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Abstract: Hyperspectral anomaly detection (HAD), which is widely used in military and civilian
fields, aims to detect the pixels with large spectral deviation from the background. Recently, collabo-
rative representation using union dictionary (CRUD) was proved to be effective for achieving HAD.
However, the existing CRUD detectors generally only use the spatial or spectral information to con-
struct the union dictionary (UD), which possibly causes a suboptimal performance and may be hard
to use in actual scenarios. Additionally, the anomalies are treated as salient relative to the background
in a hyperspectral image (HSI). In this article, a HAD method using spatial–spectral-based UD and
improved saliency weight (SSUD-ISW) is proposed. To construct robust UD for each testing pixel, a
spatial-based detector, a spectral-based detector and superpixel segmentation are jointly considered
to yield the background set and anomaly set, which provides pure and representative pixels to form
a robust UD. Differently from the conventional operation that uses the dual windows to construct
the background dictionary in the local region and employs the RX detector to construct the anomaly
dictionary in a global scope, we developed a robust UD construction strategy in a nonglobal range by
sifting the pixels closest to the testing pixel from the background set and anomaly set to form the
UD. With a preconstructed UD, a CRUD is performed, and the product of the anomaly dictionary
and corresponding representation coefficient is explored to yield the response map. Moreover, an
improved saliency weight is proposed to fully mine the saliency characteristic of the anomalies.
To further improve the performance, the response map and saliency weight are combined with a
nonlinear fusion strategy. Extensive experiments performed on five datasets (i.e., Salinas, Texas Coast,
Gainesville, San Diego and SpecTIR datasets) demonstrate that the proposed SSUD-ISW detector
achieves the satisfactory AUCdf values (i.e., 0.9988, 0.9986, 0.9939, 0.9945 and 0.9997), as compared to
the comparative detectors whose best AUCdf values are 0.9938, 0.9956, 0.9833, 0.9919 and 0.9991.

Keywords: anomaly detection; collaborative representation; union dictionary; saliency weight

1. Introduction

A hyperspectral image (HSI) with plenty of narrow and continuous bands can provide
rich spectral and spatial characteristics, and it may be used to discriminate various mate-
rials in different applications, such as target detection [1], image classification [2,3], and
anomaly detection [4,5]. Among them, hyperspectral anomaly detection (HAD), aiming
to detect the pixels with large spectral deviation from the background [6], has attracted
considerable attention in relation to space exploration, battlefield reconnaissance and so
on. Compared with the hyperspectral target detection, which has known anomaly spectral
prior information, HAD becomes more challenging, as no prior information about the
anomaly can be employed.
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Recently, the collaborative representation detectors using the union dictionary have
attracted widespread attention from researchers [7,8]. Although a tremendous effort has
been put into the CR detectors with union dictionary, these CR detectors use only the
spatial or spectral information to construct the union dictionary, which possibly results in a
suboptimal performance.

In addition to the widely used CR detectors with union dictionary, the visual saliency
detection technique also has been paid much attention in the recent years [9,10]. The visual
saliency detection technique, which aims to highlight the most attractive and distinctive
regions in a scene, is valuable to mine the potential anomalies in an HSI, thus improving
the detection performance of HAD.

In this article, a HAD method using a spatial–spectral-based union dictionary and
improved saliency weight (SSUD-ISW) is proposed. Specifically, the morphological-based
spatial branch and Mahalanobis distance-based spectral branch are first exploited to yield
response maps, which are jointly used to construct the background set and anomaly set in
the aid of the superpixels. Then, some pixels are separately selected from background set
and anomaly set to construct the union dictionary. Next, the testing pixel is expressed by the
constructed union dictionary, and the response map is obtained by the product of anomaly
dictionary and corresponding representation coefficient. In addition, to fully mine the
saliency characteristic of the anomalies, an improved saliency weight is developed. Finally,
the response map obtained by the CRUD and the saliency weight are combined with a
nonlinear fusion strategy to further highlight the anomalies and suppress the background.
The main contributions of this work are described as follows:

(1) To acquire a better representation effect, a spatial–spectral-based union dictionary
construction strategy is proposed. Unlike the conventional operation that uses the sliding
concentric dual windows to construct the background dictionary in a local region and
employs the RX detector to construct the anomaly dictionary in a global scope, we innova-
tively construct the background set and anomaly set by means of the spatial and spectral
detectors, providing the pixels in a nonglobal range to form the union dictionary for each
testing pixel.

(2) Inspired by the human visual attention, an improved saliency weight is proposed
to further enhance the performance of the proposed SSUD-ISW detector. Compared with
the context-aware saliency weight, the improved saliency weight simultaneously considers
the influence arrived from the background and anomaly and ignores the effect of the spatial
information that may result in unstable performance.

The rest of this article is organized as follows. Section 2 gives the related work.
Section 3 introduces the preliminary concepts. The methodology is presented in Section 4.
Section 5 introduces the experiments and results. Section 6 gives the discussion. The
conclusions are given in Section 7.

2. Related Work
2.1. Statistical-Theory-Based Anomaly Detection

To detect anomalies, the statistical theory (ST)-based method was firstly proposed.
The classical ST-based method is the RX detector [11], which hypothesizes that the back-
ground obeys a multivariate Gaussian distribution. It uses all pixels of the HSI to calculate
the mean vector and covariance matrix to model the background and utilizes the Maha-
lanobis distance to measure the anomaly degree of each pixel. In addition to the global
RX detector mentioned above, the local RX detector (LRXD) [12], which employs the local
pixels selected with a dual-window manner for background modeling, was also proposed.
Nevertheless, the background distribution assumption is not suitable for the complicated
hyperspectral scenes, and the background modeling is susceptible to being contaminated
by the anomalies. To address these issues, some variants regarding the RX detector, such
as random-selection-based anomaly detector (RS-AD) [13], the fractional Fourier entropy
RX detector (FrFE-RXD) [14], etc., were developed in the subsequent work. However,
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the statistical distribution assumption is often not ideal for the hyperspectral scenes with
complicated land-cover distributions [15].

2.2. Representation-Based Anomaly Detection

Recently, the representation-based detectors have achieved unprecedented success. To
be concrete, the representation-based detectors are generally classified into three categories:
low-rank representation (LRR), sparse representation (SR) and collaborative representation
(CR). The LRR holds that the HSI data are able to be decomposed into the low-rank
background and sparse anomaly. Zhang et al. [16] proposed the low-rank and sparse
matrix decomposition (LSMAD) detector, which is an early research to leverage the idea of
LRR. Furthermore, the low-rank component was surrogated by the multiplication of the
background dictionary and representation matrix in [17]. To achieve better background
and anomaly modeling, Huyan et al. [18] jointly employed the dual dictionaries to perform
the representation process. Moreover, other researchers have made tremendous efforts to
improve the LRR performance, which can be classified into two categories: constructing
more robust dictionaries [19,20] and imposing valuable regularization terms onto the LRR
model [21,22].

The SR considers that the testing pixel is able to be expressed by several atoms in the
overcomplete dictionary. The background joint SR detector (BJSRD) [23], which models the
background by selecting the valuable bases covering all local areas, is a typical SR-based
detector. Additionally, similar to the LRR, the improved version of the SR also focuses on
how to construct a robust overcomplete dictionary or impose the regularization terms on
the SR model. To achieve better representation, Ma et al. [24] proposed a discriminative
feature learning with multiple-dictionary SR (DFL-MDSR) for HAD. In terms of introducing
the regularization terms, the researchers proposed some meaningful works to perform
HAD, such as archetypal analysis and structured SR model (AA-SSR) [25] and constrained
SR model (CSR) [26].

Similar to the SR, the CR reckons that the background pixel under testing is able
to be represented by the background pixels (also called “background dictionary”) in the
local region, while it could not be achieved for the anomalous pixels. The CR detector
(CRD) proposed in [27], is the benchmark research work to introduce the CR into HAD.
Nevertheless, the background dictionary is inevitably interfered by the anomalies in the
scenes with complex background or large anomalies, due to the fact that the ideal scale
of sliding concentric dual windows is hard to set [28]. To cope with this problem, some
background purification works rejecting the potential anomalous pixels occurred in the
background dictionary were proposed, such as the CR detector with outlier removal (CRD-
OR) [29], CR-based with outlier removal anomaly detector (CR-ORAD) [30] and density
peak guided CR (DPGCR) [31]. Additionally, some researchers think that the strategy of
sifting the background pixels for the background dictionary (i.e., sifting the background
pixels within the sliding concentric dual windows) is unreliable. To address this issue,
some research works focusing on the background dictionary construction approach, such
as relaxed CR (RCR) [28] and SR and CR (SR-CR) [5], were proposed. Furthermore,
instead of using the background dictionary to perform the CR, Chang et al. [7] proposed a
nonnegative-constrained joint CR with union dictionary (NJCR) to perform HAD. Similarly,
a CR detector with union dictionary was developed for HAD by considering the intrinsic
nonlinear characteristics of HSIs [8]. Although tremendous effort has been put into the
CR detectors with union dictionary, these CR detectors use only the spatial or spectral
information to construct the union dictionary, which possibly results in a suboptimal
performance.

2.3. Deep-Learning-Based Anomaly Detection

In recent years, the deep learning (DL) technique has become the mainstream method
to deal with various tasks, such as co-saliency detection [32,33], object detection [34–37],
anomaly detection [18,38], etc. To fully employ the potential of DL to extract the abstract
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and hierarchical and high-level features, the DL technique has been introduced into the field
of HAD. The transferred deep convolutional neural network (DCNN) that was proposed
in [39] is a valuable exploration to introduce the CNN to solve the problem of HAD.
Subsequently, Song et al. [40] developed a novel AD detector that combines the CNN
and low-rank representation (LRR). Instead of the aforementioned methods that utilize
the CNN to achieve HAD, some researchers focused on the deep models composed of
fully connected layer. Zhang and Cheng [41] developed an adaptive subspace model via a
stacked autoencoder (SAE), which adopts the deep features of differences obtained from the
SAE model to perform HAD. To make the extracted feature more discriminative, a spectral
constrained adversarial AE (SCAAE), which was proposed in [42], was developed to
suppress the variational background while preserving the anomaly. Jiang et al. [43] similarly
designed a novel generative adversarial network (GAN)-based model for HAD by imposing
the shrink and consistency-enhanced constraints, with the consideration of learning a
discriminative background reconstruction while the anomalies are suppressed. To keep
the local intrinsic structure of the observed data in the latent features, the embedding
manifold of AE was explored by Lu et al. [44] to perform HAD. Similarly, a robust graph
AE (RGAE) [45] was proposed to retain the geometric structure of the HSI data in the latent
feature with the aid of the superpixels. In addition, some research works, such as the deep
belief network [46], variational AE [47], transformer [48], etc., were introduced into HAD.

3. Preliminary Concepts
3.1. Collaborative Representation Model

The CR, which was proposed in [27], assumes that the background pixel under test
(PUT) is able to be represented by the background pixels (also namely “background dictio-
nary”) in the local region, while this could not be achieved for the anomalous pixels. Let x
represent the PUT, D denote the background dictionary and α signify the representation
vector. The CR aims at determining the representation coefficient vector, α, by minimizing
both ‖x−Dα‖2

2 and ‖α‖2
2:

argmin
α
‖x−Dα‖2

2 + β‖α‖2
2 (1)

where β denotes a regularization parameter. To consider the importance of the pixels in D,
a distance-weight-based optimization objective function is induced:

argmin
α
‖x−Dα‖2

2 + β‖Γα‖2
2 (2)

where Γ = diag(‖x− d1‖2, ‖x− d2‖2, · · · , ‖x− dm‖2) refers to the diagonal regularization
matrix; diag(·) is the operator to form a diagonal matrix; and d1, d2, · · · , dm stand for the
entries from D (i.e., the columns of D). Then, the solution of Equation (2) is expressed
as follows:

α̂ = (DTD + β · ΓTΓ)
−1

DTx (3)

Finally, the l2 norm of the residual vector (i.e., x−Dα̂) is used to measure the anomaly
degree of the PUT:

r = ‖x−Dα̂‖2 (4)

3.2. Context-Aware Saliency Detection

Inspired by human visual attention, the context-aware saliency detection method
holds that the areas with distinctive patterns or colors have high saliency, and conversely,
the blurred or homogeneous regions keep low saliency [9]. On the basis of this fact, the
anomalies can be considered to keep high saliency relative to the background in an HSI [10].

Let x and xs represent the PUT and sth pixel in the surrounding pixels of the PUT,
respectively. The context-aware saliency detection is formulated as follows:

dsal(x, xs) =
dspe(x, xs)

1 + c · dspa(x, xs)
(5)
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where dspe and dspa refer to the spectral distance and spatial distance, respectively; and c
denotes a constant. The spectral distance, dspe, is represented by the following:

dspe(x, xs) = arccos( ∑d
t=1 xt · xt

s√
∑d

t=1 xt ·∑d
t=1 xt

s

) (6)

where d refers to the number of spectral bands. Similarly, the spatial distance, dspa, is
denoted by the following:

dspa(x, xs) =

√
(xr − xsr)

2 + (xc − xsc)
2 (7)

where (xr, xc) and (xsr, xsc) stand for position coordinates corresponding to x and xs,
respectively.

Finally, the saliency weight of the PUT is expressed as follows:

d f in
sal (x) =

∑m
s=1 dsal(x, xs)

m
(8)

where m refers to the number of surrounding pixels for the PUT.

3.3. Nonlinear Fusion Strategy

In the existing research works regarding HAD, in order to better combine two or more
detection results to highlight the anomaly and suppress the background, a nonlinear fusion
strategy is generally adopted [42,49]. Taking detection results d1 and d2 as examples, the
fused detection result, d, can be obtained by the following formula:

d = d1 · (1− e−γ·d2) (9)

where γ represents the fusion coefficient.

4. Methodology

In this section, a HAD method using spatial–spectral-based union dictionary and im-
proved saliency weight (SSUD-ISW) is proposed, as illustrated in Figure 1. Specifically, the
spatial-based and spectral-based detectors are firstly used to detect the potential anomalies,
which are adopted to guide the construction of the background set and anomaly set with
the aid of the superpixels (the details of the construction process can be seen in Figure 2
and Section 4.1.2. Then, for each testing pixel, several pixels are separately sifted from the
background set and anomaly set to form the union dictionary. Next, the union-dictionary-
based collaborative representation is modeled, and the corresponding response values are
achieved by means of the product of the anomaly dictionary and anomaly representation
coefficient. In addition, as for the testing pixel mentioned above, the improved saliency
weight is further performed considering the pixels chosen from the background set and
anomaly set. Finally, a nonlinear fusion strategy is employed to combine the response
values and improved saliency weight for better performance.
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4.1. Union-Dictionary-Based Collaborative Representation
4.1.1. CR Model via Union Dictionary

In the conventional CR-based detectors, only background pixels participate in the
representation of the PUT, ignoring the valuable anomalous pixels. To address this concern,
a CR model via the union dictionary is exploited, in which the union dictionary is concate-
nated by some background pixels (also namely “background dictionary”) and anomalous
pixels (also called “anomaly dictionary”). Correspondingly, the representation coefficient is
composed of a background representation coefficient and anomaly representation coeffi-
cient, expressed as follows:

argmin
αi
‖xi −Diαi‖2

2 + β‖αi‖2
2

s.t. Di = [DB
i , DA

i ], αi = [(αB
i )

T , (αA
i )

T
]
T (10)

where xi ∈ Rb×1 is the ith pixel in the HSI; Di ∈ Rb×(kB+kA), DB
i ∈ Rb×kB and DA

i ∈ Rb×kA

are the union dictionary, background dictionary and anomaly dictionary belonging to the
ith pixel in the HSI, respectively; and αi ∈ R(kB+kA)×1, αB

i ∈ RkB×1 and αA
i ∈ RkA×1 stand

for the representation vector of the union dictionary, background dictionary and anomaly
dictionary, respectively, where b represents the number of the spectral bands, and kB and
kA separately refer to the number of the atoms in DB

i and DA
i .

Pixels with high similarity to the PUT are expected to have a large coefficient; oth-
erwise, the coefficient should be small [27]. To this end, a distance-weighted Tikhonov
regularization is imposed into the representation coefficient vector, which can be formulated
by the following:

Γi =



‖xi − db1
i ‖2

. . .
‖xi − dbkB

i ‖2
‖xi − da1

i ‖2
. . .

‖xi − dakA
i ‖2


(11)

where db1
i , · · · , dbkB

i are the columns of DB
i ; and da1

i , · · · , dakA
i are the columns of DA

i . Then,
the weighted optimization problem becomes the following:

argmin
αi
‖xi −Diαi‖2

2 + β‖Γiαi‖2
2

s.t. Di = [DB
i , DA

i ], αi = [(αB
i )

T , (αA
i )

T
]
T (12)

The solution of problem (12) can be obtained by making derivative of αi be 0, which is
calculated as follows:

α̂i = (Di
TDi + β · Γi

TΓi)
−1

Di
Txi (13)

Once α̂i is obtained, the response value corresponding to the ith pixel in the HSI can
be calculated by the following:

dCRUD(xi) = ‖DA
i αA

i ‖2 (14)

For a background PUT, the background representation coefficient may be very high,
while the anomaly representation coefficient remains at a low level. Conversely, with
regard to the anomaly PUT, the background representation coefficient remains as small
values, while the anomaly representation coefficient does the opposite. Therefore, through
Equation (14), clearly, it can yield a highly anomaly-related response value.
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4.1.2. Construction of Union Dictionary

In the conventional CR detectors, the purity of the background dictionary is key for
their performance [29,30,50]. Similarly, it is also pretty significant to construct a pure
union dictionary customized for CR. To cope with it, some research works focus on how to
construct a pure union dictionary, such as [7,8]. However, these detectors only use spatial or
spectral information to construct the union dictionary, which possibly leads to a suboptimal
performance.

To resolve the aforementioned problem, a spatial–spectral-based union dictionary
construction approach is proposed. The whole procedure of the union dictionary con-
struction approach is composed of four parts: (1) spatial-based detector; (2) spectral-based
detector; (3) construction of background set and anomaly set; and (4) construction of union
dictionary. The details are described as follows.

(1) Spatial-Based Detector

To effectively detect anomalies, the spatial-based detector is exploited for HAD, as
shown in Figure 2. First, to decrease the calculation complexity, the principal component
analysis (PCA) is conducted to reduce the spectral dimension of the HSI, and the first
three principal components are obtained. Then, the morphological processing (i.e., opening
operation and closing operation) and differential operation are carried out for each principal
component, so as to detect the small dark area and bright connected parts [51], which can
be summarized as follows:

D(Bq) = |Bq −MO(Bq)|+ |MC(Bq)− Bq|, q = 1, 2, 3 (15)

where MO(·) and MC(·) represent the opening and closing operation, respectively; D(·)
denotes the differential operation; and Bq refers to the qth band in the dimension-reduced
HSI. Once the above procedure is finished, an element-wise average operation will be
executed for the generated three differential maps to acquire the initial response map, d0

1.
Then, we use the guided filter to rectify d0

1 by using the principal component Bq (q = 1,
2, 3), acting as the guidance images, so as to keep the pixels belonging to the same object
with similar values. The details of guided filter are as follows:

d1,i = aiB
q
i + bi, q = 1, 2, 3, i ∈ ωj (16)

aj = (σ2
j + ε)

−1
[(∑i∈ωj

Bq
i d0

1,i)/|ω| − µjd
0
1,j] (17)

bj = d0
1,j − ajµj (18)

where ai = (Σj∈ωi aj)/|ω| and bi = (Σj∈ωi bj)/|ω|, in which |ω| indicates the pixels number
in the local region, ωj, centered at pixel j, corresponding to the guidance image Bq (q = 1, 2,
3); ε represents the regularization parameter; and µj and σ2

j are, respectively, the mean and
variance of ωj. After the rectification process is terminated, the spatial-based response map,
d1, can be obtained by averaging the three rectified maps pixel by pixel.

(2) Spectral-Based Detector

We employed the Mahalanobis distance to execute the spectral-based detection, as
shown in Figure 2. For the HSI X = [x1, x2, · · ·, xu, · · ·, xN ], in which N is the number of
pixels in the HSI, the anomaly degree of testing pixel can be calculated by the following
formula:

d2,u = (xu − µ)T
Σ−1(xu − µ), u ∈ [1, N] (19)

where µ and Σ are, respectively, the mean vector and covariance matrix of the pixels in
the HSI. Once all pixels in the HSI are computed, the spectral-based response map, d2, is
generated.

(3) Construction of Background Set and Anomaly Set
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Figure 2 illustrates the construction of the background set and anomaly set. Concretely,
to comprehensively employ the spectral and spatial information, the element-wise product
d of d1 and d2 enables us to highlight the anomaly and suppress the background, and it
acts as the director to help the following background set and anomaly set construction.
Subsequently, a thresholding operation on d is achieved by the OTSU algorithm [51],
yielding a binary map, dbin. Finally, the background set and anomaly set are constructed by
combining the superpixels, which are generated by the simple linear iterative clustering
(SLIC) [21] according to the first three principal components and dbin. The details can be
summarized as follows:

DB =
{

xc
p

∣∣∣ΣSp
t=1dbin

t = 0→ p
}

(20)

DA =
{

x(i−1)∗W+j

∣∣∣dbin
i,j = 1→ (i, j)

}
(21)

where DB refers to the background set, and DA stands for the anomaly set; p ∈ [1, nS]
signifies the index of the superpixels, with nS indicating the preconfigured superpixels

number; Sp refers to the number of pixels belonging to the pth superpixel; Σ
Sp
t=1dbin

t stands
for the sum of entries in dbin which have same location with pth superpixel; xc

p denotes the
center of the pth superpixel; i and j represent the index of the height H and width W in the
HSI, respectively; x(i−1)∗W+j is the pixel at position (i, j) in X.

(4) Construction of Union Dictionary

Once the background set and anomaly set are constructed, the next issue is to construct
the background dictionary and anomaly dictionary for each PUT. Unlike the conventional
operation that utilizes the sliding concentric dual windows to construct the background
dictionary in the local region and employs the RX detector to construct the anomaly
dictionary within a global scope, in this study, a nonglobal strategy, which separately sifts
the closest kB and kA pixels from the background set and anomaly set relative to the PUT
to form the background dictionary and anomaly dictionary, was developed. To be specific,
the distance between the PUT xi and the pixel dj

B in DB can be computed by the following:

dist = ‖xi − dj
B‖

2

2, i ∈ [1, N], j ∈ [1, nB] (22)

where nB is the number of pixels in DB. Sorting dist in ascending order, according to
Equation (22), the first kB pixels are collected to act as the background dictionary, DB

i .
Similarly, the anomaly dictionary, DA

i , can be constructed by selecting kA pixels from the
anomaly set. Finally, the union dictionary can be constructed by concatenating DB

i and DA
i

along the column direction, i.e., Di = [DB
i , DA

i ].

4.2. Improved Saliency Weight

As stated in Section 3.2, the anomalies have higher saliency weight relative to the
background in an HSI. Clearly, it is easily considered to exploit the context-aware saliency
detection method to compute the saliency weight of all pixels in an HSI. Unlike with the
conventional strategy that employs the surrounding pixels of the PUT to compute the
saliency weight [10], the pixels in the background set that are very close to the PUT are
considered to calculate the saliency weight. However, the spatial distance between the PUT
and the pixels sifted from the background set may be very large, which possibly causes an
unstable performance. To this end, the spatial distance in Equation (5) is omitted for better
and stable performance, and the spectral distance is used to compute the saliency weight.
Hence, an improved saliency weight related to the background is formulated as follows:

dB
sal(xi, DBS

i ) =
1
k

k

∑
v=1
‖xi − dbs

iv‖2 (23)
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where k represents the number of pixels closest to the PUT sifted from the background
set, which is used to compute the saliency weight; xi refers to the ith PUT in the HSI;
DBS

i = [dbs
i1 , dbs

i2 , · · · , dbs
ik ] is the pixels collection obtained from the background set. Obvi-

ously, the larger the distance, the higher the saliency weight. To illustrate the effect of the
spatial distance introduced in Equation (5), the visualization of the saliency weights with
or without spatial distance is shown in the first two rows of Figure 3. It can be seen that the
saliency weight without the spatial distance can effectively locate the anomalies compared
with the saliency weight with spatial distance, thus proving that the spatial distance is
harmful to use to identify the anomalies.
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(a–e) indicate the Salinas, Texas Coast, Gainesville, San Diego and SpecTIR datasets, respectively.

Similarly, inspired by the idea of the union dictionary, an improved saliency weight
related to anomaly is also considered. Clearly, the PUT having a high spectral distance with
the pixels sifted from the anomaly set is expected to have small saliency weight, and vice
versus. Therefore, the improved saliency weight related to the anomaly can be described
by the following:

dA
sal(xi, DAS

i ) = −1
k

k

∑
v=1
‖xi − das

iv‖2 (24)

where DAS
i = [das

i1 , das
i2 , · · · , das

ik ] is the collection of pixels sifted from the anomaly set.
To comprehensively reveal the saliency weight of the PUT, the above two saliency

weights are summarized as follows:

dsal(xi, DBS
i , DAS

i ) = dB
sal(xi, DBS

i ) + dA
sal(xi, DAS

i )

= 1
k

k
∑

v=1
(‖xi − dbs

iv‖2 − ‖xi − das
iv‖2)

(25)

To further illustrate the effect of the saliency weight related to the anomaly, the saliency
weights without or with an anomaly are considered, as shown in the last two rows of
Figure 3. By comparing them, it is easily found that the anomalies are further strengthened,
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with the consideration of the saliency weight related to the anomaly, which indicates that
the saliency weight, considering the background and anomaly simultaneously, is effective.

4.3. Nonlinear Fusion

To better highlight the anomaly and suppress the background, a nonlinear fusion
operation is exploited, which is as follows:

d f
i = dCRUD(xi) · (1− e−ρ·dsal(xi ,DBS

i ,DAS
i )) (26)

where ρ denotes the fusion coefficient. Through the above way, the final detection result,
df = [d f

1 , d f
2 , · · · , d f

N ], is achieved by merging the response values of all pixels in the HSI.

5. Experiments and Results
5.1. Datasets and Evaluation Metrics
5.1.1. Datasets

In this section, five hyperspectral datasets, composed of one synthetic dataset and four
real datasets, are adopted to verify the effect of the proposed SSUD-ISW detector.

Salinas dataset [21]: A synthetic dataset was obtained by implanting the target into
the Salinas dataset, which was captured by the AVIRIS sensor. There are 204 bands in total
after removing some corrupted bands for the Salinas dataset. In terms of the pixels in the
spatial scope, there are 120 × 120 pixels in each band. Figure 4(I-a,I-b) show the composite
image and reference map, respectively.
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(I) Salinas, (II) Texas Coast, (III) Gainesville, (IV) San Diego and (V) SpecTIR.

Texas Coast dataset [43]: The second dataset, which was collected by the AVIRIS sensor,
covers the area of the Texas Coast. The size of the Texas Coast is 100 × 100 × 204, and the
wavelength spans from 0.45 to 1.35 um. Several buildings are treated as the anomalies.
Figure 4(II-a,II-b) give the composite image and reference map, respectively.

Gainesville dataset [6]: The third dataset, which was captured through the AVIRIS
sensor, covers the area of Gainesville, FL, USA. Its spatial size is 150 × 150 and the bands
number is 102. Some boats floating on the water surface are viewed as the anomalies.
Figure 4(III-a,III-b) separately exhibit the composite image and reference map.

San Diego dataset [45]: The fourth dataset, whose imaging location is in the area of
the San Diego Airport, was acquired through the AVIRIS sensor. For the San Diego dataset,
the bands number is 189, with some noisy bands’ removal, and the spatial size is 100×100.
The anomalies are three airplanes. The composite image and reference map are displayed
in Figure 4(IV-a,IV-b), respectively.



Remote Sens. 2023, 15, 3609 12 of 25

SpecTIR dataset [52]: The fifth dataset was collected from the SpecTIR hyperspectral
airborne Rochester experiment, and there are 180× 180 pixels and 120 bands. The anomalies
are several manmade square fabrics. Figure 4(V-a,V-b) display the composite image and
reference map, respectively.

5.1.2. Evaluation Metrics

Four receiver-operating-characteristic (ROC) curves (i.e., a 3D ROC curve and three
2D ROC curves corresponding to (Pd, Pf), (Pd, τ) and (Pf, τ)), eight area-under-the-curve
(AUC) values (i.e., AUCdf, AUCdτ , AUCfτ , AUCtd, AUCbs, AUCsnpr, AUCtdbs and AUCodp)
and a separability map were adopted to evaluate the effect of the proposed SSUD-ISW
detector. Notably, the first three AUC values were computed by means of the above three
2D ROC curves and the remaining five were generated by the first three AUC values:

AUCtd = AUCd f + AUCdτ

AUCbs = AUCd f −AUC f τ

AUCsnpr =
AUCdτ
AUC f τ

AUCtdbs = AUCdτ −AUC f τ

AUCodp = AUCd f + AUCdτ −AUC f τ

(27)

where AUCdf, AUCtdbs, and AUCodp are employed to assess the overall performance of a
detector. AUCdτ and AUCtd are utilized to assess the detection probability of a detector.
The remaining three metrics are used to assess the background-suppression capability of
a detector. For most of the metrics, except for AUCfτ , the higher the AUC values, the
better performance of the detector. A low AUCfτ indicates a better performance for a
detector. In addition, as for the separability map, a larger distance between the anomaly
and background means a better separability effect.

5.2. Experimental Setup
5.2.1. Implementation Details

Our experiments were conducted on a 2.00 GHz machine with an Intel® Core™ i7-
9700T CPU and 16GB of RAM. The experiment software of all comparative detectors was
MATLAB, and the proposed SSUD-ISW detector employed Python. The performance of all
comparative detectors was configured as the possibly optimal AUCdf values.

5.2.2. Comparative Detectors

Eight comparative detectors were used to prove the superiority of the proposed
SSUD-ISW detector. To be concrete, these detectors consist of three classical detectors (i.e.,
RX [11], CRD [27] and LSMAD [16]) and five state-of-the-art detectors (i.e., CRDBPSW [10],
LSDM-MoG [53], RGAE [45], GAED [54] and NJCR [7]).

5.3. Parameter Analysis

There are six parameters to be considered in this article: the superpixels number, ns;
the tradeoff parameter, β; the saliency-weight-related parameter, k; fusion coefficient, ρ;
and union-dictionary-related parameters, kB and kA. Notably, the other parameters are
fixed as the optimal values, as listed in Table 1, when one of them is discussed.

(1) Superpixels number, ns: A group of possible numbers ranging from 100 to 600 at
an interval of 100 were configured, with the consideration of the computation burden and
detection performance, and the corresponding detection results are exhibited in Figure 5a.
In Figure 5a, the AUCdf of the proposed SSUD-ISW detector remains quite high and stable
for SpecTIR dataset with the variation of ns. In contrast, the AUCdf of the proposed SSUD-
ISW detector fluctuates when ns increases for the other datasets, especially for the San
Diego dataset. Notably, the proposed SSUD-ISW detector can achieve optimal values on
most datasets when the ns equals 200, except for Gainesville dataset (in which the optimal
ns is 300).
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Table 1. Optimal parameters’ configuration for all datasets.

Parameters Salinas Texas Coast Gainesville San Diego SpecTIR

ns 200 200 300 200 200
β 10−5 10−4 10−4 10−1 10−2

k 5 5 5 5 3
ρ 15 5 15 1 10
kB 10 20 15 15 15
kA 7 7 7 7 7

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 26 
 

 

Table 1. Optimal parameters’ configuration for all datasets. 

Parameters Salinas Texas Coast Gainesville San Diego SpecTIR 

ns 200 200 300 200 200 

β 10−5 10−4 10−4 10−1 10−2 

k 5 5 5 5 3 

ρ 15 5 15 1 10 

kB 10 20 15 15 15 

kA 7 7 7 7 7 

(1) Superpixels number, ns: A group of possible numbers ranging from 100 to 600 at 

an interval of 100 were configured, with the consideration of the computation burden and 

detection performance, and the corresponding detection results are exhibited in Figure 5a. 

In Figure 5a, the AUCdf of the proposed SSUD-ISW detector remains quite high and stable 

for SpecTIR dataset with the variation of ns. In contrast, the AUCdf of the proposed SSUD-

ISW detector fluctuates when ns increases for the other datasets, especially for the San 

Diego dataset. Notably, the proposed SSUD-ISW detector can achieve optimal values on 

most datasets when the ns equals 200, except for Gainesville dataset (in which the optimal 

ns is 300). 

 

    
 (a) ns   (b) β  (c) k (d) ρ 

Figure 5. With the parameters tuning over all datasets. 

(2) Tradeoff parameter, β: For the tradeoff parameter, β, we empirically configured it 

as {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100}, as shown in Figure 5b. As we can see in Figure 5b, 

the proposed SSUD-ISW detector performs well on both the Texas Coast and SpecTIR da-

tasets when the β varies. Note that the AUCdf of the proposed SSUD-ISW detector gradu-

ally decreases in a varying degree as the β increases for the Salinas and Gainesville da-

tasets, while there is an opposite phenomenon for the San Diego dataset. In Figure 5b, the 

proposed SSUD-ISW detector achieves the best results on all datasets when the β is con-

figured as 10−5, 10−4, 10−4, 10−1 and 10−2, respectively. 

(3) Saliency-weight-related parameter, k: Figure 5c shows the parameter analysis re-

garding k. As clearly seen, the AUCdf is very stable as the k changes for almost all of the 

datasets, thus indicating that the performance of the proposed SSUD-ISW detector is ro-

bust under these possible values. The optimal k value for different datasets is listed in 

Table 1. 

(4) Fusion coefficient, ρ: Some possible parameter settings for ρ are configured, and 

the variation of AUCdf under different datasets is illustrated in Figure 5d. In these curves, 

the variation tendency of the curves is relatively obvious for the Salinas and Gainesville 

datasets, and the others are pretty stable. The optimal parameter settings are listed in the 

fifth row of Table 1. 

(5) Union-dictionary-related parameters, kB and kA: For the union-dictionary-related 

parameters, considering that the background pixels account for a large proportion, while 

the anomalies occupy a small one, we configured kB and kA as {5, 10, 15, 20, 25} and {3, 5, 

7, 9, 11}, respectively. Figure 6 plots the 3D histogram of the AUCdf of the proposed SSUD-

GainesvilleTexas Coast San DiegoSalinas SpecTIR

Figure 5. With the parameters tuning over all datasets.

(2) Tradeoff parameter, β: For the tradeoff parameter, β, we empirically configured
it as {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100}, as shown in Figure 5b. As we can see in
Figure 5b, the proposed SSUD-ISW detector performs well on both the Texas Coast and
SpecTIR datasets when the β varies. Note that the AUCdf of the proposed SSUD-ISW
detector gradually decreases in a varying degree as the β increases for the Salinas and
Gainesville datasets, while there is an opposite phenomenon for the San Diego dataset. In
Figure 5b, the proposed SSUD-ISW detector achieves the best results on all datasets when
the β is configured as 10−5, 10−4, 10−4, 10−1 and 10−2, respectively.

(3) Saliency-weight-related parameter, k: Figure 5c shows the parameter analysis
regarding k. As clearly seen, the AUCdf is very stable as the k changes for almost all of the
datasets, thus indicating that the performance of the proposed SSUD-ISW detector is robust
under these possible values. The optimal k value for different datasets is listed in Table 1.

(4) Fusion coefficient, ρ: Some possible parameter settings for ρ are configured, and
the variation of AUCdf under different datasets is illustrated in Figure 5d. In these curves,
the variation tendency of the curves is relatively obvious for the Salinas and Gainesville
datasets, and the others are pretty stable. The optimal parameter settings are listed in the
fifth row of Table 1.

(5) Union-dictionary-related parameters, kB and kA: For the union-dictionary-related
parameters, considering that the background pixels account for a large proportion, while
the anomalies occupy a small one, we configured kB and kA as {5, 10, 15, 20, 25} and {3,
5, 7, 9, 11}, respectively. Figure 6 plots the 3D histogram of the AUCdf of the proposed
SSUD-ISW detector over all datasets. In these histograms, the AUCdf fluctuates significantly
for the most datasets when kB and kA change, indicating that these parameters are very
vital for the performance of the proposed SSUD-ISW detector. To obtain the optimal results,
a large number of experiments were carried out on these datasets, and optimal parameters
values are listed in Table 1.
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5.4. Component Analysis

To prove the effectiveness of the proposed components, some experiments were
conducted, and the experiment results are discussed in this subsection.

5.4.1. Effectiveness Analysis of Spatial–Spectral-Based Union Dictionary

To validate the effectiveness of the spatial–spectral-based union dictionary, two kinds
of union dictionary construction strategies customized for CR (i.e., strategy 1, which was
developed in NJCR [7], and strategy 2, which was proposed in KNUD [8]) that only use
spatial or spectral information are employed for comparison, as illustrated in Figure 7. As
can be seen in Figure 7, compared with the two existing union dictionary construction
strategies (i.e., “NJCR” and “KNUD”), the proposed spatial–spectral-based union dictionary
achieves a better performance over all datasets. Although the two existing union dictionary
construction strategies perform well on the SpecTIR dataset, they are still slightly lower than
that of the proposed spatial–spectral-based union dictionary. As a whole, the effectiveness
of the spatial–spectral-based union dictionary can be verified.
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construction strategies over all datasets.
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5.4.2. Effectiveness Analysis of Improved Saliency Weight

To verify the effectiveness of the improved saliency weight, we compared the improved
saliency weight with the context-aware saliency weight, as shown in Figure 8. Obviously,
the improved saliency weight significantly improved the AUCdf relative to the context-
aware saliency weight for the Salinas, Gainesville and San Diego datasets. In addition,
compared with the context-aware saliency weight, there was slight improvement for the
improved saliency weight on the Texas Coast and SpecTIR datasets. In summary, the
improved saliency weight improves the detection effect of the detector over all datasets,
thus proving the effectiveness of the improved saliency weight.
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all datasets.

5.5. Detection Performance

Eight comparative detectors are used to compare with the proposed SSUD-ISW detec-
tor according to the evaluation metrics introduced in Section 5.1.2.

(1) Salinas Dataset

Figure 9 displays the detection maps generated by various detectors. Clearly, the
proposed SSUD-ISW detector can locate the anomalies completely, with an acceptable
false alarm. In contrast, almost all comparative detectors cannot comprehensively locate
the anomalies, except for the RGAE detector. To qualitatively evaluate the detection
effect of the proposed SSUD-ISW detector, four ROC curves are given, as illustrated in
Figure 10. In these ROC curves, the proposed SSUD-ISW detector performs well relative
to the comparative detectors. Correspondingly, the AUC values corresponding to various
detectors are listed in Table 2. As obviously seen, the proposed SSUD-ISW detector obtains
the optimal AUCdf value (i.e., 0.9988) compared with that of the comparative detectors.
Moreover, the proposed SSUD-ISW detector shows a competitive performance in terms
of the AUCdτ , AUCtd, AUCbs, AUCtdbs and AUCodp values compared against the most
comparative detectors. Although the AUCfτ and AUCsnpr values are not ideal for the
proposed SSUD-ISW detector, they are still acceptable relative to the most comparative
detectors. For the comparative detectors, the CRDBPSW and RGAE detectors perform well
according to several AUC values, while the remaining AUC values are pretty terrible. As a
whole, the proposed SSUD-ISW detector has a promising performance with compared to
the other detectors.
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Figure 10. ROC curves belonging to various detectors over the Salinas dataset. (a–d) The ROC curves
introduced in Section 5.1.2.

Table 2. Eight AUC values of various detectors on the Salinas dataset.

AUCdf AUCdτ AUCfτ AUCtd AUCbs AUCsnpr AUCtdbs AUCodp

RX 0.8073 0.2143 0.0314 1.0216 0.7759 6.8318 0.1829 0.9903
CRD 0.9635 0.3012 0.0069 1.2647 0.9566 43.4025 0.2942 1.2577

CRDBPSW 0.9932 0.3118 0.0008 1.3050 0.9925 408.3316 0.3110 1.3042
LSMAD 0.9375 0.3301 0.0123 1.2675 0.9251 26.7865 0.3178 1.2552

LSDM-MoG 0.9938 0.5274 0.0168 1.5212 0.9771 31.4562 0.5106 1.5044
RGAE 0.9862 0.6949 0.0447 1.6811 0.9416 15.5514 0.6502 1.6364
GAED 0.9528 0.2318 0.0023 1.1846 0.9505 100.1417 0.2295 1.1823
NJCR 0.9892 0.5382 0.0347 1.5275 0.9546 15.5241 0.5036 1.4928

SSUD-ISW 0.9988 0.5796 0.0089 1.5784 0.9899 65.2213 0.5707 1.5695

(2) Texas Coast Dataset

The detection maps belonging to various detectors over the Texas Coast dataset are
visualized in Figure 11. Clearly, the location effect of the proposed SSUD-ISW detector is
excellent relative to that of the comparative detectors. Figure 12 shows four ROC curves
corresponding to various detectors on the Texas Coast dataset. In terms of these ROC
curves, the proposed SSUD-ISW detector has an excellent performance when compared
against the comparative detectors, especially for the 2-D ROC curve of (Pd, Pf). The AUC
values regarding various detectors on the Texas Coast dataset are listed in Table 3. As
evidently seen, the proposed SSUD-ISW detector obtains the optimal values for the AUCdf,
AUCdτ , AUCtd, AUCsnpr, AUCtdbs and AUCodp, whose values are 0.9986, 0.6233, 1.6219,
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32.9678, 0.6044 and 1.6030, respectively. In addition, the AUCfτ and AUCbs of the proposed
SSUD-ISW detector are slightly lower than the optimal values obtained by the CRDBPSW
detector. In summary, the performance of the proposed SSUD-ISW detector on the Texas
Coast dataset is preeminent compared with the comparative detectors.
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Figure 12. ROC curves belonging to various detectors over the Texas Coast dataset. (a–d) The ROC
curves introduced in Section 5.1.2.

Table 3. Eight AUC values of various detectors on the Texas Coast dataset.

AUCdf AUCdτ AUCfτ AUCtd AUCbs AUCsnpr AUCtdbs AUCodp

RX 0.9907 0.3143 0.0556 1.3049 0.9351 5.6570 0.2587 1.2494
CRD 0.9796 0.3495 0.0480 1.3291 0.9317 7.2853 0.3015 1.2811

CRDBPSW 0.9956 0.2379 0.0090 1.2335 0.9867 26.4610 0.2289 1.2245
LSMAD 0.9928 0.3210 0.0311 1.3138 0.9617 10.3150 0.2899 1.2827

LSDM-MoG 0.9913 0.5335 0.1277 1.5248 0.8636 4.1789 0.4058 1.3971
RGAE 0.9821 0.3757 0.0169 1.3578 0.9653 22.2921 0.3588 1.3410
GAED 0.9567 0.3700 0.0546 1.3267 0.9020 6.7725 0.3154 1.2720
NJCR 0.9884 0.5965 0.0606 1.5849 0.9278 9.8510 0.5360 1.5243

SSUD-ISW 0.9986 0.6233 0.0189 1.6219 0.9797 32.9678 0.6044 1.6030

(3) Gainesville Dataset

Figure 13 visualizes the detection maps belonging to various detectors over the
Gainesville dataset. Compared with the comparative detectors, the proposed SSUD-ISW
detector fully identifies the anomalies, having a slight false alarm. Four ROC curves
corresponding to various detectors over the Gainesville dataset are plotted in Figure 14.
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Obviously, the overall performance of the proposed SSUD-ISW detector is superior to that
of the comparative detectors to a large extent. Table 4 lists eight AUC values of various
detectors on the Gainesville dataset. In these AUC values, the proposed SSUD-ISW detector
achieves the optimal values for seven of them, except for AUCfτ , and these AUC values
obviously outperform the second-best AUC values (i.e., 0.9939 vs. 0.9833 for AUCdf, 0.3866
vs. 0.3190 for AUCdτ , 1.3805 vs. 1.2770 for AUCtd, 0.9765 vs. 0.9604 for AUCbs, 22.2538 vs.
12.0465 for AUCsnpr, 0.3692 vs. 0.2531 for AUCtdbs and 1.3631 vs. 1.2365 for AUCodp). Addi-
tionally, the proposed SSUD-ISW detector ranks second among all detectors with respect
to the AUCfτ value. To sum up, the performance of the proposed SSUD-ISW detector is
outstanding relative to the comparative detectors over the Gainesville dataset.
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Figure 14. ROC curves belonging to various detectors over the Gainesville dataset. (a–d) The ROC
curves introduced in Section 5.1.2.

Table 4. Eight AUC values of various detectors on the Gainesville dataset.

AUCdf AUCdτ AUCfτ AUCtd AUCbs AUCsnpr AUCtdbs AUCodp

RX 0.9597 0.1665 0.0229 1.1262 0.9367 7.2663 0.1436 1.1033
CRD 0.9697 0.1940 0.0287 1.1636 0.9410 6.7610 0.1653 1.1349

CRDBPSW 0.9522 0.1041 0.0149 1.0563 0.9374 7.0052 0.0892 1.0414
LSMAD 0.9645 0.1312 0.0258 1.0957 0.9386 5.0812 0.1054 1.0699

LSDM-MoG 0.9438 0.1742 0.0619 1.1180 0.8819 2.8132 0.1123 1.0561
RGAE 0.8177 0.1010 0.0382 0.9187 0.7795 2.6441 0.0628 0.8805
GAED 0.9833 0.2760 0.0229 1.2594 0.9604 12.0465 0.2531 1.2365
NJCR 0.9580 0.3190 0.0722 1.2770 0.8858 4.4189 0.2468 1.2048

SSUD-ISW 0.9939 0.3866 0.0174 1.3805 0.9765 22.2538 0.3692 1.3631
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(4) San Diego Dataset

The detection maps belonging to various detectors over the San Diego dataset are
illustrated in Figure 15. Clearly, we can find that three airplanes are well identified by the
proposed SSUD-ISW detector, with a considerable background suppression effect. With
respect to the comparative detectors, the background suppression effect is unsatisfactory,
especially for the LSDM-MoG detector. Figure 16 displays the ROC curves corresponding
to various detectors over the San Diego dataset. For these ROC curves, it is easily seen
that the performance of the proposed SSUD-ISW detector is in the lead. Accordingly,
the AUC values corresponding to various detectors are listed in Table 5. In these AUC
values, the optimal values, which are 0.9945, 0.0053, 0.9892 and 49.9891, are obtained by
the proposed SSUD-ISW detector for the AUCdf, AUCfτ , AUCbs and AUCsnpr, respectively.
Additionally, the proposed SSUD-ISW detector achieves the second-best values for the
remaining AUC: 0.2637, 1.2582, 0.2584 and 1.2529 for the AUCdτ , AUCtd, AUCtdbs and
AUCodp, respectively. Notably, the NJCR detector performs pretty well for the AUCdτ ,
AUCtd, AUCtdbs and AUCodp; however, the other AUC values are remarkably terrible rela-
tive to those of the proposed SSUD-ISW detector. In a word, the competitive performance
on the San Diego dataset is achieved through the proposed SSUD-ISW detector relative to
the comparative detectors.
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Figure 16. ROC curves belonging to various detectors over the San Diego dataset. (a–d) The ROC
curves introduced in Section 5.1.2.
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Table 5. Eight AUC values of various detectors on the San Diego dataset.

AUCdf AUCdτ AUCfτ AUCtd AUCbs AUCsnpr AUCtdbs AUCodp

RX 0.9403 0.1778 0.0589 1.1181 0.8814 3.0176 0.1189 1.0592
CRD 0.9412 0.0911 0.0214 1.0323 0.9199 4.2658 0.0698 1.0110

CRDBPSW 0.9862 0.2285 0.0191 1.2147 0.9672 11.9951 0.2095 1.1957
LSMAD 0.9701 0.1608 0.0275 1.1309 0.9426 5.8479 0.1333 1.1034

LSDM-MoG 0.9339 0.2381 0.1365 1.1720 0.7974 1.7441 0.1016 1.0355
RGAE 0.9919 0.1807 0.0075 1.1727 0.9845 24.2040 0.1733 1.1652
GAED 0.9907 0.2337 0.0079 1.2244 0.9828 29.5755 0.2258 1.2165
NJCR 0.9736 0.3807 0.0692 1.3542 0.9044 5.5001 0.3114 1.2850

SSUD-ISW 0.9945 0.2637 0.0053 1.2582 0.9892 49.9891 0.2584 1.2529

(5) SpecTIR Dataset

Figure 17 shows the detection maps belonging to various detectors on the SpecTIR
dataset. Clearly, the proposed SSUD-ISW detector enables us to locate the anomalies well
and keeps the number of false alarms pretty low relative to the comparative detectors.
The ROC curves corresponding to various detectors on the SpecTIR dataset are plotted in
Figure 18. Evidently, the ROC curves corresponding to the proposed SSUD-ISW detector
show a satisfactory performance when compared against the comparative detectors. Cor-
respondingly, Table 6 lists the AUC values of various detectors over the SpecTIR dataset.
For these AUC values, the proposed SSUD-ISW detector obtains the best values for AUCdf,
AUCdτ , AUCtd, AUCsnpr, AUCtdbs and AUCodp, which are 0.9997, 0.4797, 1.4795, 110.9198,
0.4754 and 1.4752, respectively. Moreover, these AUC values obtained by the proposed
SSUD-ISW detector are evidently higher than those of the second-best AUC values among
all comparative detectors, whose AUC values are separately 0.9991, 0.4003, 1.3993, 91.6075,
0.3666 and 1.3657. The proposed SSUD-ISW detector also achieves the second-rank per-
formance among all detectors in terms of the AUCfτ and AUCbs, which are 0.0043 and
0.9954, respectively. As a whole, for the SpecTIR dataset, the proposed SSUD-ISW detector
achieves a competent detection effect with respect to the comparative detectors.

In addition, the separability map regarding the background and anomaly are exhibited
in Figure 19. As shown in Figure 19, the proposed SSUD-ISW detector can well separate
the background and anomaly compared with the comparative detectors over all datasets.
Although the separability effect on all datasets is also nice for the NJCR detector, the
separability degree of the NJCR detector is obviously lower than that of the proposed
SSUD-ISW detector. Even worse, most detectors fail to effectively separate the background
and anomaly. In summary, among these detectors, the proposed SSUD-ISW detector
achieves the best separability effect.
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Table 6. Eight AUC values of various detectors on the SpecTIR dataset.

AUCdf AUCdτ AUCfτ AUCtd AUCbs AUCsnpr AUCtdbs AUCodp

RX 0.9914 0.3683 0.0249 1.3597 0.9665 14.8183 0.3434 1.3348
CRD 0.9920 0.1743 0.0159 1.1662 0.9761 10.9570 0.1584 1.1503

CRDBPSW 0.9991 0.2745 0.0030 1.2736 0.9961 91.6075 0.2715 1.2706
LSMAD 0.9984 0.3042 0.0085 1.3026 0.9899 35.6655 0.2957 1.2941

LSDM-MoG 0.9991 0.4003 0.0337 1.3993 0.9654 11.8848 0.3666 1.3657
RGAE 0.8777 0.0889 0.0176 0.9666 0.8600 5.0408 0.0713 0.9490
GAED 0.9703 0.0690 0.0084 1.0393 0.9619 8.2345 0.0606 1.0310
NJCR 0.9965 0.2675 0.0187 1.2640 0.9778 14.3415 0.2488 1.2453

SSUD-ISW 0.9997 0.4797 0.0043 1.4795 0.9954 110.9198 0.4754 1.4752
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Figure 19. Separability maps regarding the background and anomaly of various detectors over all
datasets. The characters (i.e., “a”~“i”) on the horizontal axis are RX, CRD, CRDBPSW, LSMAD,
LSDM-MoG, RGAE, GAED, NJCR and the proposed SSUD-ISW detector, respectively.

Table 7, additionally, lists the average running time of the aforementioned detectors.
Clearly, the computation consumption of the RX detector is the minimum among these
detectors. Although the detection time of the proposed SSUD-ISW detector exceeds that
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of the comparative detectors, the detection effect is pretty excellent compared to the com-
parative detectors. To sum up, the overall performance is acceptable for the proposed
SSUD-ISW detector.

Table 7. Average detection time (in seconds) of various detectors over all datasets.

RX CRD CRDBPSW LSMAD LSDM-MoG RGAE GAED NJCR SSUD-ISW

Salinas 0.55 8.08 8.46 17.65 34.33 0.31 1.06 26.37 56.78
Texas Coast 0.36 7.24 12.60 12.76 11.84 0.25 0.76 35.35 49.79
Gainesville 0.23 4.15 12.93 11.83 18.98 0.27 0.63 26.06 53.09
San Diego 0.33 10.15 70.63 11.61 9.21 0.24 0.49 21.55 38.83
SpecTIR 0.35 12.33 63.43 28.77 89.44 0.95 0.75 20.55 122.44
Average 0.36 8.39 33.61 16.52 32.76 0.40 0.74 25.98 64.19

6. Discussion

To better analyze the performance regarding the proposed SSUD-ISW detector and
comparative detectors, a more in-depth analysis is given as follows.

As stated in Section 5.5, selecting reasonable parameters analyzed in Section 5.3
enabled us to achieve the desired detection performance for the proposed SSUD-ISW
detector. In terms of the proposed SSUD-ISW detector, the key to obtain an excellent
performance is to construct a representative and pure background set and anomaly set,
considering the fact that both the background set and anomaly set provide the pixels for the
following union dictionary and improved saliency weight. In other words, the background
set should cover all categories of the background and exclude the interference of the
anomalous pixels as much as possible, and the anomaly set needs to cover all categories
of anomalies and reject the contamination of the background pixels. Based on this fact, to
yield an outstanding detection performance, it is necessary to form a representative and
pure background set and anomaly set for the proposed SSUD-ISW detector. In addition, we
also should tune other parameters to a certain degree for the proposed SSUD-ISW detector,
which is analyzed in Section 5.3.

Unlike the proposed SSUD-ISW detector, the comparative detectors could not detect
the anomalies and suppress the background well over all experimental datasets. For the
comparative detectors, we can roughly divide them into three types, i.e., statistical theory-
based detectors (i.e., RX); representation-based detectors (i.e., collaborative representation-
based (i.e., CRD, CRD-BPSW and NJCR), low-rank and sparse representation (i.e., LS-
MAD and LSDM-MoG)); and deep-learning-based detectors (i.e., RGAE and GAED). The
statistical-theory-based detector hypothesizes that the background obeys a multivariate
Gaussian distribution, and thus, it only performs well for the simple scenarios, while its
performance is poor for the complicated scenarios. With regard to the representation-based
detectors, it is vital to construct a representative and pure dictionary, which is similar
to the proposed SSUD-ISW detector, for better detection performance. Moreover, deep-
learning-based detectors aim to well reconstruct the background and poorly reconstruct
the anomalies. Based on this, the key to deep-learning-based detectors is to strengthen the
reconstruction of the background and suppress the anomalies’ reconstruction.

For the proposed SSUD-ISW detector, in addition to the strength that can identify
the anomalies and suppress the background well to a large extent over the most datasets
relative to the comparative detectors, the weakness of the proposed SSUD-ISW detector is
that it is time-consuming, so it cannot directly be used in the real scenarios. In this research,
the main calculation burden is the pixel-by-pixel processing. Therefore, in the future work,
it may be a plausible choice to process the hyperspectral image at once, so as to reduce the
complexity of the proposed SSUD-ISW detector. If possible, we also hope to deploy the
simplified model into a mobile device. In addition, it is worth noting that the proposed
SSUD-ISW detector enables us to simultaneously use the spatial and spectral information
to improve the effect of the union dictionary, which provides a new way for the following
dictionary construction in the field of hyperspectral anomaly detection.
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7. Conclusions

In this article, a HAD method using a spatial–spectral-based union dictionary and
improved saliency weight is proposed. Different from the existing union dictionary con-
struction strategies customized for CR that only use the spatial or spectral information,
we propose a spatial–spectral-based union dictionary construction strategy, which simul-
taneously considers the valuable spatial and spectral information to construct a robust
union dictionary, so as to improve the representation effect of CR. In addition, inspired by
humans’ visual attention, an improved saliency weight was proposed to further enhance
the performance of the detector. To verify the effectiveness and superiority of the proposed
SSUD-ISW detector, the experiments were conducted on five datasets with different spec-
tral characteristics. The effectiveness of the spatial–spectral-based union dictionary and
improved saliency weight was validated by a component analysis, using the AUCdf values
over all datasets. Similarly, the superiority of the proposed SSUD-ISW detector was also
proved by comparing it with the classical and state-of-the-art detectors, using eight metrics
(i.e., AUCdf, AUCdτ , AUCfτ , AUCtd, AUCbs, AUCsnpr, AUCtdbs and AUCodp) on all datasets.
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