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Abstract: Active learning (AL) is an approach that can reduce the dependence on the labeled set
significantly. However, most current active-learning methods are only concerned with the first
two columns of the posterior probability matrix during the sampling phase. When the difference
between the first and second-largest posterior probabilities of several samples is proximate, these
approaches fail to distinguish them further. To improve these deficiencies, we propose an active-
learning algorithm, joint posterior probabilistic active learning combined with conditional random
field JPPAL_CREF). In the active-learning sampling phase, a new sampling decision function is built
by jointing all the information in the posterior probability matrix. By doing so, the variability between
different samples is refined, which makes the selected samples more meaningful for classification.
Then, a conditional random field (CRF) approach is applied to mine the regional spatial information
of the hyperspectral image and optimize the classification results. Experiments on two common
hyperspectral datasets validate the effectiveness of JPPAL_CRF.

Keywords: hyperspectral image; classification; active learning; conditional random field

1. Introduction

Hyperspectral image (HSI) classification is a vibrant research area for the remote-
sensing community and is essential in both civilian and military applications [1,2]. The
most significant characteristic of HSI is the image-space spectrum integration. This includes
not only spatial information but also tens or even hundreds of narrow spectral bands on the
surface of Earth [3,4]. This characteristic provides the opportunity for precise classification
of ground objects. However, it also results in the “Hughes phenomenon”. The high-
dimensional-data nature of HSI reduces the accuracy of the classifier when the quantity
of the training set is limited [5]. Therefore, the performance of supervised classification
algorithms depends largely on the “quantity” and “quality” of the labeled set [6]. However,
it is costly and tedious to obtain enough training samples with real labels in practice.
Therefore, it is essential to design efficient algorithms that have both high classification
accuracy and minimize training samples.

The approach to reduce computational and time costs by actively selecting the labeled
set is called AL [7]. AL is a process of selecting the most valuable samples to expand the
training set. This approach provides a good solution for situations where the size of the
label set in the classification process is small [8]. Specifically, a small initial labeled set
and a large unlabeled set are given. AL quantifies the informativeness of pixel-class labels
by their uncertainty, and manually labels unlabeled samples where the uncertainty in the
class labels is the greatest. The labeled samples are iteratively extended so that the labeled
samples have the maximum amount of information. By intelligently selecting unlabeled
samples instead of randomly selecting them, the classifier model is better trained to achieve
better classification accuracy [9,10].

Remote Sens. 2023, 15, 3936. https:/ /doi.org/10.3390/1s15163936

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs15163936
https://doi.org/10.3390/rs15163936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15163936
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15163936?type=check_update&version=1

Remote Sens. 2023, 15, 3936

2 0f 10

In general, according to the selection strategy of the unlabeled set, AL algorithms
can be divided into two major types: committee learner-based approaches [11,12] and
confidence-based approaches. The first labels the samples with various classifiers and then
the oracle makes the final decision on the disputed labeled samples. The difference between
the different classifiers is that they predict different results for the sample labels [13-15].
Committee learner-based approaches include querying by bagging [16], bagging entropy,
and bottling normalized entropy. The latter is first given lower confidence samples by
the classifier and then given to the oracle for selective labeling. Confidence-based ap-
proaches can be further divided into two broad types: Margin Sampling (MS)-based
approaches [13,17] and class probability distribution-based approaches, also known as
Breaking Ties (BT) [18]. MS considers the samples closest to the classifier separation hy-
perplane to be the most informative samples. BT considers the samples with the smallest
difference between the two maximum posterior probabilities to be the samples with the
highest uncertainty.

Among these active-learning approaches, class probability distribution-based ap-
proaches attract our attention. Most of them only consider the difference between the first
two columns of the posterior probability matrix. BT tends to assume that two samples have
the same amount of information when the difference between the first two columns of the
posterior probability matrix is equal. Then, the sampling strategy is difficult to distinguish
which sample is more important. To solve this problem, we propose a new active-learning
algorithm, JPPAL_CRF. This approach mines all the information contained in the posterior
probability matrix. This allows the difference between the samples to be further refined
so that more suitable samples for training can be selected. In addition, to fully utilize
the spatial information in the HSI, we optimize the classification result using CRF. The
contributions of this letter can be summarized as follows:

e JPPAL_CREF focuses not only on the two maximum posterior probabilities but also on
the contribution of the remaining posterior probabilities to the information content of
the sample. By combining all obtained posterior probabilities to construct a sampling
function, an AL strategy is proposed.

*  The sampling process reduces the selection of labeled samples trapped at the boundary
of a single class and focuses more on gaining more diversity during the sample
selection process. It not only improves classification accuracy but also performs well
in the balance of all classes.

The remainder of this paper is organized as follows. Section 2 describes the proposed
approach. Section 3 demonstrates its effectiveness through experiments on two HSI datasets.
Finally, Section 4 gives the conclusion.

2. Proposed Approach

This section presents the proposed AL algorithm, namely JPPAL_CREF, which is shown
in the framework in Figure 1. The fundamental idea of the algorithm is to build a new
active-learning model by joining all the posterior probabilities from the support vector
machine (SVM). Then, CRF is utilized to mine the spatial information of the dataset and
further optimize the classification results.
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Figure 1. Overall framework of JPPAL_CRF using AL to select the most valuable samples to expand
the labeled set, and then using CRF to optimize the classification results.

2.1. Sampling Strategqy by Combining Posterior Probabilities

Let X = {xq,------ ,Xn} € R be the HSI matrix, where d is the number of spectral
bands, n is the total number of spatial pixels, and x; = {x;1, xjp,- -+ - - ,Xiq} is a spectral
vector. LetY = {yg ------ Yn} € R" be the label of the image where each element is one of
the pre-defined classes, ie., y; e K={1,------ K}.

BT depends on the minimum difference between the first two columns of the sample
probability matrix [12]. The decision criterion is

ABT: 1 =k ‘,A_ :k ‘/A ’ 1
X; aiisef;;n{ggg p(yi = k|x;, @) kGKm\e{lﬁ}P(yz |x; w)} ¢))

where k+ = argmaxgcx p(y; = k|x;, @) is the class label corresponding to the maximum
posterior probability of x;. K\{k+} is the rest of the class labels except k+, Xy is the
unlabeled set, and @& is the logistic regressor set. From Equation (1), it can be observed
that BT focuses on the area of the boundary between two classes, to obtain more diversity
during the sample selection process [19].

With BT sampling, it is difficult to distinguish them when two samples have similar
BT scores. For example, when the posterior probabilities of two samples are (0.4, 0.4, 0.2, 0)
and (0.3, 0.3, 0.2, 0.2). We can hardly distinguish these two samples when relying only on
the two maximum posterior probabilities to calculate the scores. However, it is an efficient
solution to this problem by combining all the posterior probabilities to extend the difference
between these samples. The decision criteria for the joint posterior probabilities is

K
J?IUP = argmin{ lmax p(y; = k|lx;,@)— max p(y; = k|xi,&3)] * Hs,»,k} ()
k=1

x;€Xy keK keK\{k+}
Sig = 1—plyi= k|xi,@)]2, p(yi =klx;, @) > T 6)
l’ 1, ply; = klx;, @) <t

where 7 is the threshold value of the sample probability. As p(y; = k|x;, &) becomes larger,
s tends to be closer to 0. Otherwise, it tends to be 1.

The gradient of s;; on (0, 1) ranges from large to small, which means that the closer
p(y; = k|x;, @) is to 0, the greater the effect on the score and the more discernible the
difference between the information of the two samples. p(y; = k|x;, @) is always around
0.5 and we only need to focus on the gradient of s; x around 0.5. When p(y; = k|x;, @) is too
low, the excessive impact on the total score is minimized by setting a threshold 7. Based
on prioritizing the difference between the two maximum probabilities, all probabilities are
combined to refine the differences across samples. When the difference between the two
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maximum probabilities of different samples is similar, the labeled set X} can be expanded
by selecting candidate samples X that are more favorable for classification.

2.2. Joint Optimization via Conditional Random Field

The CRF model takes advantage of the dependencies between local or global data
and incorporates spatial contextual information into the classification framework [20,21].
In the Bayesian framework, the joint probabilities are transformed into SVM posterior
probabilities, which are used as

p(y,x) = p(y)p(xly) = p(ylx), 4)

where x is the observation field, « denotes positive correlation, y is the labeling field,
and p(y) satisfies the Gibbs distribution. From Equation (4), the CRF models the joint
probabilities of the observations and their corresponding labels.

CRF simulates the posterior probability of labeling rate, and the observed image is
distributed in Gibbs. It can be expressed as

plylx) = Z(Z)eXP{Zw(yk,x)}, (5)

keK

where Z(-) is a normalized function. y(y, x) is a potential function and includes unary
potential function, binary potential function, and higher-order potential function.

Although higher-order potential functions can model a wider range of contextual in-
formation, the inference process for such potential functions is generally more difficult [22].
Therefore, the second-order CRF is often chosen for study in classification problems. The
CRF model considering only the information content of unary and binary potential clusters
can be expressed as

p(ylx) = Z(lx) eXp{ieZs(Pi(yi'xi) +r X éij(}/i/yj/x)}r (6)

i€eS jen

where ¢;(-) and () are the information content of the unary and binary potential groups,
and 7; is the domain of node i.

The unary potential function ¢;(y;, x;) is the model for the association between the
observed image and the label. It uses feature vectors to calculate the cost of individual
samples using a specific class of label. Then, the unary potential function ¢;(y;, x;) can be

defined as
K

¢i(yi, xi) = kZ S(yi = k) psom (yi = k[xi), ?)
=1

where J(-) is the Dirac delta function and psom (y; = k|x; ) is the multiclass probabilistic
SVM model.

The binary potential function &;;(y;, yj, x) takes into account both the labeling field
and the observation field to model the spatial information between each sample and
neighborhood. Due to spectral variations and noise, the spectral values of neighboring
samples on the image may seem different, but they may belong to the same class because of
spatial correlation. When modeling this smoothness, the binary potential function considers
the labeling restriction. This helps to classify images with the same features into a region
that is evenly distributed and to preserve the edges of two neighboring regions [23]. Then,
the equation of the binary potential function &;;(y;, y;, x) is

2
Cij(yiryj, %) = { : _exp(_%% Vi #Yj ®)
1, Vi =Yj
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where |xi — X |2 is distance between spectral vectors and ¢ is the average of (x; — x]-)T(xi —
x;). The central idea of the model is to determine the consistency of the spectral vector
representation. When the spectral vectors of two neighboring pixels are similar, &;;(y;, y;, x)
converges to 1, and on the contrary, it converges to 0.

3. Experiment

In this section, we conduct experiments to verify the advantages of JPPAL_CRE. First,
two common HSI datasets are presented. Then, the experimental parameters are introduced,
which include the classifier settings, the parameters of active learning, and the evaluation
metrics. Finally, ablation studies and comparative experiments validate the effectiveness
and superiority of Algorithm 1.

Algorithm 1: Framework of JPPAL_CRF

Input: HSI dataset X € R¥*" number of iterations T, and initial labeled set X .
Output: Classification result Y.
1 Expand the labeled set by active learning. fori =1 to T do
2 (1) Train classifier SVM using the labeled set X}. (2) Obtain the candidate
samples X from unlabeled set X;; by Equations (2) and (3). (3) Label the
candidate samples Xc.
3 (4) Update XL :XLUXC and Xu = Xu\Xc.
4 end
5 Train classifier SVM with the labeled set X7 .
6 Obtain psym (y; = k|x; ) by predicting X.
7 Calculate ¢;(-) and ¢(-) by Equations (7) and (8).
8 Get optimized classification result Y by Equation (6). Return classification result Y.

3.1. Datasets

This letter conducts experiments on two datasets, Salinas and Pavia University. The
Salinas dataset was acquired by the AVIRIS sensor in 1998 over the Salinas Valley, California.
The original image contains 224 spectral bands, each with a size of 512 x 217. After the
20 bands affected by the absorption of water (108-112, 154-167, and 224) were removed,
the remaining 204 bands were retained for image classification. The dataset has 16 class
labels, with a specific label for each pixel. The Pavia University dataset was collected in
2002 by the ROSIS-03 sensor at the University of Pavia, northern Italy. The size of the
original image dataset is 610 x 610, with 103 spectral bands. Some pixels that contained no
information had to be removed, and the remaining nine classes of 610 x 340 pixels were
used for classification.

3.2. Experimental Parameters and Evaluation Metrics

Classifier settings: The SVM classifier is used to classify samples on two common HSI
datasets to demonstrate the effect of active learning. We use the same parameter settings for
the SVM classifier on both datasets. The SVM classifier uses the RBF kernel with penalties
C and gamma initialized to 50 and 0.8, respectively. Specifically, we artificially set T to 0.02
without further adjustment.

Parameters of active learning: We select the 50% samples as the test set and the
remaining as the training set. In addition, the random selection of samples may lead to the
appearance of errors. To eliminate this effect, the final classification results were derived by
calculating the mean and standard deviation after five runs. Due to the different sample
totals and characteristics of the two datasets, we use different iteration parameters for the
experiments. In the Salinas dataset, we select 80 samples (5 samples per class) for the initial
labeled set. During the active-learning iteration, 30 samples are selected per iteration for
labeling and added to the labeled set. The total number of iterations T is 30. Therefore,
1.8% of the total dataset is selected to train the SVM, 980 in total. In the Pavia University
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dataset, we select 45 samples (5 samples per class) as the initial labeled set. During the
active-learning iteration, 30 samples are selected per iteration for labeling and added to the
labeled set. The total number of iterations T is 20. Therefore, 1.5% of the total dataset is
selected to train the SVM—645 in total.

Evaluation metrics: To investigate the performance of JPPAL_CREF, three commonly
used classification accuracy measures are used on two hyperspectral datasets: Overall
Accuracy (OA), Average Accuracy (AA), and Kappa.

3.3. Ablation Study

The proposed algorithm contains two main parts: the JPPAL and the CRF optimization
process. To demonstrate the validity of the two parts of the experiments, we conduct sepa-
rate experiments. Table 1 presents the classification results of the two ablation experiments
and the proposed approach. It can be seen that even with the inclusion of spatial informa-
tion, BT_CREF fails to achieve higher classification accuracy without improvement in the
decision function. However, the accuracy of JPPAL receives a significant improvement with
the addition of CRF optimization. Therefore, both the JPPAL and the CRF optimization
process have a positive impact on the classification results.

Table 1. Classification results of experiments BT_CREF, JPPAL and JPPAL_CREF on Salinas and Pavia
University (%), and the best result is bolded.

Dataset Metric BT_CRF JPPAL JPPAL_CRF

OA 92.55 (0.60) 91.42 (0.31) 93.34 (0.85)

Salinas AA 95.99 (0.25) 94.40 (0.58) 96.23 (0.54)
Kappa 91.70 (0.65) 90.45 (0.35) 92.58 (0.97)

OA 94.90 (0.91) 92.08 (0.36) 96.07 (0.65)

Pavia University AA 89.45 (3.59) 91.52 (0.51) 93.58 (1.64)
Kappa 93.20 (1.23) 89.41 (0.49) 94.76 (0.88)

3.4. Performance Comparison with Methods

We conduct comparison experiments on the Salinas dataset and Pavia University
dataset, respectively. The four comparison algorithms are Random Selection (RS), Break-
ing Ties (BT) [18], Margin Sampling (MS) [10], and Least Confident (LC) [24]. These
algorithms all use the same initial samples, number of samples per generation, and the
number of iterations as JPPAL_CREF. Figures 2 and 3 represent the visual classification
maps of the five experiments on Salinas and Pavia University, respectively. LC tends
to select samples whose maximum posterior probability is closest to 0.5. However, it
loses the information implied by the rest of the label distribution. The samples selected
by BT are likely to be trapped in a single-category boundary. The overall accuracy of
MS is poor, which varies widely for different classes. As a result, these algorithms show
many misclassification results. It can be seen that our method (see Figures 2f and 3f)
shows results closer to the ground-truth image (see Figures 2a and 3a) than other methods
(see Figures 2b—d and 3b-d).

Tables 2 and 3 give the classification results of the five algorithms on Salinas and Pavia
University. The results show that the values of JPPAL_CRF are always the highest on OA,
AA, and Kappa. The relatively low OAs of all the comparison algorithms suggest that these
algorithms are more extreme in the sample selection. JPPAL_CRF mitigates the effect of
the first two maximum posterior probabilities while the remaining posterior probabilities
are incorporated. It allows more valuable samples to be selected during active learning.
In the classification stage, CRF is used to mine spatial domain information so that some
error-prone classification categories have higher accuracy. Our method improves overall
classification accuracy and maintains a balance of all feature classes. Thus, JPPAL_CRF
outperforms other methods from the perspective of classification accuracy.
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Figure 2. The visual comparison results of classification maps in Salinas. (a) Ground-truth image.
(b) RS. (c) BT. (d) MS. (e) LC. (f) JPPAL_CRE.

(b)

Figure 3. The visual comparison results of classification maps on Pavia University. (a) Ground-truth
image. (b) RS. (c) BT. (d) MS. (e) LC. (f) JPPAL_CRFE.

Table 2. Classification results of the RS, BT, MS, LC, and JPPAL_CRF on the Salinas dataset (%), and
the best result is bolded.

Class RS BT MS LC JPPAL_CRF
1 96.12 (1.45)  99.84(0.27)  99.08(1.78)  99.94(0.09)  99.60 (0.61)

2 9921 (0.44)  99.39(0.29)  99.76 (0.12)  97.68(1.92)  99.87 (0.19)

3 86.58 (8.08)  91.13(3.40)  83.29(14.10)  74.65(10.74)  98.48 (1.38)

4 99.47 (023)  97.29(0.47)  99.06 (0.17)  96.75(0.84)  96.93 (0.78)

5 9593 (1.84)  97.86(2.70)  99.23 (0.24)  89.77(10.21)  98.83 (0.41)

6 99.71 (0.05)  99.87(0.09)  99.98 (0.02)  99.62(0.49)  99.98 (0.02)

7 99.32(0.09)  99.79(0.18)  99.99 (0.02)  99.44 (0.36)  99.92 (0.04)

8 9071 (1.09) 8357 (3.71)  64.85(5.00) 9210 (9.61)  90.16 (4.12)

9 97.77(1.33) 9858 (0.31)  99.59 (0.08) 9492 (5.60)  99.98 (0.04)
10 88.15(1.26)  88.87(2.05)  95.88(2.30)  77.40(11.80)  94.52(0.93)
11 88.13(5.33)  89.16(1.43)  94.02(4.13)  83.60 (25.18)  97.34(0.67)
12 99.50 (0.65)  97.19(0.25)  99.01(0.38)  92.35(7.79)  100.00 (0.00)
13 9794 (0.53)  96.04(1.60)  98.09 (1.12) 9670 (3.49)  96.11 (1.25)
14 92.11(0.55) 9590 (1.14)  97.17(122) 9830 (1.63)  97.87 (1.47)
15 46.70 3.16)  71.62(9.18)  65.14(18.85)  91.03 (10.30)  71.32 (12.46)
16 94.03 (429)  99.14(0.30)  99.76 (0.19)  99.61(0.22)  98.76 (0.27)
OA 88.32(0.39)  90.29 (1.08)  8596(1.97)  87.77(140)  93.34(0.85)
AA 91.96 (0.55)  94.08(0.43)  93.37(1.10)  91.90(2.00)  96.23 (0.54)
Kappa 86.95(0.44)  89.21(1.18)  8426(2.25)  86.36(1.55)  92.58(0.97)
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Table 3. Classification results of the RS, BT, MS, LC, and JPPAL_CRF on the Pavia University dataset
(%), and the best result is bolded.

Class RS BT MS LC JPPAL_CRF
1 90.02 (3.07)  92.68(2.13)  86.92(295)  9241(1.28)  97.86 (0.37)

2 98.23(0.58)  9333(157)  88.72(2.25)  9320(2.18)  99.31(0.42)

3 5712 (7.75)  8355(4.29)  89.99 (1.77)  82.00(3.17)  78.88(6.39)

4 87.88 (1.64)  97.12(0.39)  91.84(349)  96.18(0.83)  93.99 (2.66)

5 9894 (0.28)  99.61(0.32)  99.88 (0.11)  99.88(0.59)  99.76 (0.20)

6 63.89(2.05)  92.22(1.90)  59.92(13.55)  92.68 (2.63)  91.90 (0.98)

7 48.15(11.70)  86.16 (5.78)  79.53(12.56)  81.10(9.36)  86.05 (6.49)

8 89.74 (2.03)  80.69 (1.61)  72.66(2.80)  79.94(2.64)  95.11 (1.64)

9 99.79 (0.14)  99.96 (0.08)  99.96 (0.08)  99.96 (0.08)  99.32 (0.31)
OA 8793 (048)  91.80(0.48)  82.44(2.99)  91.31(0.72)  96.07 (0.65)
AA 8153 (1.17)  91.70(0.77) 8549 (2.13)  90.71(1.02)  93.58 (1.64)
Kappa 83.66(0.63)  89.02(0.67)  76.89(3.65)  88.36(1.02)  94.76 (0.88)

Figure 4 shows the OA and Kappa of each method on the Salinas dataset with respect
to the number of iterations. It can be seen that JPPAL_CRF always has a high increase in
performance as the number of iterations increases. However, the OA and Kappa of other
comparison methods converge quickly. This suggests that it is difficult for these methods
to select more valuable samples after a certain number of samples are selected actively.
Figure 5 shows the OA and Kappa of each method on the Pavia University dataset with
respect to the number of iterations. Although the performance of JPPAL_CRF is low when
the training samples are small, it increases rapidly as the number of iterations increases.
This suggests that JPPAL_CREF still has greater potential for selecting valuable samples as
the number of times increases.

95 95
PO {
86 — 7
" 3:/
77+ =0
&
M
——RS —6—RS
68 —#—BT 1 68 —&—BT
—7—MS —7—MS
LC LC
59 JIPAL _RF | 59 + JIPAL _RF
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Number of Iterations Number of Iterations
(a) (b)

Figure 4. Classification results for each comparison experiment on the Salinas dataset. (a) OA.
(b) Kappa.
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Figure 5. Classification results for each comparison experiment on the Pavia University dataset.
(a) OA. (b) Kappa.

4. Conclusions

In this paper, we propose a JPPAL_CRF, whose basic idea is to make full use of all
the information in the posterior probability matrix while selecting labeled samples. It
incorporates all posterior probabilities into the decision function. Compared with other
approaches, this approach can select samples that are more conducive to classification
during the sampling process because of the extended variability between samples. For
further improving the classification effect and alleviating the phenomenon of “same objects
with different spectrums” and “different objects with the same spectrum”, this paper uses
CREF. CREF takes into account spatial domain information and label constraints. It retains
detailed information about each class and post-processes the classification results to further
improve classification results. The experiments on two common datasets show that the
proposed approach possesses significant performance advantages. In the future, we will
extend the combination of active learning and CRF by adding random field potentials to
the active-learning decision function.
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