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Abstract: Semantic segmentation of Polarimetric SAR (PolSAR) images is an important research
topic in remote sensing. Many deep neural network-based semantic segmentation methods have
been applied to PolSAR image segmentation tasks. However, a lack of effective means to deal
with the similarity of object features and speckle noise in PolSAR images exists. Thisstudy aims to
improve the discriminative capability of neural networks for various intensities of backscattering
coefficients while reducing the effects of noise in PolSAR semantic segmentation tasks. Firstly, we
propose pre-processing methods for PolSAR image data, which consist of the fusion of multi-source
data and false color mapping. Then, we propose a Multi-axis Sequence Attention Segmentation
Network (MASA-SegNet) for semantic segmentation of PolSAR data, which is an encoder–decoder
framework. Specifically, within the encoder, a feature extractor is designed and implemented by
stacking Multi-axis Sequence Attention blocks to efficiently extract PolSAR features at multiple scales
while mitigating inter-class similarities and intra-class differences from speckle noise. Moreover,
the process of serialized residual connection design enables the propagation of spatial information
throughout the network, thereby improving the overall spatial awareness of MASA-SegNet. Within
the decoder, it is used to accomplish the semantic segmentation task. The superiority of this algorithm
for semantic segmentation will be explored through feature visualization. The experiments show
that our proposed spatial sequence attention mechanism can effectively extract features and reduce
noise interference and is thus able to obtain the best results on two large-scale public datasets (the
AIR-POlSAR-Seg and FUSAR-Map datasets).

Keywords: PolSAR image; semantic segmentation; multi-axis sequence attention

1. Introduction

Polarimetric Synthetic Aperture Radar (PolSAR) imaging is a satellite remote sensing
microwave imaging technology which has a wide range of applications in disaster moni-
toring, wetland monitoring, ocean monitoring, land cover classification, and other fields.
Therefore, the semantic segmentation of PolSAR images has important research value.
Compared to visible light remote sensing, PolSAR has higher penetration capabilities that
enable it to penetrate through cloud cover, and it is not affected by diurnal variations and
severe weather conditions [1]. However, PolSAR captures polarization echoes from the
ground, providing each pixel with rich waveform information, but it cannot be directly con-
verted into color values. Furthermore, signals frequently encounter non-linear interference
during transmission, resulting in the presence of speckle noise [2].

In previous works, the segmentation methods for Synthetic Aperture Radar (SAR)
images can be broadly categorized into three groups: mathematical statistics, machine
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learning, and deep learning. In mathematical model-based methods, early studies directly
applied traditional image segmentation algorithms to land classification tasks for SAR
images such as the level set method [3]. At the same time, there has been increased
attention from researchers to investigate the imaging principles of SAR imagery. They have
been attempting to interpret SAR images by quantitatively analyzing the variation in the
backscattering coefficient and frequency amplitude of specific frequency bands. In Ref. [4],
the researchers discovered that incorporating the analysis of both backscatter intensity and
coherence yields superior classification accuracy compared to relying solely on backscatter
intensity. In Ref. [5], different polarization combinations were used for improving the
performance of SAR image evaluation.

Although machine learning models like support vector machine (SVM), random
forest (RF), level set-based multi-texture models, and Markov random fields [6–9] can
segment land types in PolSAR images, they suffer from limited accuracy and generalization
capabilities due to their dependence on complex manual computations.

With the application of deep neural networks in image processing, they show im-
pressive capabilities for PolSAR images at the same time [10–14]. Convolutional neural
networks (CNNs) are the most commonly used model structures in deep learning for
visual processing; they extract image features through convolutions to handle downstream
tasks [15,16]. However, for semantic segmentation of PolSAR images, this feedforward
network initializes weights randomly, which makes it impossible to distinguish noise,
the background, or effective physical areas during the process of feature extraction at the
pixel level, thus affecting the semantic accuracy of features [17]. In order to direct the
attention of the network towards valuable regions, a transformer architecture based on
a self-attention mechanism [18] in natural language processing is introduced into visual
tasks, such as ViT [19] and Swin-Transformer [20]. The transformer can establish long-range
dependencies, provide global relationships for features, and offer location and channel
information in the target space [21], paying closer attention to specific targets rather than
noise information during the feature extraction process. The transformer has demonstrated
its superiority for various PolSAR applications [22–26].

However, in the semantic segmentation of PolSAR images, due to the inevitable
speckle noise, the classification of features at the pixel level relies more on contextual
relationships between local neighboring pixels. At the same time, segmentation accuracy is
also affected by spatial position information. Traditional transformer architectures are weak
in this regard. As an alternative to the transformer, MLPs with gating (gMLPs) [27] become a
possibility to solve this problem. It has been proved that gMLPs are excellent in processing
low-level vision tasks [28]. This is beneficial for dealing with speckle noise in PolSAR
images. The present study concentrates on addressing three main challenges. The first is
how to reduce the impact of noise on the high-dimensional feature information extraction of
polarimetric SAR images. The second is how to discern subtle differences in distinguishing
among ground features that share similar scattering characteristics. The last is how to
supply sufficient and accurate spatial location information for classification purposes.

This study makes three contributions to address the aforementioned challenges:

- We propose two methods for pseudo-color synthesis of PolSAR images; these are used
as pre-processing methods for single-polarization and multi-polarization SAR images.
The aim is to reduce the interference of noise and increase the readability of images as
much as possible prior to executing segmentation tasks.

- We design a feature extractor for PolSAR images. The feature map is serialized along
two axes to calculate both global and local attention, thereby extracting important
spatial feature information and reducing noise interference.

- We propose MASA-SegNet, which is a novel multi-axis sequence attention semantic
segmentation network that deploys an encoder–decoder structure to achieve effective
semantic segmentation. The encoder of MASA-SegNet consists of multi-level feature
extraction, and the decoder is constructed with convolution and linear interpolation
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upsampling. This network architecture demonstrates excellent performance with
PolSAR datasets.

The effectiveness is demonstrated through experiments on the quad-polarized AIR-
PolSAR-Seg dataset [29] and the single-polarization FUSAR-MAP dataset [30]. For the
AIR-PolSAR-Seg dataset, the mean Intersection over Union (mIoU) increased to 54.25%,
with an average improvement of 1.67–10.02%. On the other hand, the Frequency Weighted
Intersection over Union (FWIoU) increased to 75.94% for the FUSAR-MAP dataset, with an
average improvement of 9.35–21.18%. Our method showed superior performance in re-
ducing noise, enhancing features, and preserving feature spatial positioning by comparing
different methods for generating PolSAR false color images and conducting quantitative
visualization analysis.

2. Materials and Methods
2.1. Datasets
2.1.1. Single-Polarization SAR Data

The FUSAR-MAP [30] dataset consists of 610 optical and single-polarization SAR
images of 1024 × 1024 pixels. The SAR images are provided by the GF-3 satellite, which
operates in C-band ultra-fine strip (UFS) mode, with a nominal resolution of 3 m, and the
polarization mode is HH. Four types of land cover are considered, and others are regarded
as background.

To enhance the characteristic information of PolSAR images, we synthesized pseudo-
RGB images by fusing optical and PolSAR images pixel-by-pixel. We applied Refined Lee
Filtering (RLF) [31] to the single-polarization SAR images ps in the dataset and mapped
to the R and B channels of the pseudo-RGB images. It is critical to enhance the scattering
features that are more sensitive in the C-band, such as vegetation and dense buildings.
Therefore, we extracted the green channel of the optical image IG mapped to the green
channel of the pseudo-RGB. The whole process can be formulated as R

G
B

 = unit8

 [RLF(ps)]
[IG]

[RLF(ps)]

 ∈ [0, 255], (1)

where the function RLF(.) represents Refined Lee Filtering.
Through the above operations, we fused the optical image with the single-polarization

SAR image, and the result is shown in Figure 1c. The pseudo-RGB image displays a
different color gamut for the volume scattering of vegetation and dense buildings, as well
as the surface scattering of water and roads, thus providing richer prior knowledge for the
neural network.

Figure 1. The FUSAR-MAP dataset. (a) The single-polarization SAR image. (b) A grayscale image of
the optical image’s green channel. (c) The result of image fusion. (d) The label of SAR images.
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2.1.2. Multi-Polarization SAR data

The AIR-PolSAR-Seg dataset [29] is a multi-polarization dataset that provides SAR im-
ages in four polarization modes: HH, HV, VH, VV. The entire dataset consists of 500 images,
each with a size of 512× 512 pixels. The data are sourced from the GF-3 satellite, which
operates in C-band quad-polarization strip map (QPSI) mode, with a spatial resolution of
8 m. There are 6 types of land cover considered, and others are regarded as background.
Figure 2a shows a partial slice of the AIR-PolSAR-Seg dataset.

Figure 2. The AIR-PolSAR-Seg dataset. (a) The Multi-polarization SAR image. (b) The grayscale
image fused by four polarization SAR images. (c) The composite image after color space conversion.
(d) The labels of SAR images.

Our proposed method aims to combine the four polarization images in order to retain
all the scattering attributes of the land cover with minimal interference. It combined the
HV and VH PolSAR images into the first image channel, mapped HH polarized images
as the second channel, and mapped VV polarized images as the third channel. It can be
formulated as C1

C2
C3

 = unit8


[
255− (RLF(pHV)+RLF(pVH))

2

]
[255− RLF(pHH)]
[255− RLF(pVV)]

 ∈ [0, 255], (2)

where, pHV , pVH , pHH , and pVV denote the polarization images of HV, VH, HH, and VV.
To achieve a visible fusion image shown in Figure 2b, the three image channels were

processed into a grayscale image using

Grey = 0.299× C2 + 0.587× C1 + 0.114× C3. (3)

Finally, we choose false color mapping to obtain pseudo-RGB images [32], as shown
in Figure 2c; the fusion pseudo-RGB images not only retain the different polarization
SAR attributes, but also emphasize the feature differences among the same type of objects
through color information.
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2.2. Methodology

The objective of our work is to achieve pixel-level semantic segmentation for PolSAR
images. Given a PolSAR image Ps ∈ RW,H,RGB, based on our semantic segmentation
network, we assign corresponding semantic categories to each pixel of Ps, which can be
formulated as

T = MASA-SegNet(Ps) (4)

where the function MASA-SegNet(·) represents the process of pixel-level semantic segmen-
tation; T is the result of semantic segmentation. Shown in Figure 3 is the overall framework
of our method. In this section, we first give an overall overview of our framework, then
introduce each part that makes up the network framework, and finally describe the network
in detail.

Figure 3. The proposed framework, MASA-SegNet. (a) The encoder part of MASA-SegNet used for
feature extraction. (b) The decoder part of MASA-SegNet used for pixel-level semantic classification.
The parameter c represents the number of channels of features, and the value of parameter c in
MASA-SegNet can be manually adjusted.

2.2.1. Framework of MASA-SegNet

In this paper, we propose an encoder–decoder framework for semantic segmentation
of PolSAR images named Multi-axis Sequence Attention Segmentation Network (MASA-
SegNet), which is illustrated in Figure 3. The encoder is composed of stacked blocks
of the feature extractor, as shown in Figure 4a. We adopt a simple decoder structure,
which receives low-level and high-level features from the encoder to accomplish pixel-level
semantic segmentation.

2.2.2. PolSAR Image Feature Extraction

Our feature extractor is stacked with Multi-axis Sequence Attention (MASA) blocks.
The PolSAR images are input into the feature extractor, and the low-level features and
high-level features are extracted through MASA blocks, as shown in Figure 4a. These
features are input to the decoder for the semantic segmentation task of PolSAR images.
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Figure 4. The details of feature extractor. (a) The structure of feature extractor. (b) The Multi-axis
Sequence Attention. (c) The downsampling model. (d) The attention model.

The MASA block consists of three parts, the Multi-axis Sequence Attention (MASA),
Downsampling, and Residual Connection, as shown in Figure 4b,c.

(1) DownSampling: Downsampling consists of depthwise separable convolution
(DWConv) [33], Batch Normalization, Gaussian Error Linear Unit (GELU) activa-
tion function [34], and Maxpooling. The pseudo-RGB image x from PolSAR images
shaped as(H, W, 3) is used as downsampling part inputs. We use depthwise separable
convolution [33] to extract deep features, then normalize, activate (GLUE [34]), and per-
form Maxpooling to obtain feature f with a shape of (h, w, c), which can be formulated as

f (h,w,c) = Maxpooling(GND(x)) (5)

where GND is expressed as GELU, Batch Normalization, and depthwise separable con-
volution, h and w are the feature map height and width, and c is the number of channels.
The DWConv with 3 × 3 convolution not only extracts features such as texture and color
from the image, but also implicitly encodes spatial position information, retaining relative
position information for each pixel, which is crucial for semantic work.

(2) Multi-axis Sequence Attention Block: Convolutional filters often lack attention ability
and cannot effectively suppress the impact of noise on feature extraction, thus weakening
the decoding performance of the model. To address this issue, the concept of multi-axis
sequence attention (MASA) is introduced into PolSAR feature extraction tasks. Using
MASA to perform pixel-level attention and region-level attention on features, we used
a convolution with a kernel size of 1× 1 to further deepen the features to (h, w, 2c), and
then split the features into two axes along the channel dimension, with each axis having an
input feature size of (h, w, c).

Firstly, we serialize the features on both axes:

• Pixel-level sequence attention: In the pixel-level attention axis, the feature with a size
of (h, w, c) is serialized into a sequence of tensors with a shape of ( h

b ×
w
b , b× b, c),

and the pixel of each block is (b× b), as shown in Figure 5a.
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• Region-level sequence attention: In the region-level attention axis, the entire feature
map is divided into (q× q) sequence windows with a shape of (q× q, h

q ×
w
q , c), and

the size of each window is ( h
q ×

w
q ), as shown in Figure 5b.

During the serialization process, the values of b and q remain fixed and represent a
predetermined token window size. Next, we deploy the gMLP [27] architecture across
multiple axes to compute the internal attention Figure 4d of each token.

On the pixel-level axis, the spatial attention between local pixels is calculated. Mean-
while, on the region-level axis, the global region spatial attention is calculated. And then,
the output features of the two axes are reshaped to (h, w, c), as shown in Figure 5. The
information from the upper and lower axes is merged and concatenated in the channel
dimension to obtain the shape (h, w, 2c). Finally, we restore the features to their original
size (h, w, c) by convolution with a kernel size of 1× 1. The implementation process of
multi-axis sequence attention is shown in Figure 4b.

Figure 5. Multi-axis sequence attention (MASA). (a) The pixel-level sequence attention. (b) The
region-level sequence attention.

(3) Serialized Residual Connection: To prevent network degradation and share shal-
low information, we introduce a residual structure [35] in the MASA block. In order to
map to channel dimensions for matching the attention sequnce, we introduce residual
structure with serialization [19] to convert the features to sequence and transfer features
to deeper layers without the degradation problem. In the process of serialization, we
use 1× 1 convolution to maintain the absolute spatial position, which allows us to better
understand the global distribution of land features and objects. This simple design allows
our backbone network to be both stackable and scalable, while also being able to stably
preserve spatial location information.

2.3. Network Details
2.3.1. Encoder

The encoding part of our network is a feature extractor composed of four layers of
MASA blocks. As shown in Figure 3a, the preprocessed pseudocolor image, with a size
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of (H, W, 3), is fed into the network. We stack two layers of MASA blocks sequentially
to produce low-level features of ( h

4 , w
4 , 2c) in size, and c is set to 64. Each MASA block

performs 2× downsampling. The next two layers of MASA blocks are stacked to obtain
high-level features, with a size of ( h

16 , w
16 , 8c). Our encoder pipeline is constructed in this

way. It is worth noting that the number of MASA blocks used to extract high-level and
low-level features can be variable.

2.3.2. Decoder

Inspired by DeeplabV3+ [36], we adopt its simple and efficient decoding method,
as shown in Figure 3b. To facilitate the connection of low-level and high-level features,
we use 1× 1 convolution to reduce the dimensionality of low-level features from 2c to
48, i.e., ( h

4 , w
4 , c). We upsample the high-level features by a factor of 4 to match the size

of the low-level feature, i.e., ( h
4 , w

4 , 8c). Then, we concatenate the high-level features and
low-level features along the channel dimension, i.e., ( h

4 , w
4 , 8c + c). Finally, a ( h

4 , w
4 , 4c)

feature is obtained through a 3 × 3 convolution, and after 4 times upsampling and a
1× 1 convolution, the classification of each pixel is achieved, which is (H, W, class).

3. Experiments and Results

Datasets: In order to validate the effectiveness of our proposed method, we conducted
experiments using two datasets, namely the AIR-PolSAR-Seg [29] multi-polarization SAR
image dataset and the FUSAR-MAP [30] single-polarization SAR image dataset. We prepro-
cessed the two datasets using the method described in Section 2.1 to obtain the synthesized
pseudo-RGB SAR images, and then we divided them into training, validation, and testing
sets in a ratio of 7:2:1.

Implementation Details: We built our deep learning model using the PyTorch frame-
work and trained it on an NVIDIA GeForce RTX 3090 GPU with 24 GB of memory, running
on the Ubuntu operating system. SGD is selected as the optimizer with an initial learning
rate of 7 × 10−3 and a minimum limit of 7 × 10−5, implementing a cosine annealing
strategy to decrease the learning rate while setting the batchsize to 8 and epoch number to
500. The loss function is CrossEntropy loss.

Evaluation Metrics: In order to evaluate the performance of the network, we use
some commonly accepted performance evaluation criteria to evaluate our network. In our
work, we use Intersection over Union (IoU) to evaluate the single-category segmentation
effect and use mean Intersection over Union (mIoU), frequency-weighted Intersection over
Union (FWIoU), and overall accuracy (OA) to evaluate the overall segmentation effect. IoU,
MIoU, and FWIoU are all measures used to quantify the similarity between two sets, while
OA and MPA are used to measure the accuracy of pixel classification.

The calculation formula for Intersection over Union (IoU) and mean Intersection over
Union (mIoU) is

IoU =
Pii

∑k
j=0 Pij + ∑k

j=0 Pji − Pii
(6)

MIoU =
1

T + 1

T

∑
i=0

Pii

∑k
j=0 Pij + ∑k

j=0 Pji − Pii
(7)

where T is the total number of categories T ∈ (1, 2 . . . k), assuming Pij is the amount of
pixels predicted as class j by class i, and Pii is the amount of pixels correctly predicted as
class i.

The calculation formula for FWIou (Frequency Weighted Intersection over Union) is

FWIoU =
1

∑T
i=1 ∑T

j=1 Pij

T

∑
i=1

∑T
j=1 PijPii

∑T
j=1
(

Pij + Pji
)
− Pii

. (8)
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The calculation formula for OA (Overall Accuracy) is

OA =
∑k

i=1 Pii

∑k
i=1 Ti

, (9)

where Ti is the total number of pixels labeled as class i.

3.1. Experiments on FUSAR-MAP Dataset

This section shows the result of our proposed semantic segmentation method on
the FUSAR-MAP [30] dataset. Comparing with other state-of-the-art single-polarization
SAR image semantic segmentation algorithms, U-Net [37], SegNet [38], VGG-SegNet [38],
DeepLabV3+ [36], and Fusar-Map network [30], our method demonstrates superiority in
small target segmentation and small sample learning when compared to the other networks.

Table 1 shows the results of the FUSAR-MAP [30] dataset; three indicators, namely
IoU, mIoU, FWIoU, and OA, are selected to evaluate the performance of our network. Our
overall evaluation metrics OA and FWIoU are 79.67% and 75.94%, respectively, which
shows excellent performance compared to other networks. OA is improved by 3.83–14.83%
and FWIoU improved by 9.35–21.18%. In addition, the IoU values for categories such as
water, road, and vegetation are 88.68%, 25.56%, and 61.27%, respectively, all of which are
higher than the results of other networks.

Table 1. Results on FUSAR-MAP dataset.

Methods

Terrain Category/IOU(%)

mIoU FWIoU OA
Water Road Building Vegetation

and Others

U-Net [37] 81.93 13.02 22.06 56.70 43.43 57.34 66.92

SegNet [38] 79.40 6.44 11.79 56.46 38.52 54.76 64.78

VGG-SegNet [38] 82.22 7.85 28.55 57.49 44.03 59.21 68.26

DeepLabv3+ [36] 85.87 13.72 32.60 58.30 47.62 62.23 72.02

FUSAR-Map [30] 88.28 25.26 35.15 60.55 52.31 66.59 75.80

MASA-SegNet 88.68 25.56 27.28 61.27 50.70 75.94 79.67

The segmentation results shown in Figure 6 confirm our experimental data. There exist
numerous small road branches in the FUSAR-MAP [30] dataset, which pose a challenge
to improving segmentation accuracy. As shown in Figure 6c, our method demonstrates
its superiority in the extraction of Collector Road and Residential Road. In the predicted
results of Figure 6d–f, only large Arterial Road is segmented, while most small roads are
identified as background, confirming that MASA-SegNet has a larger receptive field.

Furthermore, the network we proposed can improve the perception of detail features
and suppress the coherent noise generated during the backward scattering process. Es-
pecially in urban areas where vegetation and buildings are heavily overlapped, such as
the Residential area shown in Figure 6, the prediction results of other networks exhibit
significant misclassification of vegetation and buildings. In contrast, our network effectively
distinguishes the background, vegetation, and buildings. As shown in Figure 6a,b, there
exists pixel-value interference (speckle noise) between closely connected vegetation and
buildings; even after the fusion of SAR and optical images, the speckle noise still exists.
However, our segmentation results can effectively recognize buildings and vegetation,
suppress noise, and reduce misclassification.

We believe that the superiority of the network is attributable to its multi-axis and multi-
scale design structure, as well as the spatial and adjacent semantic correlation information
provided by the sequence attention.
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Figure 6. Visualization of experimental results on the FUSAR-MAP dataset. (a) Raw single-
polarization SAR image; (b) single-polarization SAR fusion optical image; (c) MASA-SegNet;
(d) DeeplabV3+; (e) U-Net; (f) FUSAR-Map; (g) ground truth.

3.2. Experiments on AIR-PolSAR-Seg Dataset

This section presents the experimental results obtained by applying our method to the
AIR-PolSAR-Seg dataset [29]. We compared FCN [39], ANN [40],U-Net [37], Deeplabv3+ [36],
DANet [41], PSPNet [42], EncNet [43], NonLocal [44], FUSAR-Map [30] with our work.

Table 2 presents the results of our experiments, where IoU is the evaluation metric for
various types of land cover, and mIoU, OA, and FWIoU serve as overall evaluation metrics.
In comparison to other networks, our method has exhibited improvement in small target
segmentation. The IoU value of the Land Use category in our study reached 7.91%, which
is an increase of 5.44–7.36%. With regard to overall evaluation metrics, the mIoU rose by
1.67–10.02%, and the OA improved by 0.14–1.93%. Despite the fact that our performance
in the water and housing categories is not the best, we gain a remarkable edge in OA and
mIoU, arguably resulting from the way our network amplifies the receptive field when
extracting features and implicitly encodes relative and absolute spatial information to guide
pixel-level classification.

Table 2. Results on AIR-PolSAR-Seg dataset.

Methods

Terrain Category/IOU (%)

mIoU FWIoU OAIndustrial
Area

Natural
Area Land Use Water Housing Other

FCN [39] 37.78 71.58 1.24 72.76 67.69 39.05 48.35 53.21 76.28

ANN [40] 41.23 72.92 0.97 75.95 68.40 56.01 52.58 61.54 77.46

U-Net [37] 42.17 73.83 0.96 75.52 67.19 53.28 52.12 62.12 77.29

DeepLabv3+ [36] 40.62 70.67 0.55 72.93 69.96 34.53 48.21 56.24 76.81

DANet [41] 39.56 72.00 1.00 74.95 67.79 56.28 51.93 58.73 76.91

PSPNet [42] 40.70 69.46 1.33 69.46 68.75 32.68 47.14 56.95 76.21

EncNet [43] 32.95 71.59 1.89 75.66 67.16 37.24 47.75 57.68 75.67

NonLocal [44] 35.51 71.12 2.47 70.60 68.39 16.31 44.23 53.43 76.05

FUSAR-Map [30] 38.52 74.09 1.94 68.17 62.88 47.63 55.45 60.61 74.42

MASA-SegNet 45.00 74.79 7.91 74.36 66.87 56.58 54.25 65.54 77.60

The results from different networks are presented in Figure 7. In the Natural area scene,
by comparing the ground truth in Figure 7g with our test results in Figure 7c, we observe
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that the land use, as a small target, is effectively recognized. As shown in Figure 7d–f this
small target is not identified or even misdetected. This makes us believe that the advantage
of our network with multi-scale receptive fields remains effective in the multi-polarized
data. It is worth noting that the spatial distribution of the overall terrain classification
conforms to the terrain layout of the labels as shown in the comparison of Figure 7c–g. In
the riverbank scene, particularly the difference in results between Figure 7c,f demonstrates
the spatial awareness ability of our network.

Figure 7. Visualization of experimental results on the AIR-PolSAR-Seg dataset. (a) Raw Multi-
polarization SAR image; (b) preprocessed PolSAR data; (c) MASA-SegNet; (d) DeeplabV3+; (e) U-Net;
(f) FUSAR-Map. (g) ground truth.

The result indicates that our method can improve the network’s sensitivity to different
backscatter types, guiding the edge segmentation and maximally retaining the position
information in abstract features.

3.3. Ablation Study

Ablation experiments are designed to validate the superiority of the attention mecha-
nism in SAR image processing within our network. Using MASA-SegNet as the baseline,
we design a Full Convolution Network (FCN) architecture as a control group, denoted
as MASA-SegNet without MASA (None-MASA). None-MASA retains all downsampling
modules and residual connections from MASA-SegNet while excluding the MASA, aiming
to validate our proposition that the attention mechanism establishes connections between
pixels and focuses attention on valuable data, thus preserving high-frequency features,
enhancing spatial awareness of the network, and perceiving subtle changes such as details,
edges, and textures in the image.

We conducted experiments on the AIR-PolSAR-Seg dataset and provided the experi-
mental results. Table 3 provides a numerical comparison of performance indicators; mIoU,
FWIoU, and OA all verify the role of the MASA in improving spatial perception and
classification accuracy.

Table 3. Result of ablation experiment on AIR-PolSAR-Seg dataset

Method mIoU FWIoU OA

None-MASA 47.955 60.22 73.78

MASA-SegNet 54.25 65.54 77.6

The visualization of the effect of attention on the prediction results is shown in Figure 8.
The red boxes in Figure 8b,c highlight the differences in network segmentation results,
demonstrating the capabilities in small object and detail segmentation as well as noise
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suppression. It is evident that our network is able to predict results more smoothly and
effectively suppress noise. In the first row of images in Figure 8b, there are no pixel
misclassifications in the segmentation of the river. In contrast, in the first row of the
prediction results in Figure 8c, such misclassifications are present due to noise. The second
row of results in Figure 8b,c confirms our superiority in small object segmentation.

Figure 8. Prediction result images of ablation experiment on AIR-PolSAR-Seg dataset. (a) Prepro-
cessed PolSAR data; (b) the result of MASA-SegNet; (c) the result of None-MASA; (d) ground truth.

4. Discussion
4.1. Analysis of Data Preprocessing Effects

Traditional noise metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) require comparison with clear, noise-free data. However, the
dataset lacks real noise-free images, which poses a challenge for evaluating denoising
performance. The noise in SAR images appears as randomly scattered pixels due to its
imaging mechanism. These pixels exhibit a random and discrete distribution within the
image. Based on the noise characteristics of SAR images, we can assess image quality by
comparing scatter plots before and after preprocessing. Scatter plots effectively display the
distribution of pixel values in an image, with each point representing a pixel value, and
the degree of scatter in the points of the scatter plot reflects the level of image chaos. We
analyze the distribution of pixel point values qualitatively using scatter plots. Figure 9a
contains a large number of randomly scattered points, representing random speckle noise,
and in Figure 9b, the presence of outliers decreases, and pixel points are constrained
within a certain range, demonstrating the effectiveness of our preprocessing method in
denoising tasks.

Figure 9. Speckle distribution map. (a) Pixel value distribution chart of the original image; (b) pixel
value distribution chart of the preprocessed image.
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4.2. Effect of Feature Extractor on PolSAR

Considerations regarding the imaging characteristics of PolSAR necessitate addressing
the precise identification of similar scattering types and the suppression of coherent noise.
The feature extractor in our proposed MASA-SegNet offers the advantages of multi-axis
neighborhood attention and serialized spatial positional information. It combines the char-
acteristics of convolution-pooling downsampling structure and multi-axis neighborhood
attention, which enables the network to extract features while expanding the receptive field
and enhance spatial awareness. Neighborhood attention from gMLP structure allows it to
establish pixel-level relations, which helps counteract incoherent noise interference. This
will provide important reference for the multi-level feature selection strategy.

In the design of our proposed MASA-SegNet, we require a clear, denoised image as
the input for low-level features while simultaneously preserving edge and texture features
to enhance the extraction of local detail information. From Figure 10a–c, it is evident that
the output of the second block exhibits significant improvements in smoothing and edge
enhancement compared to the first block. From the third block onward, the image features
gradually become more abstract, hence the selection of the output of the second block as
low-level features. We consider that the expansion of network depth is caused by the built-
in convolutional operations in our attention module, which performs adaptive weighted
dot product summation within the module. This helps to reduce noise interference on the
same resolution unit, addressing cases of boundary fuzziness and misclassification. As
the network deepens, the feature images gradually become more abstract, as shown in
Figure 10d,e, and eventually output high-level features and merge them with low-level
features in the decoder, in order to retain a significant amount of semantic information to
coordinate the completion of the segmentation task.

Figure 10. Feature visualization of MaSSA-Net. (a–e) Visualization of the output features of in-
dividual layers of MaSSA-Net. (f–j) 3D surface plot of the features. (k–o) 2D heat map of 3D
surface graph.

Figure 10 shows the visualization results of the intermediate features from different
layers, which proves our theory. Sporadically distributed speckled pixels may cause
serious between-class similarity and within-class dissimilarity. Our network attends more
closely to ground objects by incorporating multi-scale spatial awareness and multi-axis
sequence attention mechanisms, thereby reducing the influence of noise on ground object
classification. The features shown in Figure 10k,l proves that our network effectively
suppresses coherent noise.
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Figure 10f–j display the 3D quantification of features, manifesting the spatial propa-
gation and detail enhancement during the feature extraction process. Although feature
representation continuously abstracts with network depth, the maximum difference always
concentrates within a fixed coordinate range. Correspondingly, this is visualized as the
boundary line between the object and the background when projected onto Figure 10k–o.

4.3. Advantages of Framework

Our multi-axis attention network, designed specifically for polarimetric synthetic
aperture radar (PolSAR) images, addresses segmentation challenges by exploiting spatial
sequences and offers two advantages:

(1) Spatial position information. Our network promotes strong spatial perception through
the downsampling and serialization of residual design. Within the downsampling module,
feature extraction employs 3× 3 convolution. At the same time, the serialization mod-
ule utilizes adaptive padding and stride in a purely linear projection process employing
1× 1 convolution for feature extraction, while retaining sequential spatial position infor-
mation of different neighborhoods. The 1× 1 convolution mainly serves two functions
in serialization. One is to increase the dimension of the input of the previous layer and
change the scale of the input to match the output of this layer for residual connection. The
other is to implicitly encode the spatial position information of the previous layer and pass
it to the next layer. Zero padding and borders in convolution are an anchor from which
spatial information is derived and eventually propagated over the whole image [45]. In
our network design, the spatial position information mainly comes from the input image
and intermediate features. We believe that spatial information has excellent guiding sig-
nificance for the accuracy improvement of semantic segmentation of land objects. The
spatial connections between pixels provide global information for scene structures and
background edges, reducing errors in semantic segmentation, such as misclassification of
land objects, misalignment of segmentation objects, and confusion between backgrounds
and recognition objects. At the same time, spatial position information helps to alleviate
the spatial confusion caused by the partitioning and recombination in the gMLP (gated
Multi-Layer Perceptron) structure.

(2) Image denoising. The imaging mechanism of PolSAR images determines that the
input raw data have a large amount of speckle noise. Therefore, the feature extractor needs
to have the performance of suppressing noise. A multi-axis sequence attention mechanism
based on gMLP with linear projection completed by convolution is introduced to solve this
challenge. The downsampled feature tensor subspace, which is used to generate attention
weights, captures the dependency between neighboring and distant regions and focuses
the network on more valuable areas to suppress noise effects.

5. Conclusions

This study introduces a new Multi-axial Sequence Attention Segmentation Network
for Semantic segmentation of PolSAR image, namely, MASA-SegNet. The network employs
an encoder–decoder structure in conjunction with convolution and gMLP to perform multi-
scale spatial sequence attention semantic segmentation. It has demonstrated remarkable
potential in both PolSAR image denoising and land use classification. However, the multi-
axis sequence attention mechanism in MASA-SegNet lacks exploration for adaptive slice
sizes. Fixed-size slicing windows may affect the network’s focus on ground targets and
overall spatial perception, reducing its competitiveness in downstream tasks with limited
objects of interest, such as object detection. In the future, we will explore adaptive dual-axis
spatial sequence attention mechanisms and apply this structure to a wider range of remote
sensing tasks.
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