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Abstract: The efficacy of underwater laser detection is considerably impacted by the intense attenua-
tion of light resulting from the scattering and absorption effects of water. In this study, we present
the simulation and design of the underwater Lidar system that integrates the paraxial multi-channel
detection strategy to enhance the dynamic range in subsea environments. To evaluate the perfor-
mance of the system with multiple detection channels, we introduce a multi-channel underwater
Lidar simulation (MULS) method based on the radiative transfer Lidar equations. Experimental
validations were conducted under varied water conditions to assess the performance of the prototype
and validate the simulation results. The measured range accuracy of each channel in the prototype
is better than 0.1085 m, and the simulated and measured waveforms exhibit strong correlations,
verifying the reliability and validity of the simulation method. The effects of transceiver configuration
and the maximum detectable range of different detection methods were also discussed. Preliminary
results indicate that the paraxial multi-channel design effectively suppresses near-field backscat-
tering and substantially enhances the maximum detectable range. The findings presented in this
study may provide valuable insights for the design and optimization of future underwater laser
detection systems.

Keywords: underwater; simulation; non-coaxial; multi-channel; Lidar

1. Introduction

In recent years, there has been growing recognition of the scientific significance,
economic benefits, and strategic importance of ocean surveys, which has contributed to
the accelerated development of technologies, such as underwater sensor networks [1] and
underwater vehicles [2]. Therefore, there is an increasing demand for advanced underwater
detection technology to support marine survey activities. Light Detection and Ranging
(Lidar), as a widely used active remote sensing technique, has been extensively used in
various fields, including topographic mapping [3], bathymetry [4], atmospheric remote
sensing [5], forest management [6], and underwater target detection [7].

Initially, laser-based underwater target detection focused on mapping seabed depth
and topography using airborne Lidar systems [8,9]. With the maturity of high-power
miniaturized pulsed lasers and the growing development of high-sensitivity detectors,
underwater Lidar has gradually become a powerful tool for subsea exploration. Currently,
a few high-quality systems have found applications in offshore ocean exploration [10],
marine habitat surveys [11], underwater mine detection [12], and seabed cable surveys [13].
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However, underwater laser detection faces challenges due to the strong attenuation
of light caused by the scattering and absorption effects of water. These limitations affect
the performance of underwater Lidar systems, restricting their maximal detectable range
and accuracy. Consequently, scientists have investigated various techniques to improve the
performance of underwater detection, such as selecting an optimal laser source [14], photon
counting [15], polarization detection [2], and range-gating [16], etc. Among these technolo-
gies, the range-gated approach has become a primary means of achieving long-range target
detection in the underwater environment, which filtered out near-field backscattering by
adjusting the delay between the detector’s gate open time and the emitted laser pulse.
Unfortunately, this method requires prior knowledge of the target distance and has a blind
zone, resulting in the limited detection dynamic range, which may not match the wide
effective dynamic range requirement of underwater detection [17].

The intricacy and large dynamic range of target echoes, due to rapid attenuation of
light in water, poses challenges for Lidar receivers. For example, a 105 dynamic range
requires a high-speed digitizer with 16.6 bits, which is prohibitively expensive and unfeasi-
ble for the manufacture of Lidar. Research groups have developed signal dynamic-range
compression techniques [18,19] that allow Lidar systems to achieve sufficient penetration
depth with the use of low-cost digitizers featuring lower bits. Mitsubishi Electric Corpora-
tion [20], for instance, has devised a sensitivity time control (STC) circuit to minimize the
undesirable backscattering signals. However, this method requires intricate design of gain
curves dependent on the turbidity of measurement environment and might be sensitive to
noise, resulting to variations in measured data. Other techniques [21,22], such as logarith-
mic amplification are unable to meet the high-frequency requirement for most profiling
applications [17]. To overcome these issues, we propose a novel paraxial multi-channel
underwater detection strategy that incorporates optical energy splitting, gated techniques,
and high-low-gain settings. This approach can successfully broaden the dynamic range
and suppress backscattering, without requiring sophisticated hardware circuit designs.

In the early design stage of Lidar systems, simulation approaches offer an effective way
to interpret laser–medium interactions in Lidar signals and evaluate system performance
without physically assembling the unit, which can save precious resources and time [23]. A
wide range of Lidar simulators [24–31] have been developed based on the radiative transfer
equation and the statistical Monte Carlo (MC) model, enabling comprehensive analysis
and optimization of Lidar systems.

In 2012, Abdallah [24] et al. established the Wa-LiD simulator based on the underwater
radiative transfer Lidar equation. This simulator considers the entire process of laser bathy-
metric transmission, integrates noise due to solar background and detector, and is suitable
for simulating airborne or satellite Lidar waveforms [32]. In 2016, Kim and Kopilevich [26]
developed a Lidar waveform simulator based on the small angle approximation (SAA)
of radiation transfer equation (RTE) and reciprocity theorem, which predicts the general
performance of bathymetric Lidar. In 2020, a spaceborne oceanic Lidar simulator based
on the semi-analytic MC approach was built to analyze the detection performance [28].
More recently, an open-source SOLS simulator [29], which considers the Lidar system and
environmental parameters, was developed to explore the detection potential capability
of spaceborne oceanic Lidar [33]. Although various simulators have been developed for
airborne or spaceborne oceanic Lidar, they are not designed for underwater applications
and do not consider the transceiver geometry and detection channel configuration of Lidar
systems in specific conditions.

In this study, we described both a method for simulating underwater Lidar measure-
ments using a non-coaxial multi-channel sensor and the design of a prototype instrument.
The proposed multi-channel underwater Lidar simulation (MULS) method is built upon
equations derived from traditional hydrographic Lidar. It takes into account the Lidar over-
lap factor, the multi-channel detection settings, and the noise due to the data acquisition
procedure. By incorporating these considerations, the MULS method enables the simultane-
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ous waveform simulation of multiple channels, providing a comprehensive understanding
of the system’s performance.

To validate the effectiveness of the proposed paraxial multi-channel detection strategy
in suppressing near-field backscattering and enhancing the maximum detectable range of
the Lidar system, we have designed an underwater Lidar prototype utilizing non-coaxial
optics and multiple detection channels. This prototype incorporates separate receivers
for the near-field (two channels) and the far-field, with only the latter being range-gated.
Experimental validations were conducted under diverse water conditions to evaluate
the performance of the prototype and validate the simulation results. The results of the
experiment and simulation in different scenarios are well-matched, which proves the
effectiveness and necessity of the optimization.

The rest of the paper is organized as follows: In Section 2, we present the fundamen-
tal basis of underwater Lidar detection, the simulation model, and the flowchart of the
MULS method. Section 3 provides a brief description of the designed underwater Lidar
system. The range performance of the system and the comparison between simulation
and experimental data are shown in Section 4. In Section 5, we further explore the impacts
of transceiver configuration on the signal strength and estimate the maximum detectable
range under various seawater conditions. A conclusion of this work along with an outlook
of future application are outlined in the last section.

2. Principle and Methods
2.1. Principle of the Underwater Lidar

The basic principle underlying underwater Lidar detection is represented in Figure 1.
Laser pulses are transported via the optical window, the water column, and towards
an underwater target. Then, the back-reflected energy is captured by the receiver and
transformed to the electrical signal. The echo signal of the underwater Lidar includes the
signal reflected by the optical window, backscattered signal from the water column, target-
reflected signal and background light noise. Thus, the echo signal intensity function can be
mathematically defined as the sum of the echo intensity backscattered from the consecutive
media encountered by the emitted laser beam, and background light source [24].

PT(t) = PS ∗ w(ts) + PC ∗ w(tc) + PU ∗ w(tu) + Pbg (1)

where PT (t) is the total power, t is the time scale; PS, PC, PU, and Pbg are the received power
from optical window, water column, underwater target and background light, respectively;
and w(tx) is the heavy-tailed distribution [34] of the emitted laser pulse, as follows:

w(tx) =

[
k(t − tx)

∆t

]n
exp

[
−k(t − tx)

∆t

]
(2)

where tx is the two-way time delay of the emitted laser pulse between the laser and the
optical window ts, water column tc or underwater target tu; ∆t is the laser pulse width; k is
a constant related to ∆t; and n indicates the laser pulse’s temporal shape [35], usually n = 1.

The presence of strong internally reflected light occurs when the laser beam passes
through the optical window into the water. The power PS returned from the optical window
can be described by the laser-radar equation [24], which is traditionally applicable mainly
in the far-field region. However, in our specific non-coaxial design, we inherently consider
the near-field conditions to a certain extent. This is indicated by Lidar overlap factor O,
which is determined by the Lidar geometric configuration and approaches zero in the
near-field region. The equation representing the power PS is as follows [36]:

PS = Pt · Ar · O · ηtηoTs

D2 (3)

where Pt = Et/∆t is the peak power of the laser pulse, Et is the emitted single pulse laser
energy, Ts is the Fresnel reflectance at the optical window, and ηt and ηo are the optical
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efficiency of the transmitter and receiver system. For the calculation of power from the
optical window in our study, the overlap factor equal to zero due to very close distance to
the optical window, Ar is the receiver area, and D is the distance between the receiver and
optical window.
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The signal returned from the water column [29,37] is described as follows:

Pc(z) = Pt · Ar · O(z) · βπ
ηtηo(1 − Ts)

2

z2 · exp(−2klidar · z) (4)

where z is the depth of water column, and βπ is the volume scattering coefficient at a
scattering angle of π radians, which can be expressed as:

βπ = b · β̃HG(g,π)

2π
∫ π

π/2 β̃(g, θ) sin(θ)dθ
(5)

where b is the total scattering coefficient, θ is the scattering angle, β̃HG represents the Henyey–
Greenstein scattering phase function [38], and g = 0.924 is the asymmetry parameter.

The parameter kLidar is the Lidar attenuation coefficient that is given by [39]:

klidar = c[0.19(1 − w0)]
w0
2 (6)

where c is the attenuation coefficient that can be expressed as the sum of the scattering
coefficient b, and absorption coefficient a, c = a + b, w0 = b/c is the single scattering albedo.

The received power from the underwater target [20,40] is written by:

PU = Pt · Ar · O(Z) · ρb
π

ηtηo(1 − Ts)
2

Z2 · exp(−2klidar · Z) (7)

where Z is the distance of measured target, and ρb is the reflectance of the target.
In the underwater environment, ambient light sources comprise solar radiation and

artificial light. Solar light undergoes cumulative diffusion and exponential attenuation
as it permeates seawater. However, in deep water environments where sunlight cannot
penetrate, the solar radiation level becomes insignificant. In this case, artificial light sources
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become the main source of background light. The expression of the received background
light power is given by:

Pbg = PbgTar + PbgSca (8)

PbgTar = Lb · Ar · ηo · ρb ·
θr

2

4
· ∆λ · exp(−2klidar · Z) (9)

PbgSca = Lb · Ar · ηo · βπ · πθr
2

4
· ∆λ · exp(−2klidar · Z) (10)

where PbgTar is the background power that is reflected from the target; PbgSca is the back-
ground power scattered off of particles; θr is the field of view of the receiver; ∆λ is the
bandwidth of the optical filter; and Lb is the spectral radiance of background light, which is
generate by modeling the artificial light source.

2.2. Simulation Model

The proposed MULS method is based on equations from traditional hydrographic
Lidar models and takes into account both the Lidar geometrical representation of the
transceiver configuration and the multi-channel photovoltaic detection process. This
approach also considers the superposed noise of detector noise and quantization noise
during the data acquisition procedure. Figure 2 depicts the flow chart of the MULS
method. The simulation begins with the initialization of simulation parameters, such as
Lidar geometry parameters, system parameters, environmental parameters, and detection
parameters. Then, the optical signal level (PS, PC, PU, and Pbg) and total optical signal
PT are calculated based on Equations (1)–(10). Next, the total optical signal is divided
into a far-field signal and near-field signal by the beam splitter with a particular ratio and
converted into electrical signals. Multiple channels with different gains can be obtained by
splitting the output electrical signal from the detector. Lastly, the simulated multi-channel
output waveforms corresponding to intensity as a function of time t are generated. The
details of the simulation model are described in the following sections.
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2.2.1. Lidar Geometric Model

The geometric configuration of a Lidar transceiver has a significant impact on the echo
signal intensity, which can be quantified by the overlap factor in the laser-radar equation.
In this study, we adapt a non-coaxial structure with independent transmitting and receiving
optical paths. Additionally, the emitting laser beam is always parallel to the optical path of
the receiver.

Figure 1 depicts the typical structure of a non-coaxial underwater Lidar system. The
geometric offset between the laser and the receiver is d, dt is the spot diameter of laser
beam, θt is the divergence angle, the diameter of the receiver is dr, and the field of view is
θr. Assuming that the detection and laser-illuminated regions are circular, the radius of the
illuminated area is denoted as r1, and the radius of the detection area is r2. As the target
distance Z increases, the laser-illuminated region and detection area begin to overlap, and
the overlap area is designated as the effective detection area. The Lidar overlap factor O(Z),
which is a function of the distance Z, can be written as the effective detection area divided
by the laser-illuminated area At, and is given by:

O(Z) =


0 Z ≤ Z1

(ω1− sinω1)r2
1+(ω2− sinω2)r2

2
2πr2

1
Z1 < Z < Z2

1 Z ≥ Z2

(11)

where ω1 and ω2 is the overlapping sector angle corresponding to the laser-illuminated area
and detection area, and can be calculated by the law of cosines. If the distance Z is lower
than Z1, the Lidar has a detection blind area, and the overlap factor O(Z) is equal to zero.
Conversely, when the distance Z is higher than Z2, the laser-illuminated area and detection
area of the system start to coincide with an overlap factor close to one. Additionally, for
Lidar systems with a coaxial structure, the overlap factor is usually equal to one.

2.2.2. Multiple Channels Detection Model

The received optical signal is converted into electrical signal by the detector and then
transformed into a digitized value by the analog-to-digital converter (ADC). Due to the
wide dynamic range of the echo signal in the underwater environment, a multi-channel
signal detection strategy is adopted. The optical signal is separated into a near-field signal
and a far-field signal by a beam splitter. The near-field channel is further split into a
high-gain channel and a low-gain channel by dividing the electrical signal output from the
detector in a specified proportion. Based on the multiple channels detection characteristics
of the system, a detection model is established.

The output voltage signal of the detectors is given by:

Vi(t) = ξi · ξv · Sk · M · PT(t) · RL (12)

where ξi is the beam splitting ratio of the detection channel, ξv is the output voltage ratio,
Sk is the detector sensitivity, M is gain of the detector, PT is the optical signal power, and RL
is the feedback resistor (50 Ω).

The voltage signal Vi is sampled and converted to digitized value by the data acquisi-
tion unit. For our multi-channel underwater Lidar system, the relationship between the
voltage signal Vi and the digitized Lidar sampled signal Ui can be expressed as [41]:

Ui(t) =
Vi(t)

Vd
· 2Bit + Nn(t) (13)

where Vd is the reference voltage level, Bit is the resolution of the ADC, and Nn~N (µ,σn
2)

is detection noise which can be approximated by the Gaussian distribution [42]. The mean
value µ and the variance σn of the noise are measured by experiments.
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3. Description of Underwater Lidar System

Figure 3 depicts the schematic diagram of the multi-channel underwater Lidar (MUL)
system. The system comprises a laser transmitter subsystem, a signal receiver subsystem, a
scanner, a system controller, and a data acquisition unit. The primary parameters of the
MUL system are listed in Table 1. The transmitter is a 532 nm pulsed laser with a repetition
rate of 5 kHz, with a single pulse energy of over 500 µJ, and a pulse width of approximately
10 ns. Three 45-degree reflecting mirrors (RM1, RM2, and RM3) reflect the majority of the
emitted laser pulse energy, which is then used to illuminate the underwater target, while a
PIN photodiode detects the remaining laser pulse energy as the reference signal (CH0).
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Figure 3. Schematic diagram of the underwater Lidar system. RM1, RM2, RM3, RM4, reflecting
mirror1, 2, 3, 4; FL1, FL2, FL3, focusing lens1, 2, 3; FD, field diaphragm; CL, collimating lens; BF
band-pass filter; BS, beam splitter; PIN, photon diode; PMT1, PMT2, photomultiplier tube1, 2; CH0,
CH1, CH2, CH3, CH4, channel 0, 1, 2, 3.

The system employs a non-coaxial transceiver design, hence the transmitter and re-
ceiver channels do not share the same optical path. This configuration effectively decreases
the effects of internally reflected light from the emitting optical components and suppress
the backscattering of the near-field water column. The scanner drives the transmitter
mirror (RM3) and the reception mirror (RM4) to revolve on a common shaft, synchronously
scanning a collimated laser beam and a limited field of view (FOV). By minimizing the
shared volume between the transmitter and receiver, both forward scatter and backscatter
effects are minimized utilizing synchronous scanning techniques.
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Table 1. Primary parameters of the MUL system.

Transmitter

Wavelength λ

Pulse energy Et
Pulse width ∆t

Laser repetition rate
Beam divergence θt
Beam diameter dt

532 nm
500 µJ
10 ns
5 kHz

2 mrad
10 mm

Receiver

Receiver area Ar
Geometric offset d

Field of view θr
Filter bandwidth ∆λ
Optical efficiency ηo
Beam splitter ratio ξi
Output signal ratio ξv

4.4 × 10−3 m2

130 mm
50 mrad

1 nm @532 nm
60%
2:98
1:9

Detector

PMT1/PMT2
Detector sensitivity Sk1/Sk2
Max. average anode current

Effective area

Non-gated/Gated mode
77/77 mA/W
100/100 µA
∅8/∅8 mm

Analog Digital Converter

Bandwidth
Sampling rate
Resolution Bit

Channels

200 MHz
1 GS/s
10 bits

4

Others
Dimensions

Weight
Supply voltage

∅260 mm × 650 mm
30 kg
380 V

The receiver subsystem of this system comprises three focusing lenses (FL1, FL2, and
FL3), a collimating lens (CL), a field diaphragm (FD), a band-pass filter (BF), a beam splitter
(BS), and two photomultiplier tubes (PMT1 and PMT2). The back-scattered light from the
target and water column is focused by a primary lens (FL1) with a diameter of 75 mm and
then collimated by lens CL. A field diaphragm at the focus of lens FL1 limits the system’s
field of view (FOV) to 50 milliradians. The narrow FOV, combined with the use of a narrow
bandwidth filter, decreases the amount of background light collected by the receiver. The
collimated light travels through a 1 nm band-pass filter (BF) and then a 2:98 ratio beam
splitter (BS) divides the filtered light into two portions. The lower-energy portion of the
laser beam is focused by lens FL2 and detected by the non-gated mode photomultiplier tube
PMT1 (Hamamatsu H10720-01), with a radiant sensitivity of 77 mA/W and an effective
area diameter of ∅8 mm. The output signal of PMT1 is further separated into the high-gain
channel (CH1) and low-gain channel (CH2) with an output signal ratio of 9:1. The higher-
energy portion of the laser beam is focused by lens FL3 and detected by a PMT detector
PMT2 (Hamamatsu H11526-01), which has the same parameters as PMT1, except for the
gated operation. This detector employed a gate circuit that activated the detection of the
incident optical signal only when the gate signal was on. This mechanism allowed us to
selectively capture the desired portion of the waveform by controlling the gate-open timing.
This channel (CH3) is typically used for far-field signal detection utilizing the range-gated
approach, which can suppress the near-field backscattering signals and only detects the
target reflected signal. Then the output voltage signals of the detectors are captured by the
data acquisition unit. This unit features four-channel analog-to-digital converters with an
effective dynamic range of 10 bits and a sampling rate of 1 GS/s.

The system controller triggers the 532 nm laser to emit laser pulses at a frequency of
5 kHz. A gating signal with the same repetition rate is then applied to activate the PMT2,
enabling it to detect the incident light. Users can alter the gate width and delay time of
the gating signal by sending commands to the system controller. The system controller
also implements the synchronized acquisition of experiment data from all four channels.
Figure 4 presents the prototype of the MUL system and the corresponding timing sequence
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diagram. The LiDAR system has a waterproof housing made of aluminum alloy, providing
high-pressure resistance for underwater operation at depths of up to 100 m. The overall
size of the prototype is 260 mm in diameter and 650 mm in length, with a weight of roughly
30 kg.
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Figure 4. (a) Photograph of the prototype; (b) timing sequence diagram of the multi-channel system.

4. Simulation and Experimental Results
4.1. Detection Noise Analysis

The detection noise in the Lidar system is the combination noise of detector noise,
amplifying circuit noise, and quantization noise. Figure 5a–c illustrate the superposed
detection noise measured by the three detection channels (CH1, CH2, and CH3) in dark
surroundings. The distribution of the noise measured by each channel is presented in
Figure 5d–f, as well as the observed noise obeys the Gaussian distribution. It should be
noted that each channel exhibits a distinct noise bias, which does not influence the overall
noise distribution and can be corrected during the data processing procedure.
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However, measuring the Poisson distributed shot noise is challenging due to its asso-
ciation with optical signals. According to the central limit theorem, the Poisson distribution
can be approximated as a Gaussian distribution, when the number of incident photons
within the signal is large [43]. Therefore, a Gaussian distribution model is employed to
represent the shot noise [5]. The variance of shot noise, as described by Ehret et al. [44], is
used to generate the simulated noise signals.

4.2. Anechoic Pond Verification Experiment

To assess the range accuracy of the system and to verify the reliability of the proposed
simulation method, underwater detection experiments were undertaken on 1 December
2022. The experimental site was an anechoic pond at the Shanghai Acoustics Laboratory,
Academia Sinica (ACS). The in situ water body parameters were collected by the WETLabs
acs instrument, which recorded an attenuation coefficient (c) of 1.44 m−1 and an absorption
coefficient (a) of 0.22 m−1 at 532 nm. The prototype and the target were submerged in the
water and positioned on both sides of the pond. The target was a black-painted rectangular
aluminum plate with a reflectance of 0.1. The distances between the prototype and the panel
were adjusted at 8.5 m, 10.0 m, and 11.5 m accordingly. Figure 6 displays the photographs
of the experimental scenario and the target.
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The measured four-channel Lidar waveforms and peak detection results are displayed
in Figure 7a–c. Channel 0 serves as the reference signal for monitoring the emitted laser
pulses, channel 1 is the near-field high-gain channel, channel 2 is the near-field low-gain
channel, and channel 3 is the far-field gated channel. The time interval value between the
peak of reference channel 0 and the target peaks in channels (1–3) is determined by utilizing
the peak detection methods [45]. The corresponding range value Ri of different detection
channels can be represented as follows according to the TOF principle:

Ri =
cw · ti

2
+ ∆Ri (14)
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where cw is the speed of light in water, ti is the time interval between the peak of reference
channel 0 and the target peaks of the channel (1–3), and ∆Ri is the range offset constant
measured through range calibration.
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During the anechoic pond verification experiment, the Lidar operated in static mode,
conducting one thousand measurements for the target at each position. The multi-channel
measured distance data were analyzed to evaluate the ranging accuracy, taking into consid-
eration both range precision and mean deviation [40]. The results of the range accuracy for
channels 1–3 are presented in Table 2. The accuracy of all the detection channels decreases
as the distance of the targets rises. The decline in accuracy is due to the reduction in the
signal-to-noise ratio of the echo signal as the increase in target distance. Since the signal-to-
noise ratio of channel 1 is larger than that of channel 2, the range accuracy of channel 1 is
always better than that of channel 2. The results of the anechoic pond experiment reveal
that the range accuracy of each detection channel is better than 0.11 m.

Table 2. The ranging accuracy of CH1, CH2, and CH3 in the anechoic pond.

Target Distance
/m

Range Precision/m Mean Deviation/m

CH1 CH2 CH3 CH1 CH2 CH3

8.5 0.0473 0.0664 0.0369 0.0417 0.053 0.0279

10.0 0.0674 0.0879 0.0447 0.0557 0.0736 0.0332

11.5 0.0896 0.1085 0.0733 0.0732 0.0931 0.0577

The proposed MULS approach was validated by comparing the simulated three-
channel waveforms with the experimental results obtained from the anechoic pond. The
simulated waveforms were generated using the systematic parameters specified in Table 1,
the gain parameters (M1 and M2) for PMT1 and PMT2 (2000 and 20,000, respectively) and
water column parameters of the pond. Figure 8a illustrates the simulated waveforms and
the measured Lidar signals from the two near-field channels. The black dotted rectangular
region represents the backscattering signal of the water column, while the red one represents
the echo signal of a target located at a distance of 11.5 m. The strength of both the simulated
and measured water column signal first grows and then decreases considering the influence
of overlap factor and water attenuation. Despite the non-coaxial transceiver design, the
strength of the near-field backscattering signal remains much higher than the target echo,
leading some of the signal reflected from the target to be drowned in the invalid scattering
signal. As shown in Figure 8a, the experimentally measured scattering signal from the
water column exhibits a higher intensity than the simulated waveform in the near-field
region (0–50 ns). This disparity can be attributed to the effects of multiple scattering,
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which are more pronounced in this region. However, in the far-field region (50–350 ns),
the impact of multiple scattering on signal intensity is negligible. Both the simulated
and measured signals are well matched in this region. The comparison result indicates
remarkable consistence between the simulated and measured waveforms, which verifies
the accuracy of the MULS approach.
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The far-field channel employed a PMT detector with gating function to suppress the
water backscattering and enhance the signal-to-noise ratio of target echoes. The gate delay
time and response time of the gating signal were set to 100 ns and 400 ns, respectively,
during the measurements. Figure 8b illustrates the contrast between the calculated wave-
form and the measured signal of the far-field channel. It is observed that the measured
signal displays a higher intensity than the simulated waveform around 100 ns, which
can be attributed to signal jitter caused by factors, such as electronic noise, imperfect sig-
nal amplification, or other system-related aspects within the Lidar setup. Nonetheless,
the simulated waveform generally aligns well with the measured signal, indicating the
effectiveness of the range-gated mechanism in suppressing the volume backscattering
signal peak. Consequently the proposed simulation method can simulate the signal of the
range-gated channel properly.

The coefficient of determination (R2) is used to verify the accuracy of the simulation
method statistically [31]. The comparison of the simulated signal with field test signals
for channel 1, channel 2, and channel 3 resulted in R2 values of 0.9603, 0.9611, and 0.9479,
respectively. The average R2 value for these three channels is 0.9564. These high R2 values
demonstrate the potential of the MULS method in the signal simulation of underwater
Lidar systems that utilize multiple detection channels.

4.3. Swimming Pool Verification Experiment

For validation through clear water environment, the swimming pool verification ex-
periment was conducted on 23 December 2022. The water in the swimming pool had low
levels of scattering particles and the water conditions during the experimental measure-
ments were similar to Case I water [46], with an attenuation coefficient (c) of 0.056 m−1

and an absorption coefficient (a) of 0.05 m−1 at 532 nm. The prototype and the target
were both submerged in the water and positioned on both side of the pool, as shown in
Figure 9. The target was a black-painted rectangular aluminum panel with a reflectivity
of 0.1, and measurements were obtained at nine different distances ranging from 3 m to
19 m at 2 m intervals, with one thousand measurements recorded at each position. To
ensure precise alignment of the laser spot with the target panel, the Lidar was not scanned
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during the measurements. Figure 10 displays the experimental results of targets with nine
various distances.
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As demonstrated in Figure 10a–i, the signal level in the near-field high-gain channel 1
is greater than that in the near-field low-gain channel 2, as a result of the signal splitting
mechanism. In the case of measuring a target at a distance of 3 m, the reflected signal from
the target is strong, resulting in partial saturation in the target echo in high-gain channel 1,
as shown in Figure 10a. Yet, the low-gain channel 2 preserves the complete waveform shape
of the target echo. As the test distance increases, the intensity of the target peak in channel
2 becomes less noticeable, while the target echo peak in channel 1 remains significant.
Therefore, the employment of both high- and low-gain channels can broaden the dynamic
range of near-field detection and also permit more precise distance measurement.

Channel 3 is equipped with a receiver that has a gating function. This allows the
detector to receive just the laser pulses reflected from the target, thereby eliminating the
near-field backscatter that can overpower the sensor. The gating signal must be switched
on to enable signal detection in this channel. Furthermore, by altering the delay time
between the emitted laser pulse and the gate signal, the effective detection zone can be
modified depending on the field test conditions. In this experiment, the gate delay time and
response time of the gating signal were specifically set to 150 ns and 400 ns, respectively.
Consequently, channel 3 only receive signals from the far-field but not from the water
column or the near-field target. For example, the target echo begins to be recognized
when the target is at a distance greater than 17 m, accompanied by the appearance of two
distinctive peaks in the signals of channels 3, as indicated in Figure 10h,i. It is crucial to
note that only the first peak corresponds to the target-returned echo, while the subsequent
peak is a result of multi-path reflections caused by the swimming pool walls.

The measured distance data were obtained by extracting the target peak using the same
methods employed in the anechoic pond verification experiment discussed in Section 4.2.
Figure 11 presents the range precision and mean deviation of detection channels 1–3 at
varying target positions. For each channel, range accuracy decreases as the distance of the
targets increases yet remain better than 0.10 m. Notably, selecting the data of the detection
channel with the highest range accuracy, specifically CH1, can lead to even more precise
range measurement, with a range accuracy better than 0.06 m. Figure 11b reveals deviations
between the measured distances and the actual distances, which are amplified with an
increase in distance due to the pulse width of the laser and potential errors in the data
processing. This bias may be mitigated through the utilization of advanced waveform
processing algorithms and range correction algorithms.
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To validate the reliability of the proposed MULS approach in clear water environ-
ments, the simulated three-channel waveforms were compared with the swimming pool
experimental results. The comparison results are shown in Figure 12. The coefficient of
determination (R2) for channel 1, channel 2, and channel 3 are 0.9663, 0.9620, and 0.9646,
respectively. The average R2 value for these three channels is 0.9643. The simulation
matches well with field-tested data, which confirms the validity of the MULS approach in
diverse type of water.
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5. Discussion

The results of both experiments and simulations demonstrate that integrating a novel
paraxial multi-channel detection strategy into a Lidar prototype can greatly expand its
dynamic range in underwater environments. The simulation findings are in good agree-
ment with the experimental data, therefore proving the efficacy of the MULS method for
simulating underwater Lidar systems under varying turbidity levels. Notably, various
research studies have modeled the performance of oceanic Lidar systems. Among them,
Abdallah [24] et al. developed a Wa-LiD simulator to simulate the Lidar waveforms from
water across visible wavelength. Nevertheless, this model did not explicitly model the
Lidar geometric factor, and the overlap factor was regarded as a fixed value. This premise
was based on the fact that the laser footprint will always be within the FOV of the Lidar
system operated from airborne platforms. In the case of underwater Lidar, where the
laser beam footprint is substantially smaller as a consequence of reduced return range,
it becomes crucial to explicitly characterize the Lidar geometric factor. Additionally, the
detection of channel parameters, such as the resolution of digitizers, beam splitting ratio,
and quantization noise, were not considered in this model. These characteristics were taken
into consideration in our simulation method, which allows for a deeper understanding of
the echo signals in a non-coaxial Lidar system with multiple detection channels.

In this section, we will further discuss the effects of transceiver configuration on
the signal strength and evaluate the maximum detectable range of the near-field channel
and the far-field channel under various water conditions based on the MULS method
considering the designed Lidar prototype parameters. Moreover, the improvement in
detection range gained using the multi-channel detection strategy will be discussed as well.

The overlap factor, as explained in Section 2.2.1, is a crucial factor that determines the
signal strength of returning Lidar echo. To study the influence of transceiver geometric
configuration on return signals under different turbidities, return signals with coaxial and
non-coaxial structure under different turbidities were simulated using the identical system
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parameters from Table 1, as shown in Figure 13. The power of the light scattered back
from suspended particles to the Lidar system is affected by the overlap factor and water
attenuation. In the near field, the geometric overlap factor has a more significant impact on
the backscattering signal intensity, resulting in an increase in the signal. As the distance
increases, the backscattering signal is primarily influenced by the attenuation of water, and
the signal level decays exponentially. Thus, the non-coaxial Lidar signals first increase and
then exponentially decline.
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The results given in Figure 13 demonstrate that higher turbidity implies a higher peak
from volume backscatter and a very low target peak [47] and the non-coaxial structure can
reduce the backscattering signal level by more than two orders of magnitude in comparison
to the coaxial system. However, it should be noted that the non-coaxial Lidar system
introduces a detection blind area due to the spatial separation between the laser beam spot
and the receiving field of the detector in the near field. As a consequence, the non-coaxial
system generally has a larger minimum detection distance compared to the coaxial system.

The dynamic range of the digitizers is a critical parameter in the Lidar receiver sys-
tem [17], as it permits a wide detecting range. In this study, high-speed digitizers with
10 bits were utilized in the Lidar prototype, which enable a dynamic range of 103. We
implemented a beam splitter to separate the signal into two channels: the far-field channel,
which receives 98% of the echo signal energy, and the near-field channel, which captures
the remaining 2% of the echo signal. Moreover, the output electrical signal of the near-field
channel detector is further divided into high- and low-gain channels in a 9:1 ratio, thus
extending the dynamic range of near-field channel to 104.

To access the maximum detectable range of underwater targets with a reflectance
of 0.1 using different detecting channels, we simulate the normalized Lidar signal of
various channels for three distinct types of marine conditions [40]. These simulations
were performed using the same systematic parameters as those presented in Table 1. The
simulation results in Figure 14 show that the slope of signal attenuation is related to the
optical properties of the seawater, with faster signal attenuation in more turbid water.
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In this work, the far-field channel signal is detected by a range-gated detector, and the
gate-open time can be adjusted by the user when they observe the signal from the near-field
becomes undetectable.
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Table 3 presents the maximum detectable range utilizing both multi-channel detection
and single-channel strategies, along with a comparison of these two methods. As can
be observed from the table, the maximum detectable range of the Lidar prototype is
greatly improved by applying the proposed multi-channel detection approach compared
to the single-channel detecting strategy. The improvement in maximum detectable range
achieved by the multi-channel detection approach are 3.4 times, 2.5 times, and 2.3 times
in clean ocean, costal ocean, and turbid harbor water, respectively. Under clean ocean
conditions, the maximum detectable range increases from 30 m to 102 m. In coastal ocean
circumstances, the maximum detectable range of the far-field improves from 24 m to 60 m,
while in turbid harbor, the maximum detectable range increases from 10 m to 23 m. These
results demonstrate the effectiveness of the multi-channel detection approach in improving
the Lidar prototype’s detectable range under diverse water conditions.

Table 3. The estimated maximum detectable range based on the MULS method.

Seawater Type Single-Channel Method
(m)

Multiple Channels Strategy
Improvement (Times)

Near-Field (m) Far-Field (m) Total (m)

Clean ocean 30 44 44–102 102 3.4

Coastal ocean 24 34 34–76 60 2.5

Turbid harbor 10 12 12–23 23 2.3
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6. Conclusions

In this study, we have presented the simulation and design of an underwater Lidar
system that integrates a novel paraxial multi-channel detection strategy to expand the
dynamic range in underwater environments. The proposed MULS approach incorporates
crucial factors, such as the Lidar overlap factor, multi-channel detection settings, and data
acquisition noise, which have not been adequately addressed in previous methods. This
method provides a comprehensive analysis of system performance in various underwater
scenarios. Verification experiments were conducted under varied water conditions to
validate the simulation results and assess the system’s performance. The measurements
conducted using the prototype showed that the range accuracy of each channel was better
than 0.11 m, and the paraxial multi-channel detection strategy effectively broadened the
dynamic range and suppressed backscattering. Meanwhile, we compared the simulation
results with the signals obtained from field tests conducted in both turbid and clear water
environments. The correlation analysis demonstrated strong relationships between the
simulated and field test signals, with correlation coefficients (R2) of 0.9564 and 0.9643,
respectively. These findings confirmed the reliability of our simulation procedure. Ad-
ditionally, the simulated and theoretical analysis of our paraxial multi-channel detection
design demonstrated more than two times enhancement in the maximal detectable range
compared to the single-channel design.

In conclusion, our study contributes to the field of underwater Lidar systems by pre-
senting a novel paraxial multi-channel detection strategy and providing a comprehensive
simulation method for its evaluation. The validation experiments conducted under varied
water conditions further strengthen the reliability of our simulation results. We believe
that our findings may prove beneficial in the design and optimization of underwater Lidar
systems for diverse applications, including deep-sea laser detection.
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