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Abstract: Aiming at maritime infrared target detection with low contrast influenced by maritime
clutter and illumination, this paper proposes a Modified Histogram Equalization with Edge Fusion
(MHEEF) pre-processing algorithm in backlight maritime scenes and establishes Local-Contrast
Saliency Models with Double Scale and Modes (LCMDSM) for detecting a target with the properties
of positive and negative contrast. We propose a local-contrast saliency mathematical model with
double modes in the extension of only one mode. Then, the big scale and small scale are combined
into one Target Detection Unit (TDU), which can approach the “from bottom to up” mechanism of
the Visual Attention Model (VAM) better and identify the target with a suitable size, approaching
the target’s actual shape. In the experimental results and analysis, clutter, foggy, backlight, and dim
maritime scenes are chosen to verify the effectiveness of the target detection algorithm. From the
enhancement result, the LCMDSM algorithm can achieve a Detection Rate (DR) with a value of
98.26% under each maritime scene on the average level and can be used in real-time detection with
low computational cost.

Keywords: maritime infrared target detection; infrared image enhancement; local contrast saliency
with double scale; histogram equalization; small and dim target; multiple maritime scene

1. Introduction

Infrared (IR) imaging technology has been widely used in target search and maritime
navigation [1], maritime navigation [2], and maritime environmental variation [3,4]. IR
imaging data can reflect object distance information and target shape information within
the maritime background in two dimensions. However, multiple factors, such as complex
maritime background and changing illumination, can often cause the infrared maritime
target to disappear in the background clutter [5–7]. According to our infrared imaging
experiment and image analysis, in most cases, the target presents the property of positive
contrast when its gray value is higher than the average gray value of its surrounding
background. However, in some special cases, the gray value of the target is lower than
the average gray value of its surrounding background, which can be described by the
property of negative contrast, and the target easily disappears in the backlight maritime
scene. Hence, an effective pre-processing algorithm needs to be proposed to enhance
infrared small targets under backlight maritime scenes. The maritime scene discussed in
this paper includes four main categories: strong winds, heavy fog, long-distance aerial
photography from a bird’s-eye view, and backlight conditions. It does not include severe
weather conditions.

Many image enhancement techniques based on Histogram Equalization (HE) [8] have
been developed to deal with IR images with low quality, which can highlight a target
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from the background and change its illumination to some extent [9,10]. For example,
the classical Histogram Equalization (HE) algorithm changes the illumination influence
and improves the image contrast by equalizing the Probability Density Function (PDF)
of the image gray value distribution to some extent. The Minimum Mean Brightness
Error Bi-Histogram Equalization (MMBEBHE) [11] algorithm utilizes two sub-histograms
equalization algorithms to keep the mean brightness constant. The Edge-Based Texture
Histogram Equalization (ETHE) [12] algorithm equalizes the edge part’s histogram and
uses it as the transform function in the total image, which can enhance image details. The
Contrast-Accumulated Histogram Equalization (CACHE) [13] algorithm incorporates the
information around pixels into the density estimation of HE to avoid strong noise coming
from the background and loss of image details. However, some parts of the image may
lose detail, and its effectiveness in image detail enhancement is limited when the image
contains both over-dark and over-bright regions. The Recursive Separated and Weighted
Histogram Equalization (RSWHE) [14] algorithm splits an input histogram into more than
two sub-histograms recursively based on the mean or median of the sub-image to modify
the sub-histogram by a normalized power-law function and then equalizes the weighted
sub-histogram. It can keep remarkable brightness and enhances the contrast but easily
produces artifacts [15,16] in the image.

Generally speaking, IR target recognition approaches can be divided into three cate-
gories [17]: (1) background consistency-based model, (2) VAM-based model, and (3) low-
rank and sparse decomposition-based model.

Background consistency-based methods first estimate the original image background
using a filter; then, they enhance and extract the target from the background [18]. Common
filters used include the Top-Hat filter [19], the max-mean/max-median filter [20], and
the median subtraction filter [21]. In addition, Jia et al. [22] proposed a Saliency-Guided
Double-Stage Particle Filter (SGDS-PF) consisting of a searching Particle Filter (PF) and
tracking PF, which achieved high tracking precision even under intensive noise. Tang
et al. [23] used a dilate filter to increase the characteristic information of the suspected
target, which was able to detect the suspected target easily, and the time complexity was
very low. However, if the target disappears in the background in an infrared image, this
algorithm cannot be valid. Chan et al. [24] proposed the Background Subtraction (BS)
method, and it was applied to detect visible targets. However, it is not fit for small IR
targets and has some problems detecting targets surrounded by a complex background.
Furthermore, infrared images are often complicated and contain a lot of random clutter.
Therefore, the background consistency-based model is very susceptible to clutter, noise,
and other complex backgrounds.

A common VAM-based model is the Local-Contrast Method (LCM) [25]. The first
stage of the LCM algorithm is to establish the Local-Contrast Saliency Map (LCSM) by
a window structure and quantify it by a reasonable mathematical model. The second
stage is the threshold selection for the suspected target from the entire image’s LCSM.
Finally, the algorithm identifies the suspected target area. There have also been many
improved algorithms based on LCM in recent years, such as Multi-Scale Patch-Based
Contrast Measure (MPCM) [26], Weighted Three-Layer Window Local-Contrast Method
(WTLLCM) [27], Integrated Target Saliency Measure (ITSM) [28], Relative Local Contrast
Measure (RLCM) [29], Multi-Directional Gradient Improved Double-Layer Local-Contrast
Method (MGIDLCM) [30], and Maritime Noise Prior (MNP) [31]. The main principle of
the MPCM is to calculate the grayscale mean difference in eight different directions of
surrounding patches, which can generate the dissimilarity measure between surrounding
patches and form a multi-scale patch-based contrast measure. As a result, it can detect bright
and dark targets. If the target’s size is smaller than the detecting patch, the algorithm may
fail, and the multiple scale is not suitable for different target sizes. The WTLLCM performs
hierarchical gradient kernel filtering on the image to calculate the local contrast, then
proposes a region intensity level algorithm to suppress the background, and finally detects
target by adaptive threshold. It uses single-scale windows instead of multi-scale windows
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to complete multi-scale target detection, which can reduce the calculation complexity.
However, the target pixels are easily lost during the process. The idea of ITSM is to
utilize a simple image filter, and two middle filter results are multiplied to produce the
final detection result. However, it can only detect the positive contrast target without
measuring Local Contrast Saliency (LCS) with the property of positive contrast and negative
contrast. Both the concept of relative local contrast and a relative mathematical model are
developed in RLCM. As the image contains four different regions such as the real target
region, the region surrounded by pixel-sized noises with high brightness, region with
double background edges, and the pure background region, these four regions’ relative
local contrast are calculated and studied, which presents obvious differences in the IR
image. However, RLCM cannot be applied in detecting negative-contrast property targets.
MGIDLCM mainly establishes meticulous LCS models, including the concept of multi-layer
contrast differences between internal and external neighborhoods and the fusion of gradient
information with different directions. As a result, this algorithm can improve the DR of a
true target but fails in fitting for a true target’s size. As for the MNP algorithm, complex
maritime conditions affect the target’s detection; for example, the false alarm rate may be
increased. Some methods based on average absolute gray difference (AAGD) [32] also
utilize the similar methodology of LCM, such as ADDGD [33] and AMAD [34]. ADDGD
forms the deep insight into the mathematical model establishment for the suspected target
with a high DR in the infrared image. This algorithm has special effectiveness for the
dim infrared target. ADMD produces the saliency map by the absolute directional mean
difference to detect the target. Although this mechanism can suppress the noise, the
threshold for target is difficult for selection.

The low-rank and sparse decomposition-based model pays more attention to the
essence of the infrared images and uses the attributes of background and target. Gao
et al. [35] discovered that the infrared image background possesses the property of non-
local self-correlation, and the number of pixels in the target area is much less than the
number of pixels in the original image. They treat the patch image of the background as
a low-rank matrix and the block image of the target as a sparse matrix, transforming the
small target detection into an optimization problem with low-rank decomposition. Inspired
by this method, various models for the decomposition of low-rank sparse matrices have
been proposed, such as NRAM [36], NTFRA [37], and ANLPT [38]. NRAM proposes the
new concept of target detection. The model of the target area is established by a group of
objective functions and constrained conditions. Although the algorithm has many iteration
times, the detection result has good performance. NTFRA algorithms’ principle is similar
with the NRAM’s. It can extract the local region’s property and obtain the tensor matrix
with three dimensions; then, the target can be decomposed by some iterative formula. This
algorithm can suppress the clutter effectively, but the time complexity is high. ANLPT uses
the principle of low-rank sparse tensor decomposition to detect the infrared small target.
The rank of the patch in an image can reflect the difference of the target and background.
However, this algorithm’s complexity may be high and not fit for different target sizes.

The main contributions of this article are summarized as follows.

(1) Proposing the effective image pre-processing algorithm for the backlight maritime
scene, the pre-processing result’s output can be used as the input data source of the
image target’s detection algorithm, which can improve the DR of image’s infrared
maritime true target.

(2) Study the mathematical model of LCS for the suspected target with the property
of both positive contrast and negative contrast. By contrast, the conventional LCM
algorithm is only fit for detecting the target with the property of positive contrast.
Moreover, we establish the suspected target detection mechanism with the global and
local threshold selection strategy.

(3) Establish the structure of image target detection unit with double scale, which ap-
proaches the “from bottom to top” mechanism of VAM. The maximum saliency map
of the integrated two scales in the TDU can determine the approximate target area,
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and the source scale from the maximum saliency map can locate the target with high
precision. Moreover, it is highly noted that the detection algorithm based on LCS
establishment with double scale be able to have more opportunities to find the true
targets, and the concerned parameters can be selected adaptively according to the size
definition of a small target from SPIE.

2. Materials and Methods
2.1. Equipment and Image Acquisition Manner for Infrared Maritime Target

Figure 1a illustrates the integrated maritime imaging equipment which contains an
infrared medium-wave camera, visible camera, and infrared long-wave camera. This
equipment has a maximum target capture distance of 20 km for a duration of two hours
and acquires an image dataset of 640 × 512 pixels. So, the data processing volume of the
proposed algorithm is approximately from 320,000 to 330,000 pixels. Both the infrared
medium-wave camera and the infrared long-wave camera have the imaging ability of high
distance, fog-penetrability, and day-night working, so the infrared camera is widely used
in the maritime search and rescue. Figure 1b is experimental imaging spot by the fixed
location at Marina Bay Plaza in Dalian on 18 March 2022. After the progress of infrared
image restructured by the internal equipment, the digital infrared maritime image can be
acquired and processed.
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Figure 1. The equipment and image acquisition manner for the maritime target: (a) The integrated
system with multiple camera; (b) The image acquisition with the fixed location.

2.2. The Proposed Pre-Processing MHEEF Algorithm

The proposed pre-processing algorithm needs to change the backlight illumination
condition, highlight the target region that might be obscured by a strong background, and
enhance the target local contrast while suppressing the background variation.

2.2.1. Obtain the New Histogram and New Histogram Equalization

The maritime backlight scene is shown in Figure 2. The gray value of the background
tends to be in a larger proportion and varies on a smaller gray scale, as shown in Figure 3a.
To obtain the enhancement result, we need to modify the proportion of pixels in the original
histogram for the reason that the proportion in the histogram has positive correlation with
the enhancement rate [39] and then normalize it.
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Figure 2. The two representative images in the maritime backlight scene: (a) The first representative
image which contains two targets; (b) The second representative image which contains one target.
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Figure 3. The characteristic of original histogram and the modification process: (a) The characteristic
of original histogram; (b) The modified diagram method.

Figure 3b illustrates the modified method for the new histogram, which contains peak
value detection, modification of proportion of pixel, and proportion normalization. The
first stage is finding the maximum proportion of pixels called Pmax, and the main procedure
in the second stage is the proportion limit according to Pmax. The main mathematical model
can be expressed as Equation (1):

p′i =
{

Pd, pi > Pd
pi, pi ≤ Pd

, Pd = v · Pmax, (1)

where pi is the proportion of original histogram, Pd is the maximum proportion after modi-
fication, p′i is the proportion of pixels after modification, and v is proportional parameter,
which generally has a range of [1/3, 2/3]. This paper choses the value of 2/5.

The third stage is normalization of proportion value p′i which can be expressed as
Equation (2):

qi =
p′i

∑255
i=1 p

′
i

, (2)

where qi is proportion of the new histogram after normalization.
The progress of gray value transformation for the new histogram can be expressed as

X0
f1(x, y)→ Y1.

f1(x, y) = 255×∑i
j=0 qj (3)

2.2.2. Edge Information Quantification and Fusion into the First Middle Result

The previous research [40] shows that HE cannot reflect the gray variation between
the central pixel and its neighbor pixels. Hence, the modified histogram equalization result
with effective edge information fusion can be used to enhance the target’s local details and
add the high-frequency component.
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In order to quantize the image’s edge information, the second order difference operator
for (x, y) with 8 neighbor pixels in the image is used, and it can be expressed as Equation (4):

f2(x, y) = 8X0(x, y)−X0(x− 1, y− 1)−X0(x, y− 1)−X0(x + 1, y− 1)−X0(x− 1, y)
−X0(x + 1, y)−X0(x− 1, y + 1)−X0(x, y + 1)−X0(x + 1, y + 1)

, (4)

where f2(x, y) means the edge information of pixel coordinate (x, y) in the original image.
The filter of edge information quantification is shown in Figure 4a, which can traverse

by each pixel in the image to obtain the filtering result. Figure 4b illustrates the filtering
result of Figure 2a using the filtered element from Figure 4a. To avoid the image edge
information appearing excessively dark, the result is initially magnified by a factor of five
times and then increased by 128. This process primarily enhances the local target texture
and improves local contrast for subsequent detection. The edge quantification can be

expressed as X0
f2(x, y)→ Y2, where Y2 is the second middle result of original image X0.
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Figure 4. The filter and the second middle result in the edge information quantification: (a) Filter of
edge information extraction; (b) The diagram of the second middle result Y2.

2.2.3. Final Enhancement Result of Pre-Processing Algorithm

The first middle result for Figure 2a is shown in Figure 5a, in which can be seen
that the histogram equalization by maximum proportion limit algorithm improves the
image’s illumination condition on the basis and highlights the maritime IR target from the
background. However, the first middle result fails in local detail improvement.
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Then, integrating Y1 with Y2 in the format of “1 + λ”, the mathematical model can be
expressed as Equation (5):

Y = Y1 + λY2, (5)

where Y means the final enhancement result of MHEEF algorithm, and λ means the gain
factor of edge information. Generally, the larger the value of λ is, the more the details in
IR image improves. At the same time, it will generate more noise easily. Our previous
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experiments show that λ can be chosen by the value range of 1~2. Then, λ = 1 is chosen for
result’s illustration.

The final enhancement result for Figure 2a is shown in Figure 5b. Compared with
Figure 5a, it has been highly noted that Figure 5b has more abundant details in the target
region.

Figure 6a shows the second representative entire image and its local region in backlight
maritime scene, and its enhancement result is also shown in Figure 6b, which can be seen
that the MHEEF algorithm not only changes the heavy illumination influences but improves
the target’s local details.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 22 
 

 

= +1 2Y Y Y , (5) 

where Y means the final enhancement result of MHEEF algorithm, and λ means the gain 

factor of edge information. Generally, the larger the value of λ is, the more the details in 

IR image improves. At the same time, it will generate more noise easily. Our previous 

experiments show that λ can be chosen by the value range of 1~2. Then, λ = 1 is chosen for 

result’s illustration. 

The final enhancement result for Figure 2a is shown in Figure 5b. Compared with 

Figure 5a, it has been highly noted that Figure 5b has more abundant details in the target 

region. 

Figure 6a shows the second representative entire image and its local region in 

backlight maritime scene, and its enhancement result is also shown in Figure 6b, which 

can be seen that the MHEEF algorithm not only changes the heavy illumination influences 

but improves the target’s local details. 

  

(a) (b) 

Figure 6. The entire image and local target region for the second representative image in backlight 

maritime scene: (a) Original image and its local region; (b) Final enhancement result and its local 

region. 

2.3. The Proposed LCMDSM Detection Algorithm 

In this section, we discuss the three significant procedures in the LCMDSM 

algorithm. The first one is to establish the structure of TDU with double scale, which 

combines the big and small scale and the central point of the two scales traverse in the 

entire image. The second one is to establish the mathematical model of LCSM for 

suspected target with the property of both positive and negative contrast. Then, integrate 

the LCM with double scale, obtain the maximum result of LCM, and find the source scale 

for the maximum result which can approach the VAM mechanism of “from bottom to 

top”. At last, the global and local threshold selection for detecting the suspected target 

region in the entire image are discussed. 

2.3.1. The Structure of TDU with Double Scale 

As shown in Figure 7, the rectangle region drawn in the red full line outlines the TDU 

(the same with the big scale’s outline in the TDU), which includes one target region with 

big scale drawn in the blue full line and nine background regions with the same size. The 

red line means the background area with double scale, and the blue line means the target 

area with double scale in Figure 7. At the same time, each target region with big scale can 

divide into nine target regions with small scale drawn in the blue dummy line, 

correspondingly the nine background regions with small scale are surrounding with it. 

The size of the global TDU is w2 × w2, in which the size of target named by T with big scale 

is w1 × w1. Similarly, the size of background named by B1, B2, …, B8 is also w1 × w1. The LCS 

with big scale, denoted by Cn, can be calculated by measuring the dissimilarity between 

the T block and the B1, B2, …B9 blocks (n denotes the serial number of the TDU in the 

image). With the same structure, the target with small scale named t1 has the size of w0 × 

w0, and the background regions surrounding the target t1 are named by b1
1, b1

2, … b1
8 , 
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2.3. The Proposed LCMDSM Detection Algorithm

In this section, we discuss the three significant procedures in the LCMDSM algorithm.
The first one is to establish the structure of TDU with double scale, which combines the
big and small scale and the central point of the two scales traverse in the entire image.
The second one is to establish the mathematical model of LCSM for suspected target with
the property of both positive and negative contrast. Then, integrate the LCM with double
scale, obtain the maximum result of LCM, and find the source scale for the maximum result
which can approach the VAM mechanism of “from bottom to top”. At last, the global and
local threshold selection for detecting the suspected target region in the entire image are
discussed.

2.3.1. The Structure of TDU with Double Scale

As shown in Figure 7, the rectangle region drawn in the red full line outlines the
TDU (the same with the big scale’s outline in the TDU), which includes one target region
with big scale drawn in the blue full line and nine background regions with the same size.
The red line means the background area with double scale, and the blue line means the
target area with double scale in Figure 7. At the same time, each target region with big
scale can divide into nine target regions with small scale drawn in the blue dummy line,
correspondingly the nine background regions with small scale are surrounding with it.
The size of the global TDU is w2 × w2, in which the size of target named by T with big
scale is w1 × w1. Similarly, the size of background named by B1, B2, . . . , B8 is also w1 × w1.
The LCS with big scale, denoted by Cn, can be calculated by measuring the dissimilarity
between the T block and the B1, B2, . . . B9 blocks (n denotes the serial number of the TDU
in the image). With the same structure, the target with small scale named t1 has the size of
w0 × w0, and the background regions surrounding the target t1 are named by b1

1, b2
1, . . . b8

1,
respectively. The target with small scale named by t1,t2, . . . , t9 can also produce the LCS
called c1

n, c2
n, . . . c9

n. The central point named (x0, y0) is located in the center of both region
T and t5, which can traverse in the entire image and produce the LCS with the integrated
double scale under the proposed algorithm. What is more, according to the definition of
small target by SPIE, the number of pixels in the small target area is less than 0.15% of the
image’s entire pixels. Thus, if the image has a width value of W and a height value of H,
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the square of target area is less than 0.15% ×W × H. As for the size of TDU, the value of
w2 can be chosen by a integer number derived from times by three, which also needs to be
less than

√
0.15% ×W × H. w1 can be chosen by one-third of w2, and w0 can be chosen by

one-third of w1, so the parameter initialization of TDU is set automatically, which can be
adaptive with different image’s size.
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Figure 7. The diagram of TDU with double scale.

Figure 8 shows the moving direction of targets with big and small scale in the image.
The red full arrow shows the moving direction of the TGU, while the blue dummy arrow
represents the moving direction of target with small scale. The red solid rectangle means
the background area with big scale; the blue solid rectangle means the target region with
big scale; and the blue dashed rectangle means the target region with small scale.
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As for the program implementation, firstly, the point (x0, y0) centered by TDU tra-
verses in the entire image, which can be put as a main cycle in the image; then, the target
region T and the background region B with big scale are found, and Cn can be calculated.
Meanwhile, the central point (x1, y1), (x2, y2), . . . ,(x9, y9) for t1, t2, . . . , t9 can be easily
calculated by central point (x0, y0). The LCS with small scale, represented by c1

n, c2
n, . . ., c9

n,
can be easily calculated from the confirmed target area and background area with small
scale. From the opportunities for target detection, TDU with only one scale searches for the
suspected target with only once such as LCM algorithm, whereas TDU with double scale
can search for the suspected target with ten times, which can improve a DR.
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2.3.2. The Mathematical Model for Target Detection with Positive Contrast and
Negative Contrast

The IR target presents the property of positive contrast or negative contrast in the IR
image. In order to better measure its LCS, the mathematical models for target detection with
positive contrast and negative contrast are different. If the target has the characteristic with
positive contrast, it can be described by Equation (6); on the contrary, it can be described by
Equation (7):

Cn = min
I

max2(T)
mean(BI)

ci
n = max

j

max2(ti)

mean(bj
i)

I, j = 1, 2 . . . 8 i = 1, 2 . . . 9, (6)

Cn = min
I

mean2(BI)

min(T)
ci

n = min
j

mean2(bj
i)

min(ti)
, I, j = 1, 2 . . . 8 i = 1, 2 . . . 9, (7)

where Cn is the nth LCS of TDU under the big scale, T and BI represent the target region and
background region in the big scale, ci

n is the nth LCS of TDU in the small scale, and ti and
bj

i represent the target region and background region in the small scale. The basic principle
of Equation (6) is that the gray value of target region is higher than the surrounding
background region on the average level, which can generate the dissimilarity measure
correctly between them and outstand the saliency by the square arithmetic and so is the
basic principle of Equation (7) for the negative target. Notably, the squaring operation in
Equation (7) can amplify the target’s weak difference around the background.

In order to obtain the integrated result of LCS through double scale, the maximum
pooling strategy is used, which can be expressed as Equation (8):

C′n = max(Cn, ci
n), i = 1, 2 . . . 9, (8)

where C′n is the final integrated result of the nth serial number that TDU has traversed. We
can detect the target region by the proposed threshold selection strategy through C′ in the
following.

2.3.3. Threshold Selection Strategy for LCS and Target Rectangle Output

According to numerous previous research tests, the true target usually has a much
larger value of C′n than the average value of LCSM. Combined with statistical laws, the
suspected target region which has a large value of LCSM dominates a very small proportion
in the entire C′. Thus, the threshold selection strategy for finding suspected target regions
can be expressed as Equation (9):

thG = µC′ + kσC′ , (9)

where thG is the global threshold of C′. µC′ is the average value of C′; σC′ is the standard
deviation of C′; and k is a given proportion coefficient which can measure the distance
between µC′ and the k times of σC′ . Correspondingly, the threshold selection strategy
described as Equation (9) can be similarly used in the local region of C′. We can obtain the
local threshold of thL by setting the size of 5 × 5 to format the local searching area in C′.

In our previous experiments, we observed that when the value of k is larger, the
standard for detecting suspected targets becomes more strict, which can result in missing
true targets that submerged into the maritime background. On the contrary, when k is
smaller, the standard becomes looser, which can result in detecting more false targets in the
background. Our experiments have shown that the usual range of k is between 2 and 5,
and it can be chosen by 3 in the common case or in the optimal condition [41].

Figure 9 is the diagram of global threshold selection and local threshold selection from
the matrix C′. The global C′ matrix can produce the one global threshold named by thG
when the element in C′ has a larger value than thG which can be judged as the suspected
target. In addition, each element in the C′ can format the local searching region with the



Remote Sens. 2023, 15, 3623 10 of 21

size of 5 × 5. The local searching region can produce the local threshold named by thL.
If the value is larger than thL, the element can also be judged as the suspected target. In
Figure 9, the number in LCSM of C′ matrix represents the value of LCSM. The red rectangle
in the Global threshold and Local threshold represents the global region and local region,
respectively.
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Figure 9. The diagram of global threshold selection and local threshold selection.

Figure 10 shows the diagram of target searching mechanism in LCMDSC, which can
approach to the VAM criteria. The C′ matrix is the “bottom”. The value of C′n is based on
which matrix it comes from and is equal to the inverse process of Equation (8). Positive
and negative contrast are physical properties. The presence of a target with a gray scale
higher or lower than the average gray scale of the background does not determine the
contrast value as positive or negative. The contrast values calculated by Equations (6) and
(7) are both positive. The number in C′ means the combined LCS with double scale, and
the number in ci means the LCS with small scale.
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Figure 10. The diagram mechanism to simulate “from bottom to top” VAM.

As discussed above, the pseudocode of Algorithm LCMDSM can be described as
Table 1. From each process, it can be concluded that both the time complexity and space
complexity of LCMDSM algorithm are O(N2) when the original image has the scale of N2.
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Table 1. The pseudocode of Algorithm LCMDSM.

Algorithm LCMDSM

Input: IR image named by I. (height: M; width: N)
Output: position, width and height of the target rectangle in I.
Initial Definition: parameter k; w1←floor((M × N × 0.0015)ˆ0.5); w0←w1/3; C←array(M/w1,
N/w1); c1,2...9←array(M/w1, N/w1);
A: Locating the central point of TDU, traversing the entire image and calculating the LCSM
respectively
A1: for i = 1: w1: M
A2: for j = 1: w1: N do
A3: Obtaining B,T,t1,t2, . . . and t9 region from I by i and j
A4: Calculating the LCS of C, c1,2, . . . 9 and getting the maximum result as C’
A5: end for
A6: end for
A7: (ii,jj)← find(C’ > thG || C’ > thL)
A8: Store the position of suspected target with (ii,jj) and the total number of targets with N.
A9: Store the maximum source scale from C, c1,2, . . . 9.
B: Outputting the red rectangle of suspected target’s region
B1: for i = 1:N
B2: Locating the central point from (ii,jj) and choosing the suitable width and height from C or ci.
B3: end for

3. Results
3.1. The Contribution of the Pre-Processing MHEEF Algorithm

Figure 11 shows the 3D diagrams of LCSM of Figure 2a and its enhancement result
from the MHEEF algorithm, where the red rectangle demonstrates the location of a sus-
pected target’s region of Figure 2a in the 3D LCSM. Obviously, the LCS of the target region
is improved after the pre-processing algorithm, which can detect the suspected targets
easily.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 22 
 

 

suspected target’s region of Figure2a in the 3D LCSM. Obviously, the LCS of the target 

region is improved after the pre-processing algorithm, which can detect the suspected 

targets easily. 

  

(a) (b) 

Figure 11. The LCSM comparison of Figure 2a and its enhancement result: (a) The LCSM of Figure 

2a; (b)The LCSM of Figure 5b. 

Similarly, Figure 12 is the 3D diagrams of LCSM of Figure 2b and its enhancement 

result from the MHEEF algorithm, where the red rectangle demonstrates the location of a 

suspected target’s region of Figure 2b in the 3D LCSM., and it can be seen that the LCS of 

the suspected target region after the MHEEF algorithm is increasing more obviously than 

before. Therefore, the enhancement result of backlight maritime scene can be helpful for 

the target detection, which can be put as the effective input data for the detection 

algorithm such as our proposed LCMDSM algorithm. 

  

(a) (b) 

Figure 12. The LCSM comparison of Figure 2b and its enhancement result: (a) The LCSM of Figure 

2b; (b)The LCSM of Figure 6b. 

3.2. The Objective Image Quality Assessment of Enhancement Result 

In order to objectively assess the performance of the pre-processing algorithm, the 

Average Gradient (AG) and the Enhancement Measure by Entropy (EME) [42] are used to 

evaluate the original image and the enhancement result’s objective quality. 

The AG reflects the richness of texture and details in the image. A higher value of AG 

indicates that an image has more details and texture, and its computing model can be 

expressed as Equation (10): 

1 1

1 1

( , )

( 1)( 1)

M N

i j

f i j

AG
M N

− −

= =



=
− −


, 

(10) 

where |∇ f (i, j)| is the gradient value of an image, and the gradient value of the current 

pixel in the ith row and the jth column of an image are calculated by the central difference 

measure. 

Figure 11. The LCSM comparison of Figure 2a and its enhancement result: (a) The LCSM of Figure 2a;
(b)The LCSM of Figure 5b.

Similarly, Figure 12 is the 3D diagrams of LCSM of Figure 2b and its enhancement
result from the MHEEF algorithm, where the red rectangle demonstrates the location of a
suspected target’s region of Figure 2b in the 3D LCSM., and it can be seen that the LCS of
the suspected target region after the MHEEF algorithm is increasing more obviously than
before. Therefore, the enhancement result of backlight maritime scene can be helpful for
the target detection, which can be put as the effective input data for the detection algorithm
such as our proposed LCMDSM algorithm.
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3.2. The Objective Image Quality Assessment of Enhancement Result

In order to objectively assess the performance of the pre-processing algorithm, the
Average Gradient (AG) and the Enhancement Measure by Entropy (EME) [42] are used to
evaluate the original image and the enhancement result’s objective quality.

The AG reflects the richness of texture and details in the image. A higher value of
AG indicates that an image has more details and texture, and its computing model can be
expressed as Equation (10):

AG =

M−1
∑

i=1

N−1
∑

j=1
|∇ f (i, j)|

(M− 1)(N − 1)
, (10)

where |∇ f (i , j)| is the gradient value of an image, and the gradient value of the current
pixel in the ith row and the jth column of an image are calculated by the central difference
measure.

The EME can reflect the average entropy of the local contrast in the image. In a
common case, a higher value of EME indicates that an image has more contrast, and its
computational model can be expressed as Equation (11):

EME =
1

k1k2

k1

∑
i=1

k2

∑
j=1

20 ln

[
max(Xi,j)

min(Xi,j)

]
k1 =

⌊
W
m

⌋
k2 =

⌊
H
n

⌋
, (11)

where W and H are the width and height of the image, m and n are the width and height
of the sub-blocks divided from the processed image, and max

(
Xi,j
)

and min
(
Xi,j
)

are the
maximum value and minimum value in the sub-block which is located in the ith row and
jth column of the image’s sub-block. b·c operator represents the process of rounding down
for a number.

In order to evaluate the proposed pre-processing algorithm fairly, HE, MMBEBHE,
and ETHE algorithms are used for the comparison. Figures 13 and 14 are the enhancement
results of each algorithm for Figure 2a,b, respectively.

Table 2 is the AG and EME of original image and the enhancement results. It can be
seen that the AG of the proposed algorithm improves at least twice as many times compared
with the original image, and it is also the largest value of AG compared to other algorithms.
Therefore, the proposed algorithm can highlight the image details efficiently. As for the
EME assessment, the proposed algorithm achieves the best. Because the structure of EME
calculating model is similar with the TDU’s [42], it can be deduced that the proposed
MHEEF algorithm is beneficial for the target detection.
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Figure 14. Comparison of enhancement result by each algorithm for Figure 2b: (a) Classical HE;
(b) MMBEBHE; (c) ETHE; (d) Ours.

Table 2. The AG and EME of original image and enhancement result.

Figure AG EME Figure AG EME

Figure 2a 1.11 1.30 Figure 2b 0.86 1.95
Figure 13a 1.67 1.86 Figure 14a 2.84 2.79
Figure 13b 1.46 1.71 Figure 14b 1.22 2.72
Figure 13c 1.33 1.82 Figure 14c 1.33 1.82
Figure 13d 3.34 2.30 Figure 14d 4.26 3.15

As for the objective quality assessment of the local target region, Background Suppres-
sion Factor (BSF), Signal-to-Clutter Ratios (SCR), and Local Contrast Gain (LCG) [43] are
used to evaluate the target region’s quality. BSF represents the degree of noise or clutters
suppression, which is demonstrated in Equation (12):

BSF =
σo

σr
, (12)

where σo and σr are the standard deviations of the image background in the original image
and the result, respectively.

SCR is widely used to measure the difference between the target and its neighborhood,
which can be expressed as Equation (13):

SCR =
|mt −mb|

σb
, (13)

where mt is the average gray value of the targets, and mb and σb are the average and
standard deviation of the background, respectively.
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LCG can evaluate the dissimilarity between the target and its surrounding background
region with respect to the result and original image, which can be expressed as Equation
(14):

CON = |mt −mb|, LCG =
CONr

CONo
, (14)

where CONr and CONo are the local contrast of the target in the enhancement result and
original image, respectively.

Figure 15 shows the region division diagram for the target and its neighborhood region
in Figure 2a,b, where the red rectangle indicates the obscured target region and the blue
rectangle indicates the neighborhood region around the target.
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Figure 15. The diagram of the disappeared target region and its neighborhood region in Figure 2a,b:
(a) The disappeared target region and its neighborhood region in Figure 2a; (b) The disappeared
target region and its neighborhood region in Figure 2b.

Table 3 is the comparison of BSF, SCR, and LCG of the original image and the en-
hancement results, in which can be seen that the BSF, SCR, and LCG of the proposed
pre-processing algorithm are the largest or the second largest of the compared algorithms.
Therefore, it can be highly noted that the proposed MHEEF algorithm not only enhances
the target region’s details but suppresses the maritime clutters, especially for the local small
target’s region in an infrared image.

Table 3. Comparison of BSF, SCR, and LCG of the enhancement results.

Figure BSF SCR LCG

Figure 2a / 0.48 /
Figure 13a 0.14 0.60 3.99
Figure 13b 0.51 0.67 1.18
Figure 13c 2.51 0.80 1.10
Figure 13d 2.31 0.78 3.38
Figure 2b / 0.32 /
Figure 14a 0.30 1.30 5.90
Figure 14b 0.38 0.49 1.76
Figure 14c 0.38 0.41 1.47
Figure 14d 1.26 1.08 5.25

3.3. The Target Detection Results of LCMDSM Algorithm and Compared Algorithms

To validate the effectiveness of the proposed method, we compared it with seven other
state-of-the-art unsupervised infrared small target detection algorithms, namely LIG [44],
NRAM [36], ADDGD [33], ADMD [34], NTFRA [37], GCMDO [23], and ANLPT [38]. To
avoid unfair comparison and assessment, we used four maritime datasets from integrated
maritime imaging equipment to compare the target detection results of the LCMDSM
algorithm with those of the other algorithms, and three representative images from each
infrared maritime dataset were shown. The four figures below show the original image
with ground truth and target detection results by using different detection algorithms.
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The blue rectangle region on the left side of each figure indicates the factual target region;
the small red rectangle represents the detected target’s region by the proposed algorithm;
and the large red rectangle means that the representing region contains a lot of small red
rectangles.

Figure 16 shows the detection results of Dataset 1. Dataset 1 is a set of 1500 infrared
maritime images with cluttered sea wave scenes. The targets are easily submerged in a
heavy noise and clutter background. From the results, the LIG algorithm and ADDGD
algorithm detect a great number of false alarm regions as targets.
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Figure 16. The detection results of three representative images of Dataset 1 under sea wave clutter.

The detection results of three representative images of Dataset 2 are shown in Figure 17.
Dataset 2 contains 1500 infrared images under foggy maritime scene. As the targets are
bright obviously and there is no complex clutter around them, all algorithms can easily
detect them. However, some algorithms may also detect the foggy regions as targets.

The detection results of three representative images of Dataset 3 are shown in Figure 18.
Dataset 3 contains 1500 infrared images under backlight maritime scene enhanced by
MHEEF algorithm. Unlike other datasets, Dataset 3 has a challenge for target detection due
to the target property of negative contrast. A lot of the blacklight scene occurs in the images.
Additionally, the MHEEF pre-processing algorithm can enhance the difference between the
target and the backlight scene. It is evident that the compared detection algorithms find
difficulty in identifying the true targets, which results in detecting the clutter wave’s region
as a target. It can be highly noted that the LCMDSM algorithm is the only algorithm which
has the ability to detect the target occurring in the backlight background.
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The detection results of three representative images of Dataset 4 are shown in Figure 19.
Dataset 4 has 1500 images with a small and dim target in a maritime scene. The size of
targets is the smallest among the four chosen datasets. The compared algorithms such as
NTFRA and ANLTP lose the true targets. As a result, the LCMDSM algorithm’s detection
result has some robustness for each image in different maritime scenes, but identifying the
dim target in the large and wide maritime scene has some challenges.
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Figure 19. The detection results of three representative images of Dataset 4 under small and dim
target scene.

The detecting performance of the detection algorithm can be evaluated using the
Receiver Operating Characteristic (ROC) curve [28], which reflects the Detection Rate
(DR) [28] and False Alarm Rate (FAR) [28] in the threshold’s varying condition. The DR
and the FAR can be calculated by Equation (15). As the image engineering concept of this
paper is to identify all real maritime targets while allowing a small number of maritime
interference regions to be identified as false detected targets, the primary goal is to ensure a
high value for DR. Then, we need to make efforts to reduce FAR, which is to say that DR is
more important than FAR.

DR =
NA
NT

, FAR =
NF

NT + NF
(15)

where NA is the number of detected true targets, NT is the total number of true targets in
the original images, and NF represents the number of detected false targets.
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After collecting the true targets, detected true targets, and alarm detected targets in
the four datasets which contain 1500 images under the compared algorithms, the ROC
curves can be drawn in Figure 20. It is clear that the ROC curves achieved by LCMDSM on
the four datasets are closer to the upper left corner than other algorithms, which indicates
that LCMDSM has the best performance in term of DR.
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Figure 20. ROC curves of different algorithms’ results in four datasets: (a) ROC curves of different
algorithms’ results in Dataset 1; (b) ROC curves of different algorithms’ results in Dataset 2; (c) ROC
curves of different algorithms’ results in Dataset 3; (d) ROC curves of different algorithms’ results in
Dataset 4.

In addition, the Area Under the Curve (AUC) of each algorithm can be calculated by
sequentially connected points {(x1, y1), (x2, y2), . . ., (xm, ym)}, as shown in Equation (16):

AUC =
1
2

m−1

∑
i=1

(xi+1 − xi)× (yi + yi+1) (16)

AUC is widely utilized to access the classification performance of true or false tar-
gets [45]. The AUC value is in the range of 0 ~ 1, as written on the lefthand of each
algorithm’s iron in Figure 20. The larger AUC value means better target detection per-
formance in the ROC curve evaluation system. Consequently, our proposed algorithm
achieves better performance in the four datasets, which means that it can be concluded that
our method has the better balance capability of between the DR and FAR.

4. Discussion
4.1. The Performance Analysis of the Proposed Algorithm

The effect of the MHEEF algorithm is to highlight the contrast and detail information of
the infrared targets submerged in the backlight maritime scene and adjust the illumination
condition in the backlight environment. This algorithm has the advantages of strong
adaptability and less input parameters. The enhancement results can be put as the input
of the proposed target detection algorithm, such as Figure 18. The entire detection result
does not have many alarm targets. Thus, the MHEEF algorithm is fit for the detection
algorithm’s input.

From the detection results of the four datasets, our proposed LCMDSM algorithm’s
most significant advantage is to achieve the high DR in the result; then, there is an attept to
decrease the value of FAR. In maritime search and rescue, DR is the first crucial standard, so
the LCMDSM algorithm has practical utility. As for the running time of each algorithm, all
algorithms’ experiments are implemented in MATLAB 2020a on a laptop with a 2.30-GHz
Core i7-12700H CPU and 16.0-GB memory. Table 4 is the mean DR (mDR) and computa-
tional time of the four datasets tested with all algorithms. It can also be concluded that the
proposed algorithm presents better than any other algorithm in the mDR and real-time
target detection.



Remote Sens. 2023, 15, 3623 19 of 21

Table 4. The mean DR in the optimal parameters and computational time of the four datasets tested
by the compared algorithms.

Algorithm LIG
(2018)

NRAM
(2018)

ADDGD
(2019)

ADMD
(2020)

NTFRA
(2022)

GCMDO
(2023)

ANLPT
(2023) LCMDSM MHEEF+

LCMDSM

mDR 87.24% 93.21% 88.29% 89.73% 83.22% 82.71% 85.51% 98.26%
Time(s) 3.5081 0.6783 0.2846 0.2762 3.356 0.0138 3.3209 0.5256 0.5451

4.2. The Challenge and Effective Measure in the Field of Infrared Maritime Target Detection

From the previous statement and discussion, we can conclude that the infrared mar-
itime imaging has the characteristics of a dim target with uncertain shape and multiple
negative factors such as illumination variation, sea wave clutter, and sea fog, which brings
big challenges to the maritime search secure. In our paper, we establish the effective mathe-
matical model for searching the small target. The double scale mechanism has improved
the opportunities for searching more suspected targets, especially in Figure 19. The LCSM
measuring method of the proposed LCMDSM algorithm is effective. Exactly dim and
small targets can be successfully detected. Meanwhile, the double mode of our proposed
LCMDSM algorithm increases the function of detecting the target with the property of
negative contrast, which can be verified by Figure 18. However, the limitation of this
proposed algorithm includes its inability to automatically identify the positive and negative
contrast properties of the target. As for the same property the scene has, the proposed
LCMDSM algorithm can consistently detect the maritime target such as foggy, windy, and
dim target scenes. From the algorithm’s engineering application, the algorithm proposed
in this paper focuses on detecting the maritime target on the single-frame image. Future re-
search may focus on combining multi-frame image information for moving target tracking,
which represents a promising direction for further investigation. Moreover, the framework
structure of feature extraction using TDU can serve as a vital foundation for recognizing
small targets through neural network-based approaches.

5. Conclusions

This paper proposes the effective pre-processing MHEEF algorithm and LCMDSM
target detection algorithm. The pre-processing MHEEF algorithm can enhance the obscured
target’s contrast and detail information effectively, and the LCMDSM detection algorithm
can detect the target with the property of positive contrast and negative contrast under
the sea wave clutter and foggy, backlit, and dim maritime scene. However, the proposed
LCMDSM algorithm has the inability to distinguish automatically between the positive
and negative contrast properties of the target. As a testing result, the algorithm detects
positive and negative contrast targets with a DR of 98.97% and 96.74%, respectively, on
an average level. In future study, the target’s location with high precision and false target
elimination with multiple frame information may become a novel research direction after
the detection of a maritime target in the single infrared maritime image. Moreover, the
framework structure of feature extraction using TDU can become a vital foundation for
recognizing small targets through neural network-based approaches.
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