minerals associated with OH groups or carbonate at 2.25 µm and 2.33 µm 
[19,35,92]. In summary, these initial analyses of spectral reflectivity provide the basis for 
subsequent spectral modeling. 
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are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
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are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
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[19,35,92]. In summary, these initial analyses of spectral reflectivity provide the basis for 
subsequent spectral modeling. 

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

Zn 0.27 ** 0.22 * −0.14 1 
 22  23  24  25  26 

Cu 0.72 **  0.30 ** 0.02 0.15 1 
 27  28  29  30 

Ni 0.47 ** 0.20 * 0.14 0.04 0.49 1 
 31  32  33 

S −0.27 ** −0.08 0.11 −0.24 * −0.15 −0.25 * 1 
 34  35 

Ti 0.56 ** 0.29 ** 0.05 0.30 ** 0.61 ** 0.34 ** −0.23 * 1 
 36 

Co 0.74 ** 0.36 ** 0.07 0.32 ** 0.73 ** 0.69 ** −0.30 ** 0.61 ** 1 
* Significantly correlated at the 0.01 level. ** Significantly correlated at the 0.05 level. 

3.2. Element Content and Spectral Analysis 
The mean content and CV of the total samples for the four elements Fe, Cu, Ti, and 

Co were 0.34% and 58%, 52.31 ppm and 96%, 0.28%, and 23%, and 11.58 ppm and 62%, 
respectively (Figure 3). The variation in the content of all three elements was significant, 
except for the relatively small variation in the content of Ti. 

 
Figure 3. Data densities and corresponding descriptive statistics for Fe, Cu, Ti, and Co: (a) Fe, (b) 
Cu, (c) Ti, and (d) Co. 

The average spectral reflectance and continuum removal spectra for all sample sets 
are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
to Fe electron leaps; absorption valleys at 0.58 µm, 1.04 µm, 1.12 µm, and 1.34 µm 
associated with organic matter; absorption valleys at 1.41 µm, 1.91 µm, and 2.22 µm 
associated with water oscillations; O-H stretching or Al-OH bending at 2.25 µm and 2.33 
µm; and clay minerals associated with OH groups or carbonate at 2.25 µm and 2.33 µm 
[19,35,92]. In summary, these initial analyses of spectral reflectivity provide the basis for 
subsequent spectral modeling. 
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The average spectral reflectance and continuum removal spectra for all sample sets 
are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
to Fe electron leaps; absorption valleys at 0.58 µm, 1.04 µm, 1.12 µm, and 1.34 µm 
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µm; and clay minerals associated with OH groups or carbonate at 2.25 µm and 2.33 µm 
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The average spectral reflectance and continuum removal spectra for all sample sets 
are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
to Fe electron leaps; absorption valleys at 0.58 µm, 1.04 µm, 1.12 µm, and 1.34 µm 
associated with organic matter; absorption valleys at 1.41 µm, 1.91 µm, and 2.22 µm 
associated with water oscillations; O-H stretching or Al-OH bending at 2.25 µm and 2.33 
µm; and clay minerals associated with OH groups or carbonate at 2.25 µm and 2.33 µm 
[19,35,92]. In summary, these initial analyses of spectral reflectivity provide the basis for 
subsequent spectral modeling. 

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

Zn 0.27 ** 0.22 * −0.14 1 
 22  23  24  25  26 

Cu 0.72 **  0.30 ** 0.02 0.15 1 
 27  28  29  30 

Ni 0.47 ** 0.20 * 0.14 0.04 0.49 1 
 31  32  33 

S −0.27 ** −0.08 0.11 −0.24 * −0.15 −0.25 * 1 
 34  35 

Ti 0.56 ** 0.29 ** 0.05 0.30 ** 0.61 ** 0.34 ** −0.23 * 1 
 36 

Co 0.74 ** 0.36 ** 0.07 0.32 ** 0.73 ** 0.69 ** −0.30 ** 0.61 ** 1 
* Significantly correlated at the 0.01 level. ** Significantly correlated at the 0.05 level. 

3.2. Element Content and Spectral Analysis 
The mean content and CV of the total samples for the four elements Fe, Cu, Ti, and 

Co were 0.34% and 58%, 52.31 ppm and 96%, 0.28%, and 23%, and 11.58 ppm and 62%, 
respectively (Figure 3). The variation in the content of all three elements was significant, 
except for the relatively small variation in the content of Ti. 

 
Figure 3. Data densities and corresponding descriptive statistics for Fe, Cu, Ti, and Co: (a) Fe, (b) 
Cu, (c) Ti, and (d) Co. 

The average spectral reflectance and continuum removal spectra for all sample sets 
are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
to Fe electron leaps; absorption valleys at 0.58 µm, 1.04 µm, 1.12 µm, and 1.34 µm 
associated with organic matter; absorption valleys at 1.41 µm, 1.91 µm, and 2.22 µm 
associated with water oscillations; O-H stretching or Al-OH bending at 2.25 µm and 2.33 
µm; and clay minerals associated with OH groups or carbonate at 2.25 µm and 2.33 µm 
[19,35,92]. In summary, these initial analyses of spectral reflectivity provide the basis for 
subsequent spectral modeling. 

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

Zn 0.27 ** 0.22 * −0.14 1 
 22  23  24  25  26 

Cu 0.72 **  0.30 ** 0.02 0.15 1 
 27  28  29  30 

Ni 0.47 ** 0.20 * 0.14 0.04 0.49 1 
 31  32  33 

S −0.27 ** −0.08 0.11 −0.24 * −0.15 −0.25 * 1 
 34  35 

Ti 0.56 ** 0.29 ** 0.05 0.30 ** 0.61 ** 0.34 ** −0.23 * 1 
 36 

Co 0.74 ** 0.36 ** 0.07 0.32 ** 0.73 ** 0.69 ** −0.30 ** 0.61 ** 1 
* Significantly correlated at the 0.01 level. ** Significantly correlated at the 0.05 level. 

3.2. Element Content and Spectral Analysis 
The mean content and CV of the total samples for the four elements Fe, Cu, Ti, and 

Co were 0.34% and 58%, 52.31 ppm and 96%, 0.28%, and 23%, and 11.58 ppm and 62%, 
respectively (Figure 3). The variation in the content of all three elements was significant, 
except for the relatively small variation in the content of Ti. 

 
Figure 3. Data densities and corresponding descriptive statistics for Fe, Cu, Ti, and Co: (a) Fe, (b) 
Cu, (c) Ti, and (d) Co. 

The average spectral reflectance and continuum removal spectra for all sample sets 
are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
to Fe electron leaps; absorption valleys at 0.58 µm, 1.04 µm, 1.12 µm, and 1.34 µm 
associated with organic matter; absorption valleys at 1.41 µm, 1.91 µm, and 2.22 µm 
associated with water oscillations; O-H stretching or Al-OH bending at 2.25 µm and 2.33 
µm; and clay minerals associated with OH groups or carbonate at 2.25 µm and 2.33 µm 
[19,35,92]. In summary, these initial analyses of spectral reflectivity provide the basis for 
subsequent spectral modeling. 
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The average spectral reflectance and continuum removal spectra for all sample sets 
are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm, 
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by 0.15. 
We can also see a clear reflection peak at 2.15 µm in the original spectra due to the 
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of 
water absorption. After continuum removal, some absorption features are highlighted, 
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due 
to Fe electron leaps; absorption valleys at 0.58 µm, 1.04 µm, 1.12 µm, and 1.34 µm 
associated with organic matter; absorption valleys at 1.41 µm, 1.91 µm, and 2.22 µm 
associated with water oscillations; O-H stretching or Al-OH bending at 2.25 µm and 2.33 
µm; and clay minerals associated with OH groups or carbonate at 2.25 µm and 2.33 µm 
[19,35,92]. In summary, these initial analyses of spectral reflectivity provide the basis for 
subsequent spectral modeling. 
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3.2. Element Content and Spectral Analysis

The mean content and CV of the total samples for the four elements Fe, Cu, Ti, and
Co were 0.34% and 58%, 52.31 ppm and 96%, 0.28%, and 23%, and 11.58 ppm and 62%,
respectively (Figure 3). The variation in the content of all three elements was significant,
except for the relatively small variation in the content of Ti.
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The average spectral reflectance and continuum removal spectra for all sample sets
are shown in Figure 4. The spectral reflectance increases gradually over the 0.4–2.5 µm,
particularly over the range of 0.4–0.8 µm range, where the spectral value increases by
0.15. We can also see a clear reflection peak at 2.15 µm in the original spectra due to the
absorption valleys at 1.9 µm and 2.2 µm, which are associated with the generalization of
water absorption. After continuum removal, some absorption features are highlighted,
such as absorption valleys at wavelengths of 0.43 µm, 0.49 µm, 0.7 µm, and 0.925 µm due to
Fe electron leaps; absorption valleys at 0.58 µm, 1.04 µm, 1.12 µm, and 1.34 µm associated
with organic matter; absorption valleys at 1.41 µm, 1.91 µm, and 2.22 µm associated with
water oscillations; O-H stretching or Al-OH bending at 2.25 µm and 2.33 µm; and clay
minerals associated with OH groups or carbonate at 2.25 µm and 2.33 µm [19,35,92]. In
summary, these initial analyses of spectral reflectivity provide the basis for subsequent
spectral modeling.
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3.3. Effect of Spectral Resolution on the Accuracy of Elemental Content Estimation

In this study, 95 samples are divided into 63 training sets and 32 validation sets for
model construction. In training the models, we used a leave-one-out cross-validation
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approach to avoid the problem of poor model performance due to the small number of
samples, and we used the validation set to assess the accuracy of the models. PLSR models
with different spectral resolutions were combined to relate the Fe, Cu, Ti, and Co contents
to spectral reflectivity, resulting in 20 models (Table 4). It is evident in Table 4 that the
estimation of the Fe, Cu, Ti, and Co content is relatively good when the spectral resolution
is 1 nm, and the coefficients of determination in the validation set are all greater than 0.5;
meanwhile, for Co, the coefficient of perseverance in the validation set is relatively low, only
0.44. The Fe, Cu, and Co element estimation accuracy at the spectral resolution of 1 nm,
5 nm, and 10 nm varies less and is more significant than 0.54. In particular, the accuracy
of the estimation of Co content is the highest, reaching 0.78. However, the accuracy of the
estimate of Ti is relatively low, reaching its highest at the spectral resolution of 1 nm and
5 nm (R2 = 0.41).

Table 4. Accuracy of estimating elemental contents of Fe, Cu, Ti, and Co at different spectral resolutions.

Spectral
Resolution Data Segmentation Fe Cu Ti Co

1 nm

Number of principal
components 5 4 18 5

Training sets 0.54 0.6 0.44 0.8
Validation sets 0.54 0.59 0.41 0.78

5 nm

Number of principal
components 5 5 13 5

Training sets 0.55 0.6 0.44 0.8
Validation sets 0.54 0.59 0.41 0.78

10 nm

Number of principal
components 5 4 12 5

Training sets 0.55 0.6 0.44 0.81
Validation sets 0.54 0.59 0.35 0.78

15 nm

Number of principal
components 8 7 13 7

Training sets 0.55 0.6 0.42 0.82
Validation sets 0.5 0.59 0.33 0.79

20 nm

Number of principal
components 1 5 14 6

Training sets 0.51 0.59 0.39 0.8
Validation sets 0.47 0.58 0.37 0.78

We also found that the estimation accuracy of Fe, Cu, and Ti content decreased with a
decreasing spectral resolution (Table 4). The coefficients determined in the validation set
for the three elemental content estimates decrease by 0.07, 0.01, and 0.04, respectively, as
the spectral resolution decreases from 1 nm to 20 nm. However, regarding the Co content,
the model accuracy does not differ significantly across the five spectral resolutions, staying
around 0.78. The results of previous studies have shown that as the spectral resolution
increases, the more beneficial the observation of the fine spectral features contained in the
segment becomes. Still, accordingly, it also increases the data’s redundancy, increasing
the model’s complexity and reducing the efficiency of model training [93,94]. In Table 4,
we find that when the spectral resolution is 5 nm, the model’s accuracy is close to that of
the model with a spectral resolution of 1 nm, and both perform optimally or suboptimally.
Combined with Figure 5, it can be seen that as the spectral resolution decreases, the
spectral absorption features are also weakened. The continuum removal spectrograms
for the corresponding intervals are shown below the rectangular boxes in Figure 5a–d. In
Figure 5a–c, the absorption features at 1.38 µm, 1.85 µm, and 2.31 µm in the curve gradually
disappear as the spectral resolution decreases (Figure 5). At the same time, the higher
the spectral resolution, the more pronounced the “sawtooth” in the spectrum. The lower
the spectral resolution, the smoother the spectrum is (Figure 5d). Combining Table 4 and
Figure 5, we can see that when the spectral resolution is 5 nm, the spectral features are
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better represented, and the data redundancy is reduced, thus simplifying the complexity of
the model while ensuring its accuracy.
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3.4. Estimation of Elemental Content by Full-Band Transform Spectroscopy

Table 5 shows the effect of transforming spectra with a spectral resolution of 5 nm
for the estimation of different elemental contents. For the Fe content, the coefficients of
determination of the original spectra are relatively high in the training and validation sets,
0.55 and 0.54, respectively. The overall accuracy of the seven transform spectra, except for
the derivative spectra, is relatively high, with an R2 greater than 0.5 in the validation set.
Still, the accuracy of the transform spectra decreases for the original spectra, except for
the continuum removal spectra. Regarding the Cu content, the original spectra achieved
better accuracy, with R2 reaching 0.59 in the validation set. The logarithmic, inverse, and
square root spectra improved the accuracy of the Cu content estimation by 0.04, 0.06, and
0.03, respectively. The highest accuracy was achieved by the inverse spectrum, with a
validation set accuracy of 0.65. The original spectrum could have been better regarding Ti
content, achieving only 0.41. All six transformed spectra were improved, except for the
first- and second-order derivative spectra, which were equivalent to the original spectrum
with reduced accuracy. The best accuracy was achieved for the continuum removal spectra,
with a validation set R2 of 0.63. The estimation of the Ti content by the original spectra was
relatively average, only reaching 0.41. The estimation of the remaining six transformed
spectra was improved, except for the first-order derivative and second-order derivative
spectra, which were equivalent to the reduced estimation accuracy of the original spectra.
The estimation accuracy of the original spectra for the Co content was significantly better
than that of the remaining three elemental content estimations, and the R2 of the validation
set could reach 0.78. Except for the continuum removal and second-order derivative
spectra, which significantly reduced the estimation accuracy, the estimation accuracy
of the remaining six spectra was relatively consistent, and the best estimation accuracy
was achieved. The best estimation accuracy was obtained for the logarithmic spectrum
(R2 = 0.8).
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Table 5. Accuracy of different transformation spectra for estimating elemental contents of Fe, Cu, Ti,
and Co.

TP

Element

Fe Cu Ti Co
PCs T V PCs T V PCs T V PCs T V

R 5 0.55 0.54 5 0.60 0.59 13 0.44 0.41 5 0.8 0.78
C(R) 17 0.66 0.60 16 0.62 0.59 17 0.71 0.63 17 0.69 0.6

log(R) 5 0.50 0.50 6 0.65 0.63 14 0.52 0.45 10 0.82 0.8
1/R 1 0.47 0.52 4 0.66 0.65 9 0.46 0.42 9 0.83 0.78
(R)′ 16 0.38 0.39 4 0.42 0.39 1 0.17 0.13 8 0.73 0.73
(R)′′ 18 0.37 0.36 4 0.40 0.37 1 0.16 0.11 8 0.70 0.60
eR 5 0.55 0.52 3 0.54 0.53 9 0.56 0.46 5 0.77 0.76√

R 6 0.53 0.50 5 0.63 0.62 8 0.59 0.58 5 0.82 0.79
Rˆ2 5 0.55 0.51 3 0.51 0.51 9 0.54 0.48 5 0.74 0.73

TP: spectral preprocessing; PCs: number of principal components; T: training sets; V: validation sets.

In Table 5, it can be found that the best spectral resolutions achieved for the estimation
accuracy of Fe, Cu, Ti, and Co elements were the continuum removal spectra (R2 = 0.6),
inverse spectra (R2 = 0.65), continuum removal spectra (R2 = 0.63), and logarithmic spectra
(R2 = 0.8). From this, we conclude that for different elemental content estimates, different
spectral preprocessing achieves different accuracies, in line with the results of previous
studies [95–97]. The results suggest that in the future, studying one transformation for-
malism should not be used to estimate multiple elemental contents, as different elemental
contents have other effects on the spectra, and different preprocessing has different effects
on the extraction of feature information in the spectra. Therefore, highlighting the spectral
features can be the research focus of future studies.

3.5. Estimation of Elemental Content via Optimal Band Combinations

Although better results were obtained for the estimation of the four elemental contents
using the entire band (Table 5), since hyperspectral data possess thousands of bands,
and the neighboring bands have high similarity; inputting all bands into the model for
modeling will increase the redundancy of the model, which in turn increases the complexity
of the model. For this reason, we propose a three-band indicator approach to construct an
estimation model. Figure 6(a1–a6,b1–b6,c1–c6,d1–d6) shows the slice plots of the optimal
band combinations with the highest correlation between the elemental contents of Fe, Cu,
Ti, and Co for each band index, respectively, where the X, Y, and Z axes indicate the spectral
ranges of bands b1, b2, and b3 at 400–2500 nm, respectively. Different band indices have
different optimal slice positions (i.e., different band combinations) and different correlations
(i.e., color changes). As shown in Figure 6, the band indices with the highest correlations
with Fe, Cu, Ti, and Co elemental content are BI4, BI3, BI4, and BI3, with absolute correlation
coefficients of 0.68, 0.82, 0.65, and 0.87, respectively.

In addition, we also analyzed the effect of each optimum band index on the estimation
of Fe, Cu, Ti, and Co elemental contents (Table 6). In the validation set, BI6 had the highest
coefficient of determination (R2 = 0.675) for estimating Fe elemental content in all band
indices and in the whole band. However, the rest of the band indices are less effective than
the full-band model for estimating the elemental content of Cu, Ti, and Co. The results
show that spectral indices can improve the correlation between spectral parameters and
elemental content. Still, it is difficult to better estimate fundamental rock content using only
a single spectral parameter because stone is a complex object.
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Table 6. Quantitative analysis between the optimal band combinations of different BIs and the Fe,
Cu, Ti, and Co elemental content.

Element Type Band Index Optimal Band
Combination

Training Sets Validation Sets

Regression Equation R2 MAE RPD

Fe

Tb1 (λ1937, λ1312, λ1812) y = 642684x + 43225 0.638 1.523% 1.310
Tb2 (λ1967, λ1397, λ2417) y = 1 × 106x − 538605 0.655 1.598% 1.268
Tb3 (λ1397, λ1967, λ2417) y = 299329x + 51763 0.654 1.459% 1.369
Tb4 (λ1942, λ1302, λ2417) y = 288837x − 251738 0.619 1.420% 1.392
Tb5 (λ1397, λ2052, λ1912) y = −22622x + 19386 0.581 1.343% 1.415
Tb6 (λ1397, λ1417, λ532) y = −2 × 106x + 42801 0.675 1.616% 1.260

Cu

Tb1 (λ942, λ797, λ407) y = 3018.5x + 28.577 0.385 28.939 1.275
Tb2 (λ782, λ732, λ952) y = −5895.4x + 2950.3 0.388 25.985 1.278
Tb3 (λ2437, λ2277, λ2147) y =−799.44x − 36.584 0.549 23.657 1.489
Tb4 (λ1722, λ637, λ2357) y = −387.85x + 270.71 0.624 22.489 1.631
Tb5 (λ2037, λ1927, λ2002) y = −100.01x − 136.8 0.565 30.665 1.516
Tb6 (λ797, λ937, λ602) y = −1443.3x + 26.864 0.390 28.629 1.280

Ti

Tb1 (λ1962, λ1397, λ1647) y = 29958x + 3007.3 0.389 0.0432% 1.279
Tb2 (λ2500, λ1052, λ1737) y = 34949x − 15647 0.442 0.0418% 1.339
Tb3 (λ1737, λ2500, λ1052) y = −9689.8x + 1786.6 0.444 0.0416% 1.342
Tb4 (λ1282, λ1092, λ1737) y = 21390x − 19851 0.441 0.0419% 1.337
Tb5 (λ1962, λ1382, λ1392) y = 69.963x + 3087.9 0.441 0.0400% 1.337
Tb6 (λ1397, λ1962, λ1647) y = −15048x + 3007.9 0.390 0.0432% 1.281

Co

Tb1 (λ947, λ842, λ417) y = 349.15x + 9.5702 0.523 3.964 1.448
Tb2 (λ1017, λ777, λ1142) y = 261.11x − 119.82 0.495 3.798 1.407
Tb3 (λ747, λ792, λ952) y = −250.4x + 3.3574 0.743 2.754 1.973
Tb4 (λ1617, λ977, λ2492) y = 6.5417x + 25.165 0.564 3.859 1.514
Tb5 (λ2242, λ2142, λ1937) y = −20.281x − 4.6484 0.441 4.292 1.337
Tb6 (λ2152, λ2067, λ712) y = 456.3x + 28.246 0.654 3.389 1.701

To this end, six kinds of band indices were fed into the stepwise regression model to
filter out the band indices that significantly improved the performance of each elemental
content. The index with enhanced performance for Fe, Cu, Ti, and Co were BI1, BI5, and
BI6; BI4, BI5, and BI6; BI1, BI3, and BI5; and BI1, BI3, and BI6. We then fed the screened
indices into the PLS model to estimate the Fe, Cu, Ti, and Co content separately (Figure 7).
Compared with the individual spectral index, using the combined band indices as input
variables improved performance in both validation sets. The performance of the four
elemental content estimates for Fe, Cu, Ti, and Co were R2 = 0.654, MAE = 1.27%, and
RPD = 1.498; R2 = 0.694, MAE = 20.509, and RPD = 1.711; R2 = 0.501, MAE = 0.04%, and
RPD = 1.412; and R2 = 0.805, MAE = 2.573, and RPD = 2.199. We also found that the model
after feature band preferences had improved performance (Fe, Cu, and Co) or was similar
(Ti) in the validation set compared with the model constructed in the full band. Using
a small number of spectra gives overall better results and simplifies the complexity of
the model.



Remote Sens. 2023, 15, 3591 14 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

To this end, six kinds of band indices were fed into the stepwise regression model to 
filter out the band indices that significantly improved the performance of each elemental 
content. The index with enhanced performance for Fe, Cu, Ti, and Co were BI1, BI5, and 
BI6; BI4, BI5, and BI6; BI1, BI3, and BI5; and BI1, BI3, and BI6. We then fed the screened 
indices into the PLS model to estimate the Fe, Cu, Ti, and Co content separately (Figure 
7). Compared with the individual spectral index, using the combined band indices as 
input variables improved performance in both validation sets. The performance of the 
four elemental content estimates for Fe, Cu, Ti, and Co were R2 = 0.654, MAE = 1.27%, and 
RPD = 1.498; R2 = 0.694, MAE = 20.509, and RPD = 1.711; R2 = 0.501, MAE = 0.04%, and RPD 
= 1.412; and R2 = 0.805, MAE = 2.573, and RPD = 2.199. We also found that the model after 
feature band preferences had improved performance (Fe, Cu, and Co) or was similar (Ti) 
in the validation set compared with the model constructed in the full band. Using a small 
number of spectra gives overall better results and simplifies the complexity of the model. 

 
Figure 7. Scatter plot between the tested values of Fe, Cu, Ti, and Co content and the predicted 
values obtained from the combination of the characteristic bands: (a) Fe, (b) Cu, (c) Ti, and (d) Co. 

4. Discussion 
Geochemical anomalies are vital in geological surveys, providing data to support the 

delineation of favorable mineralization zones in contrast to background areas [98,99]. 
However, combining information from multiple anomalies is essential to achieve better 
results and vice versa. Previous studies have shown that there is a significant bias in the 
trapping of favorable mineralization zones using only one anomaly or one elemental 
anomaly. This may be due to the migration of different elements due to external 
conditions, resulting in anomalies that deviate from the in situ information [100]. 

Figure 7. Scatter plot between the tested values of Fe, Cu, Ti, and Co content and the predicted values
obtained from the combination of the characteristic bands: (a) Fe, (b) Cu, (c) Ti, and (d) Co.

4. Discussion

Geochemical anomalies are vital in geological surveys, providing data to support
the delineation of favorable mineralization zones in contrast to background areas [98,99].
However, combining information from multiple anomalies is essential to achieve better
results and vice versa. Previous studies have shown that there is a significant bias in
the trapping of favorable mineralization zones using only one anomaly or one elemental
anomaly. This may be due to the migration of different elements due to external conditions,
resulting in anomalies that deviate from the in situ information [100]. Therefore, using
mineralized elemental anomalies and their significant correlations to define favorable
mineralization zones will reduce the number of false anomalies caused by information
imbalance [101]. In this study, we analyzed all measured elemental contents and found
Fe, Mn, Ti, and Co to be significantly correlated with Cu at the 0.05 level. Porphyry
copper ores, in previous studies, have also been shown to have significant correlations with
these elements. This indicates the reliability of using standard anomalous zones for these
elements to narrow the exploration area.

Spectral resolution plays an essential role in identifying diagnostic spectral features
of a feature target, and studies have shown that a high spectral resolution can highlight
diagnostic features that are not detected by multiple spectra [17]. As can be seen in Figure 5,
the spectral profile absorption features gradually decrease as the spectral resolution de-
creases. The absorption feature at 1850 nm disappears when the spectral resolution is
greater than 5 nm. Meanwhile, as seen in Table 4, the model performs poorly when the
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spectral resolution is low. This may be caused by weakening the diagnostic information of
its features as the spectral resolution decreases. The best estimation of the four elemental
contents of Fe, Cu, Ti, and Co was achieved at a spectral resolution of 5 nm, consistent with
previous studies showing that the spectral resolution affects the model’s accuracy [102,103].
When the spectral resolution is chosen appropriately, it offers characteristic diagnostic
features and reduces the redundancy between adjacent bands.

Previous studies have shown that models constructed using raw spectra often find it
challenging to achieve the desired results [104]. Therefore, many researchers have used
different spectral transformation techniques to preprocess the spectra to add spectral
feature information while eliminating background noise [70]. The first- and second-order
derivatives represent the slope and curvature of the spectra, respectively. The results
of this paper show that the performance of the model constructed from the first-order
derivative spectra is significantly better than that of the second-order derivative spectra,
which is because although the derivatives can eliminate the baseline shift, the second-
order derivatives may introduce more noise information and thus reduce the accuracy
of the model, in line with the results of previous studies [61,105]. Furthermore, in this
study, the estimation model constructed using envelope spectroscopy achieved optimal
or suboptimal outcomes for the four metal elemental contents, since continuum removal
normalizes the spectra to a consistent spectral background, thus effectively highlighting
the absorption characteristics of the spectral profiles. The results of this study support
the conclusion that previous work using continuum removal spectroscopy achieved better
results in elemental estimation.

The spectral index is a simple and efficient method for extracting the spectral parame-
ters of a feature [106]. In this paper, we obtained spectral parameters for all combinations
of bands by traversing all bands, and we also found that the correlation between the
spectral parameters obtained from spectral indices formed by different combinations of
bands and the content of each element was distinct. Moreover, the correlation between
the spectral parameters obtained by this algorithm and the elemental content was signifi-
cantly improved compared with the original spectral values (Figure 6). Previous estimation
models constructed based on spectral reflectance values or a single spectral index are not
satisfactory in terms of model performance, as their spectral information is often saturated.
Therefore, many scholars have proposed high-dimensional spectral indices and achieved
better estimation results [107]. The results of many studies have shown that spectral in-
dices constructed based on three wavelengths can provide better predictions of elemental
content [62], and the same findings were obtained in this paper.

Although spectral indices can achieve good predictions, different spectral indices use
various spectral bands that have other effects on the original content and thus achieve
different results. Using all spectral indices as independent variables can reduce the model
performance by introducing unnecessary variables [83]. In contrast, variable selection
techniques can extract parameters significantly correlated with the original content, thereby
improving the predictive accuracy of the model [108]. In this paper, the variables related
to the content of four elements, Fe, Cu, Ti, and Co, were selected from six spectral indices
for model construction using a stepwise regression technique, and better results were
obtained. The coefficients of determination R2 for Fe, Cu, Ti, and Co in the validation set
were improved by 0.112, 0.100, 0.087, and 0.023, respectively, compared with the model
constructed in the whole band (Table 5 and Figure 7). However, the model performance
was improved in all cases compared with individual spectral indices, thus indicating that
the model constructed by combining the spectral index and band selection techniques
has better predictive performance. The method can reduce the dimensionality of the
hyperspectral data and extract favorable information from the spectra compared with the
full-spectral data, thus improving the model’s accuracy (Figure 7). In addition, the bands
in which the spectral indices selected by stepwise regression are located are significantly
correlated with iron oxides (needle iron ore, hematite, water, iron, etc.) and anionic groups
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(OH, CO3, Al-OH, Mg-OH, C-O, etc.), indicating that the constructed model has some
physical significance [109–111].

Although a combination of spectral transformation, spectral index, and characteristic
band-selection techniques yielded promising results in estimating the elemental content of
a wide range of metals, the accuracy was still significantly lower than that obtained from
laboratory analysis [24,109]. This may be due to the difficulty of interpreting the variable
rock properties using spectral data alone. Therefore, in future studies, multiple data sources
can be combined to improve the prediction accuracy of the model, such as fusing VNIR-
SWIR with data such as NIR spectra and magnetization or adding other environmental
covariates (e.g., topographic data, PH values, and climate data) [112–114]. This work
provides new technical means for extracting favorable information on mineralization from
aerial or space imagery, enabling the efficient exploration and low-cost trapping of favorable
mineralization zones.

5. Conclusions

This study discussed the potential of spectral resolution, spectral variability, band
combination, and optimal band selection methods for multielement content estimation of
Fe, Cu, Ti, and Co. The results obtained show the following:

(1) The spectral resolution is significant for the display of spectral diagnostic features
and the model’s accuracy. When the spectral resolution is 5 nm, the spectral features can
be better highlighted, and the estimation model constructed can also be obtained with
higher accuracy.

(2) The accuracy of the model constructed using different transformed spectra is extra
for other elemental contents. No singe spectral transformation is suitable for estimating
multiple elemental contents; so, an appropriate transformation method can significantly
improve the model’s accuracy.

(3) For the four elemental contents of Fe, Cu, Ti, and Co, the model constructed using
a combination of the three-band index and the characteristic band selection method not
only reduces the complexity of the model but also exhibits better accuracy than the model
constructed using the entire band.

(4) The combination of spectral index and feature variable selection methods to esti-
mate the mineralized elemental content and its significantly correlated elemental content
has very high potential to improve the efficiency of a presurvey and reduce the uncertainty
caused by the asymmetric information of single elemental anomalies, providing data sup-
port and technical reference for subsequent space or airborne remote sensing to detect
regional elemental anomalies.
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