Joint Posterior Probability Active Learning for Hyperspectral Image Classification
Abstract
:1. Introduction
- JPPAL_CRF focuses not only on the two maximum posterior probabilities but also on the contribution of the remaining posterior probabilities to the information content of the sample. By combining all obtained posterior probabilities to construct a sampling function, an AL strategy is proposed.
- The sampling process reduces the selection of labeled samples trapped at the boundary of a single class and focuses more on gaining more diversity during the sample selection process. It not only improves classification accuracy but also performs well in the balance of all classes.
2. Proposed Approach
2.1. Sampling Strategy by Combining Posterior Probabilities
2.2. Joint Optimization via Conditional Random Field
3. Experiment
Algorithm 1: Framework of JPPAL_CRF |
3.1. Datasets
3.2. Experimental Parameters and Evaluation Metrics
3.3. Ablation Study
3.4. Performance Comparison with Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Zhou, X.; Xi, B.; Li, J.; Kang, J.; Tang, S.; Chen, Z.; Hong, W. Diverse-Region Hyperspectral Image Classification via Superpixelwise Graph Convolution Technique. Remote Sens. 2022, 14, 2659–2670. [Google Scholar]
- Li, Q.; Yuan, Y.; Jia, X.; Wang, Q. Dual-stage approach toward hyperspectral image super-resolution. IEEE Trans. Image Process. 2022, 31, 7252–7263. [Google Scholar] [CrossRef]
- Meng, Z.; Li, L.; Jiao, L.; Liang, M. Fully dense multiscale fusion network for hyperspectral image classification. Remote Sens. 2019, 11, 2718. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhao, Y.-Q.; Chan, J.C.-W. Learning and transferring deep joint spectral-spatial features for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [Google Scholar] [CrossRef]
- Li, Q.; Gong, M.; Yuan, Y.; Wang, Q. Symmetrical feature propagation network for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Pasolli, E.; Crawford, M.M. An adaptive multiview active learning approach for spectral–spatial classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2557–2570. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Hyperspectral image segmentation using a new bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3947–3960. [Google Scholar] [CrossRef] [Green Version]
- Crawford, M.M.; Tuia, D.; Yang, H.L. Active learning: Any value for classification of remotely sensed data? Proc. IEEE 2013, 101, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lu, T.; Li, S. Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4976–4988. [Google Scholar] [CrossRef]
- Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218–2232. [Google Scholar] [CrossRef]
- Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Topics Signal Process. 2011, 5, 606–617. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Li, S. Multiview intensity-based active learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 669–680. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, Q.; Jia, S. Multiview spatial–spectral active learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Zhou, X.; Prasad, S.; Crawford, M.M. Wavelet-domain multiview active learning for spatial-spectral hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 4047–4059. [Google Scholar] [CrossRef]
- Copa, L.; Tuia, D.; Volpi, M.; Kaneski, M. Unbiased query-by-bagging active learning for VHR image classification. In Proceedings of the SPIE-The International Society for Optical Engineering, Liptovský Ján, Slovakia, 6–10 September 2010; pp. 78300K-1–78300K-8. [Google Scholar]
- Mitra, P.; Shankar, B.U.; Pal, S.K. Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognit. Lett. 2004, 25, 1067–1074. [Google Scholar] [CrossRef]
- Luo, T.; Kramer, K.; Goldgof, D.B.; Samson, A.R.S.; Hopkins, T.; Cohn, D. Active learning to recognize multiple types of plankton. J. Mach. Learn Res. 2005, 6, 589–613. [Google Scholar]
- Sun, S.; Zhong, P.; Xiao, H.; Wang, R. An MRF model-based active learning framework for the spectral-spatial classification of hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 2015, 9, 1074–1088. [Google Scholar] [CrossRef]
- Zhong, P.; Wang, R. Learning conditional random fields for classification of hyperspectral images. IEEE Trans. Image Process. 2010, 19, 1890–1907. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Jia, X.P. Simplified conditional random fields with class boundary constraint for spectral–spatial based remote sensing image classification. IEEE Geosci. Remote Sens. Lett. 2012, 9, 856–860. [Google Scholar] [CrossRef]
- Shotton, J.; Winn, J.; Rother, C.; Criminisi, A. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. Proc. Euro. Conf. Comput. Vis. 2006, 9, 1–15. [Google Scholar]
- Zhong, Y.; Lin, X.; Zhang, L. A support vector conditional random fields classifier with a mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 1314–1330. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral-spatial classifica- tion of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 844–856. [Google Scholar] [CrossRef]
- Settles, B. Active Learning Literature Survey; University of Wisconsin: Madison, WI, USA, 2009; Volume 1648. [Google Scholar]
Dataset | Metric | BT_CRF | JPPAL | JPPAL_CRF |
---|---|---|---|---|
Salinas | OA | 92.55 (0.60) | 91.42 (0.31) | 93.34 (0.85) |
AA | 95.99 (0.25) | 94.40 (0.58) | 96.23 (0.54) | |
Kappa | 91.70 (0.65) | 90.45 (0.35) | 92.58 (0.97) | |
Pavia University | OA | 94.90 (0.91) | 92.08 (0.36) | 96.07 (0.65) |
AA | 89.45 (3.59) | 91.52 (0.51) | 93.58 (1.64) | |
Kappa | 93.20 (1.23) | 89.41 (0.49) | 94.76 (0.88) |
Class | RS | BT | MS | LC | JPPAL_CRF |
---|---|---|---|---|---|
1 | 96.12 (1.45) | 99.84 (0.27) | 99.08 (1.78) | 99.94 (0.09) | 99.60 (0.61) |
2 | 99.21 (0.44) | 99.39 (0.29) | 99.76 (0.12) | 97.68 (1.92) | 99.87 (0.19) |
3 | 86.58 (8.08) | 91.13 (3.40) | 83.29 (14.10) | 74.65 (10.74) | 98.48 (1.38) |
4 | 99.47 (0.23) | 97.29 (0.47) | 99.06 (0.17) | 96.75 (0.84) | 96.93 (0.78) |
5 | 95.93 (1.84) | 97.86 (2.70) | 99.23 (0.24) | 89.77 (10.21) | 98.83 (0.41) |
6 | 99.71 (0.05) | 99.87 (0.09) | 99.98 (0.02) | 99.62 (0.49) | 99.98 (0.02) |
7 | 99.32 (0.09) | 99.79 (0.18) | 99.99 (0.02) | 99.44 (0.36) | 99.92 (0.04) |
8 | 90.71 (1.09) | 83.57 (3.71) | 64.85 (5.00) | 92.10 (9.61) | 90.16 (4.12) |
9 | 97.77 (1.33) | 98.58 (0.31) | 99.59 (0.08) | 94.92 (5.60) | 99.98 (0.04) |
10 | 88.15 (1.26) | 88.87 (2.05) | 95.88 (2.30) | 77.40 (11.80) | 94.52 (0.93) |
11 | 88.13 (5.33) | 89.16 (1.43) | 94.02 (4.13) | 83.60 (25.18) | 97.34 (0.67) |
12 | 99.50 (0.65) | 97.19 (0.25) | 99.01 (0.38) | 92.35 (7.79) | 100.00 (0.00) |
13 | 97.94 (0.53) | 96.04 (1.60) | 98.09 (1.12) | 96.70 (3.49) | 96.11 (1.25) |
14 | 92.11 (0.55) | 95.90 (1.14) | 97.17 (1.22) | 98.30 (1.63) | 97.87 (1.47) |
15 | 46.70 (3.16) | 71.62 (9.18) | 65.14 (18.85) | 91.03 (10.30) | 71.32 (12.46) |
16 | 94.03 (4.29) | 99.14 (0.30) | 99.76 (0.19) | 99.61 (0.22) | 98.76 (0.27) |
OA | 88.32 (0.39) | 90.29 (1.08) | 85.96 (1.97) | 87.77 (1.40) | 93.34 (0.85) |
AA | 91.96 (0.55) | 94.08 (0.43) | 93.37 (1.10) | 91.90 (2.00) | 96.23 (0.54) |
Kappa | 86.95 (0.44) | 89.21 (1.18) | 84.26 (2.25) | 86.36 (1.55) | 92.58 (0.97) |
Class | RS | BT | MS | LC | JPPAL_CRF |
---|---|---|---|---|---|
1 | 90.02 (3.07) | 92.68 (2.13) | 86.92 (2.95) | 92.41 (1.28) | 97.86 (0.37) |
2 | 98.23 (0.58) | 93.33 (1.57) | 88.72 (2.25) | 93.20 (2.18) | 99.31 (0.42) |
3 | 57.12 (7.75) | 83.55 (4.29) | 89.99 (1.77) | 82.00 (3.17) | 78.88 (6.39) |
4 | 87.88 (1.64) | 97.12 (0.39) | 91.84 (3.49) | 96.18 (0.83) | 93.99 (2.66) |
5 | 98.94 (0.28) | 99.61 (0.32) | 99.88 (0.11) | 99.88 (0.59) | 99.76 (0.20) |
6 | 63.89 (2.05) | 92.22 (1.90) | 59.92 (13.55) | 92.68 (2.63) | 91.90 (0.98) |
7 | 48.15 (11.70) | 86.16 (5.78) | 79.53 (12.56) | 81.10 (9.36) | 86.05 (6.49) |
8 | 89.74 (2.03) | 80.69 (1.61) | 72.66 (2.80) | 79.94 (2.64) | 95.11 (1.64) |
9 | 99.79 (0.14) | 99.96 (0.08) | 99.96 (0.08) | 99.96 (0.08) | 99.32 (0.31) |
OA | 87.93 (0.48) | 91.80 (0.48) | 82.44 (2.99) | 91.31 (0.72) | 96.07 (0.65) |
AA | 81.53 (1.17) | 91.70 (0.77) | 85.49 (2.13) | 90.71 (1.02) | 93.58 (1.64) |
Kappa | 83.66 (0.63) | 89.02 (0.67) | 76.89 (3.65) | 88.36 (1.02) | 94.76 (0.88) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wang, S.; Li, Q. Joint Posterior Probability Active Learning for Hyperspectral Image Classification. Remote Sens. 2023, 15, 3936. https://doi.org/10.3390/rs15163936
Li S, Wang S, Li Q. Joint Posterior Probability Active Learning for Hyperspectral Image Classification. Remote Sensing. 2023; 15(16):3936. https://doi.org/10.3390/rs15163936
Chicago/Turabian StyleLi, Shuying, Shaowei Wang, and Qiang Li. 2023. "Joint Posterior Probability Active Learning for Hyperspectral Image Classification" Remote Sensing 15, no. 16: 3936. https://doi.org/10.3390/rs15163936
APA StyleLi, S., Wang, S., & Li, Q. (2023). Joint Posterior Probability Active Learning for Hyperspectral Image Classification. Remote Sensing, 15(16), 3936. https://doi.org/10.3390/rs15163936