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Abstract: Object detection for remote sensing is a fundamental task in image processing of remote
sensing; as one of the core components, small or tiny object detection plays an important role. Despite
the considerable advancements achieved in small object detection with the integration of CNN and
transformer networks, there remains untapped potential for enhancing the extraction and utilization
of information associated with small objects. Particularly within transformer structures, this potential
arises from the disregard of the complex and the intertwined interplay between spatial context
information and channel information during the global modeling of pixel-level information within
small objects. As a result, valuable information is prone to being obfuscated and annihilated. To
mitigate this limitation, we propose an innovative framework, YOLO-DCTI, that capitalizes on the
Contextual Transformer (CoT) framework for the detection of small or tiny objects. Specifically, within
CoT, we seamlessly incorporate global residuals and local fusion mechanisms throughout the entire
input-to-output pipeline. This integration facilitates a profound investigation into the network’s
intrinsic representations at deeper levels and fosters the fusion of spatial contextual attributes with
channel characteristics. Moreover, we propose an improved decoupled contextual transformer
detection head structure, denoted as DCTI, to effectively resolve the feature conflicts that ensue from
the concurrent classification and regression tasks. The experimental results on the Dota, VISDrone,
and NWPU VHR-10 datasets show that, on the powerful real-time detection network YOLOvV?7, the
speed and accuracy of tiny targets are better balanced.

Keywords: small object detection; remote sensing images; transformer; YOLOv?7

1. Introduction

Remote sensing object detection is a prominent and consequential application within
the realm of remote sensing image processing [1]. It aims to accurately identify and locate
specific target instances within an image. Within this domain, remote sensing small object
detection holds particular importance as it focuses on detecting objects in remote sensing
images that occupy a very small area or consist of only a few pixels. Detecting small objects
is considerably more challenging than detecting larger objects, resulting in lower accuracy
rates [2]. In recent years, small object detection based on convolutional neural networks
(CNNs) has rapidly developed with the rapid growth of deep learning [3]. Small object
detection often faces challenges such as limited information on small objects, scarcity of
positive samples, and imbalanced classification. To tackle this challenge, researchers and
experts have put forth diverse deep neural network methodologies, encompassing CNNSs,
GANs, RNNs, and transformers, to tackle the detection of small objects, encompassing
remote sensing small objects. To improve the detection of small objects, Liu W et al,,
proposed the YOLOV5-Tassel network, which introduced the SImAM module in front
of each detection head to extract the features of interest [4]. LiJ. et al., suggested using

Remote Sens. 2023, 15, 3970. https:/ /doi.org/10.3390/1s15163970

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs15163970
https://doi.org/10.3390/rs15163970
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0000-6785-8122
https://orcid.org/0000-0002-1443-8519
https://orcid.org/0000-0003-2358-5243
https://doi.org/10.3390/rs15163970
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15163970?type=check_update&version=1

Remote Sens. 2023, 15, 3970

20f18

GAN models to generate high-resolution images of small objects, narrowing the gap
between small and large objects, and improving the detection capability of tiny objects [5].
Xu W et al. integrated contextual information into the Swin Transformer and designed an
advanced framework called the foreground-enhanced attention Swin Transformer (FEA-
Swin) [6]. Although the accuracy of detecting small objects has improved, the speed has
been somewhat compromised. Zhu X. et al., proposed the YOLOv5-THP model, which
is based on YOLOVS5 and adds a transformer model with an attention mechanism to the
detection head [7]. While this enhances the network’s performance in detecting small
objects, it also brings a significant computing burden.

In the field of remote sensing, detecting small objects remains challenging due to
large image scales, complex and varied backgrounds, and unique shooting perspectives.
Cheng et al. propose a model training regularization method that enhances the perfor-
mance of detection of small or tiny objects in remote sensing by exploiting and incorporating
global contextual cues and image-level contextual information [8]. Liu J. et al., added a
dilated convolution module to the FPN and designed a relationship connection attention
module to automatically select and refine features, combining global and local attention to
achieve the detection task of small objects in remote sensing [9]. Cheng et al., proposed
an end-to-end cross-scale feature fusion (CSFF) framework based on the feature pyramid
network (FPN), which inserted squeeze-and-excitation (SE) modules at the top layer to
achieve better detection of tiny objects in optical remote sensing images [10]. Dong et al.,
proposed a CNN method based on balanced multi-scale fusion (BMF-CNN), which fused
high- and low-level semantic information to improve the detection performance of tiny
objects in remote sensing [11]. Liang X. et al., proposed a single-shot detector (FS-SSD)
based on feature fusion and scaling to better adapt to the detection of tiny or small ob-
jects in remote sensing. FS-SSD added a scaling branch in the deconvolution module and
used two feature pyramids generated by the deconvolution module and feature fusion
module together for prediction, improving the accuracy of object detection [12]. Xu et al.,
designed a transformer-guided multi-interaction network (TransMIN) using local-global
feature interaction (LGFI) and cross-view feature interaction (CVFI) modules to enhance
the performance of small object detection in remote sensing. However, this improvement
unavoidably introduces a computational burden [13]. Li et al., proposed a transformer that
aggregates multi-scale global spatial positions to enhance small object detection perfor-
mance but it also comes with a computational burden [14]. To reduce the computational
cost of the transformer, Xu et al., improved the lightweight Swin transformer and designed
a Local Perception Swin transformer (LPSW) backbone network to enhance small-scale
detection accuracy [15]. Gong et al., designed an SPH-YOLOvV5 model based on Swin
Transformer Prediction Heads (SPHs) to balance the accuracy and speed of small object
detection in remote sensing [16]. Although many experts and scholars are studying the
balance between detection accuracy and inference speed, achieving an elegant balance
remains a challenging problem [17-21].

Considerable advancements have been achieved in the utilization of transformers [6,7,13-16]
for small object detection within the remote sensing domain. The exceptional performance
of the Contextual Transformer (CoT) [22] in harnessing spatial contextual information,
thereby offering a fresh outlook on transformer design, merits significant attention. In
the domain of remote sensing, small target pixels are characterized by a scarcity of spatial
information but a profusion of channel-based data. Consequently, the amalgamation and
modeling of spatial and channel information assume paramount importance. Further-
more, transformers impose notable demands on computational resources and network
capacity, presenting a challenge in striking an optimal balance between detection accuracy
and processing speed for small object detection in the remote sensing discipline. Mean-
while, Bar M et al. demonstrated that the background is critical for human recognition of
objects [18]. Empirical research in computer vision has also shown that both traditional
methods [19] and deep learning-based methods [12] can enhance algorithm performance
by properly modeling spatial context. Moreover, He K. et al., have proven that residual
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structures are advantageous for improving network performance [17,20]. Finally, we note
that the classification and regression tasks of object detection focus on the salient features
and boundary features of the target, respectively [23]. Therefore, a decoupled detection
head incorporating residual structure as well as channel and spatial context knowledge
should have a positive impact on the detection of small or tiny objects.

We propose a new detection framework, YOLO-DCTI, for detecting small or tiny ob-
jects in remote sensing images. By introducing a global residual structure and a local fusion
structure into the contextual transformer (CoT), and designing an improved decoupled
contextual transformer detection head structure (DCTI) based on CoT, we have achieved
improved detection performance for small or tiny objects on the powerful single-stage
benchmark network YOLOvV?. The main contributions of this paper can be summarized
as follows:

1.  We have developed the CoT-I module, an extension of the original CoT framework,
which integrates global residual structures and local fusion modules. This integration
facilitates the extraction of spatial context background features and the fusion of
channel features, thereby enabling the network to learn deeper-level characteristics.
In comparison to the conventional CoT approach, the inclusion of global residual
structures empowers the network to capture more profound features, while the
incorporation of local fusion structures seamlessly combines background context
features with channel features.

2. We introduce an efficient decoupled detection head structure DCTI, leveraging the
CoT-I framework, to mitigate the limited exploration and utilization of salient region
features and boundary-adjoining features arising from the interdependence of clas-
sification and regression tasks within most object detection heads. This decoupled
design allows the classification task to emphasize salient region features, while the
regression task focuses on boundary-surrounding features. Concurrently, CoT-I effec-
tively exploits and harnesses the feature relationships between spatial context and
channels, facilitating the detection of small objects in remote sensing and yielding
substantial improvements in detection accuracy.

3. Despite the escalation in model parameters and the consequential inference latency
resulting from the adoption of our proposed DCTI structure, the integration of global
residual connections and local fusion strategies yields a notable enhancement in infer-
ence accuracy without incurring any detrimental impact on the inference speed. Com-
parative evaluation against the baseline YOLO v7 model showcases a substantial im-
provement in the inference accuracy specifically for diminutive targets, mAP@0.5:0.95
surging from 61.8 to 65.2. Additionally, our model achieves a reduction of 0.3ms in
the inference speed per image with dimensions of 640 x 640.

2. Related Work
2.1. Transformer Framework for Object Detection

The transformer structure, based on self-attention, first appeared in NLP tasks. Com-
pared to modern convolutional neural networks (CNN) [24], the Vision Transformer has
made impressive progress in the field of computer vision. After Dosovitskiy A et al.
successfully introduced transformers into computer vision [25], many scholars turned
to transformers [26-28]. In object detection, DETR [29] and Pix2seq [30] are the earliest
transformer detectors that define two different object detection paradigms. However, trans-
formers have many parameters, require high computing power and hardware, and are
not easily applicable. To apply transformers on mobile devices, Mehta S et al. proposed a
lightweight MobileVIT series [31-33], which achieved a good balance between accuracy
and real-time performance, and has been widely used in risk detection [34], medicine [35],
and other fields. A major advantage of transformers is that they can use the attention mech-
anism to model the global dependence of input data, obtain longer-term global information,
and ignore the connection between local contexts. To address this problem, Li Y. et al.,
proposed a lightweight CoT [22] self-attention module to capture contextual background
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information on 2D feature maps. It can extract information between local contexts while
capturing global dependencies for more adequate information exchange. In this paper, we
use CoT to exploit the global characteristics of spatial context and channels. Based on the
original structure, we added the global residual and local fusion structures to further tap
and utilize the characteristics of space and channels.

2.2. YOLO Framework for Object Detection

In 2015, YOLO [36] introduced a one-stage object detection method that combined
candidate frame extraction, CNN feature learning, and NMS optimization to simplify the
network structure. The detection speed was nearly 10 times faster than R-CNN, making real-
time object detection possible with the computing power available at that time. However,
it was not suitable for detecting small objects. YOLOv2 [37] added optimization strategies
such as batch normalization and a dimensional clustering anchor box based on v1 to
improve the accuracy of object regression and positioning. YOLOv3 [38] added the residual
structure and FPN structure based on v2 to further improve the detection performance of
small objects. The network framework structure after YOLOvV3 can be roughly divided
into three parts, backbone, neck, and head. Subsequent versions have optimized internal
details to varying degrees. For example, YOLOv4 [39], based on v3, further optimized the
backbone network and activation function, and used Mosaic data enhancement to improve
the robustness and reliability of the network. YOLOvV5 [40] added the focus structure based
on v4 and accelerated the training speed by slicing. YOLOV®6 [41] introduced RepVGG in
the backbone, proposed a more efficient EfficientRep block, and simplified the design of
the decoupling detection head to improve the detection efficiency. YOLOV7 [42] adopted
the E-ELAN structure in the neck part, which reduces the inference speed, and used the
auxiliary head training method. At present, YOLOV? is one of the more advanced object
detection networks due to its real-time characteristics. It is widely used in fields with
high time requirements such as industrial equipment inspection [43], sea rescue [44], and
aquaculture [45]. Therefore, we use YOLOV?7, one of the powerful benchmarks, as the
benchmark model.

2.3. Detection Head Framework for Object Detection

In the object detection task, there are two tasks: classification and regression, which
respectively output the classification and bounding box position of the object. Song G. et al.,
pointed out that the focus of the classification and regression tasks is different [23]. Specifi-
cally, classification pays more attention to the texture content of the object, while regression
pays more attention to the edge information of the object. Wu Y et al. suggested that it may
be better to divide classification and regression tasks into FC-head and Conv-head [46]. In
the single-stage model, YOLOX [47] adopts the decoupling head structure that separates
the classification and regression branches and adds two additional 3 x 3 convolutional
layers. This improves detection accuracy at the cost of inference speed. Building upon
this approach, YOLOvV6 takes into account the balance between the representation abil-
ity of related operators and the hardware computing overhead and adopts the Hybrid
Channels strategy to redesign a more efficient decoupling head structure that reduces the
cost while maintaining accuracy. They also mitigate the additional latency overhead of
3 x 3 convolutions in the decoupled detection head. Feng C. et al., use feature extractors to
learn task interaction features from multiple convolutional layers to enhance the interaction
between classification and localization [48]. They also pointed out that the interaction
characteristics of different tasks may vary due to the classification and localization goals.
To resolve the feature conflict introduced between the two tasks, they designed a layer
attention mechanism that focuses on different types of features such as different layers
and receptive fields. This mechanism helps to resolve a certain degree of feature conflict
between the two tasks.
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3. Proposed Method

We present an improved decoupled contextual transformer (YOLO-DCTI) for the
detection of tiny or small objects in the domain of remote sensing. Our proposed framework
is built upon the foundation of YOLOV?. The comprehensive architecture of our framework
is depicted in Figure 1. Our contributions begin with the feature X € RT*W*C obtained
after the backbone, FPN, and PAN stages. In this section, we first give a brief overview of the
widely adopted Contextual Transformer (CoT) framework in object detection. Subsequently,
we introduce an enhanced variant named CoT-I, which incorporates a global residual
structure and a local fusion structure into the CoT module. The global residual mechanism
integrates input information with self-attention features, while the local fusion mechanism
combines spatial contextual information with channel-based information. Ultimately,
we integrate the CoT-I module into a decoupled detection head named DCTI, enabling
the establishment of global interdependencies between the classification and regression
tasks through the utilization of self-attention mechanisms. This integration facilitates the
comprehensive exploration and exploitation of a wider spectrum of channel features and
spatial contextual features.

CoT-I Decoupled Head
q hJ Class
Local Fusion 1 Conv 3x3 o3 -,
FC .
Conv 3x3 ;}
FC 20D

Figure 1. The overall framework of our YOLO-DCTT; DCTI consists of CoT-I and Decoupled-Head.
The FPN features are input to the CoT-I module for comprehensive modeling of global contextual
information and spatial relationships. Subsequently, a dual-branch architecture is employed to
effectively extract and discriminate both category-specific and localization-specific information.

3.1. Contextual Transformer

In this section, we present the formulation of the Contextual Transformer (CoT) frame-
work, illustrated in Figure 2 (left). The input X, obtained from the Feature Pyramid
Network (FPN), undergoes three transformation matrices: Wy, Wy, W,. These matrices
yield K = XWy, Q = XW,, V = XW,,. Specifically, W, is an identity matrix, Wj represents
spatial convolution using a k x k kernel, and W, signifies spatial convolution witha 1 x 1
kernel. The output Y is mathematically expressed as:

HxWx2C HxW xC
HxWx(C V:1x1
7Y
v
HxWxC
X X

Figure 2. The detailed structures of (left) CoT and (right) our CoT-I block.
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Y = K+ fe(K,Q)W;Wg x V o)

In the above equation, the function f, () denotes concatenation along the channel dimen-
sion C, while W5 and Wy correspond to 1 x 1 convolutions in the spatial domain. The symbol
x represents matrix multiplication. For brevity, we omit the transformation of the channel
dimension C and the batch normalization (BN) operation during the 1 x 1 convolutions.

It is evident that the learned key matrix K captures significant information from
neighboring pixels within the spatial domain, incorporating essential static spatial context
information. Subsequently, Q and K are concatenated along the channel dimension, fol-
lowed by the application of two 1 x 1 convolutions: W; with an activation function and Wy
without an activation function. Matrix multiplication is then performed with V, resulting
in a matrix T enriched with dynamic contextual information, which can be used as follows:

T = fe(K, Q)WsWy ()

This resultant matrix T is subsequently fused with the static contextual information K
to derive the final output Y. Notably, Y incorporates both dynamic contextual information
and static contextual information. CoT demonstrates exceptional performance in leveraging
contextual information; however, it partially overlooks the joint contribution of channel
information and contextual information.

3.2. Improved Contextual Transformer (CoT-I)

First of all, the ResNet [20] and Densenet [17] models prove the effectiveness of the
residual structure in the model, which helps optimize the deeper layer of the architecture.
We add a residual structure from the input to the output, called the global residual structure.

Secondly, we note that the intermediate matrix T captures relatively persistent global
dependencies along the channel dimension, whereas the static contextual information
K contains abundant spatial contextual information. The interrelation between them is
more closely intertwined compared to the dynamic contextual information. Hence, we
integrate the intermediate matrix T with the static contextual information K to achieve a
more comprehensive representation of spatial and channel features. This fusion can be
mathematically expressed as follows:

Y = X+ [fe(K,QQW;W + K] x V 3)

where + represents through attention mechanism to complete the fusion of static K and
intermediate vector T.

The global residual mechanism plays a pivotal role in facilitating the fusion of input
information and self-attention features. By incorporating a global residual structure, the
method adeptly amalgamates and consolidates information from diverse hierarchical
levels of input, thereby engendering a more comprehensive and all-encompassing feature
representation. This ensemble effectively captures long-range dependencies and augments
the overall discriminative capacity of the model.

The local fusion mechanism concentrates on integrating spatial context information
with channel-based information. Through the integration of these two distinct information
sources, the method proficiently models the intricate interplay between neighboring pixels
and harnesses the wealth of channel-based information inherent in remote sensing data.
This fusion framework empowers the model to capture intricate details and contextual
cues with greater precision, thereby engendering superior performance in the detection of
small objects.

3.3. Improved Decoupled Contextual Transformer Detection Head (DCTI)

Our DCTI structure starts with features X € REXWxC gbtained after the backbone,
FPN, and PAN stages. X has three different dimensions of features; (H, W, and C) are
(20, 20, 128), (40, 40, 256), and (80, 80, 512), respectively. For the purpose of enhancing the
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lucidity of the presentation, we solely exemplify the variations in channel C, as depicted in
Figure 3. The coupled detection head depicted (left) leverages 1 x 1 convolutions and the
RepConv module to enhance feature information along the channel dimension. Despite its
simplicity, this approach is remarkably effective. However, in the context of object detection
tasks, it becomes evident that the classification task primarily emphasizes salient feature
information, while the regression task is more concerned with capturing boundary feature
information related to the targets. Employing a shared Repconv module for both tasks
inevitably introduces conflicts between them.

C:128,256,512

— .= C:Cls

-
— C:128,256,512

C:128,256,512 (C:256,512,1024 C:Cls +Re g + Obj C:128,256,512 e C:Reg

I -
C:0bj

Feature CoT-1 RepConv Conv »

Figure 3. Comparison between (left) YOLOv7 head and (right) ours.

Moreover, we observe the exceptional capability of CoT-1 in capturing global informa-
tion for effective modeling. In comparison to 1 x 1 convolutions, CoT-I exhibits superior
feature exploration in both the classification and regression tasks.

Consequently, we propose the DCTI, building upon the CoT-I framework, as illustrated
(right). Initially, CoT-I assimilates the feature information derived from the feature pyramid
and computes an intermediate variable T, which encompasses abundant spatial information,
employing Equation (1). Subsequently, a local fusion strategy is employed to merge the
spatial and channel information, yielding the dynamic feature K1 through the utilization
of Equation (3). Finally, employing a global residual strategy, the input from the feature
pyramid is combined with the dynamic feature to produce the output Y. The decoupled
detection head further individually models Y to obtain category information and bounding
box information.

4. Results

To evaluate the performance of the YOLOv7-DCTI algorithm for remote sensing
small object detection, training, and testing were conducted on the Dota-small dataset [49].
Furthermore, to assess the algorithm’s overall performance, this experiment included
training and testing on the VISDrone dataset [50] and NWPU VHR-10 datasets [51]. A
comparison was made between seven different networks, namely Faster RCNN, SSD, YOLO
v5s, YOLO v5l, YOLO v5m, YOLO v7-tiny, and YOLOvV?7, using the aforementioned three
datasets. To ensure fairness among the YOLO series, a batch size of 16 was utilized during
the training process and pre-trained weights were not employed. The data augmentation
strategy [52,53] remained consistent with other training conditions. During testing, the
NMS [54] threshold was uniformly set to 0.65 and the batch size was uniformly set to 32.

4.1. Datasets
4.1.1. Dota-Small

In recent years, several remote sensing datasets have been developed. This paper
focuses on the extraction of small or tiny objects from the DoTAv1.0 dataset, which consists
of 2000 aerial images of 2000 cities and over 190,000 fully labeled objects, each of which
comprises eight positional parameters (x1, y1, x2, y2, x3, y3, x4, and y4). In this study, we
have selected a dataset that includes five categories of small objects, namely small vehicles,
large vehicles, planes, storage tanks, and ships. However, due to the large image size
in the DoTAv1.0 dataset, direct training is not feasible. Therefore, we have cropped the
images to a size of 1024 x 1024, resulting in a total of 8624 images. These images were
subsequently divided into three sets according to the train:val:test ratio, with a split of 8:2:2.
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Among these, 5176 images were used for training, while 1724 images were allocated to
validation and testing. The five types of objects included in the dataset are small vehicle,
large vehicle, plane, storage tank, and ship, as illustrated in Figure 4. We have set three sets
of anchors with the following dimensions: (10,10, 13,22, 24,12), (23,24, 28,37, 45,25), and
(49,50, 91,88, 186,188).

Figure 4. Some selected unprocessed images of Dota-small.

4.1.2. VisDrone

VisDrone is a widely recognized and highly demanding aerial photography dataset
that is extensively used in UAV (Unmanned Aerial Vehicle) applications. It features a metic-
ulous manual annotation process that has accurately labeled and classified 342,391 objects
into 10 distinct categories. However, the official evaluation portal for the test-challenge set
is unavailable, so we have utilized the test-dev set for evaluating our proposed method.
Figures 5-7 showcases a selection of unprocessed images extracted from the VisDrone
dataset. In our experiments, we have employed three sets of anchor dimensions: (3,4, 4,8, 8,7),
(7,14, 14,9, 13,20), and (25,13, 27,27, 51,40).

Figure 5. Some selected unprocessed images of VISDrone.
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Figure 7. Recognition results in crowded environments of Dota-small dataset. (a) Recognition results
of the YOLOV7 network. (b) Recognition results of the YOLO-DCTI network.

4.1.3. NWPU VHR-10

To assess the generalization capability of our proposed method, we conducted experi-
ments on the NWPU VHR-10 dataset. This dataset is specifically designed for geospatial
object detection and comprises ten different object categories, namely airplane, ship, storage
tank, baseball diamond, tennis court, basketball court, ground track field, harbor, bridge,
and vehicle. In our study, we randomly divided the dataset into three sets: 60% of the
images were allocated to the training set, 20% to the validation set, and the remaining 20%
to the testing set. Figure 8 showcases a selection of unprocessed images from the NWPU
VHR-10 dataset. For our experiments, we employed three sets of anchor dimensions: (24,23,
30,30, 32,46), (47,32, 52,51, 74,61), and (88,96, 205,104, 150,194).
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Figure 8. Some examples of detection results on the Dota-small dataset using YOLO-DCTI.

4.2. Experimental Environment and Settings

The experiment was conducted using a 64-bit Windows 10 operating system. The GPU
utilized was NVIDIA GeForce RTX3090 and the deep learning framework employed was
Torch v1.10.0. To evaluate the performance of object detection methods, this paper adopts
the common indicators of object detection. this paper employs several metrics, including
accuracy, recall, average precision, mean average precision, and average inference time
per image (ms). The accuracy rate measures the proportion of correctly predicted samples
out of the total tested samples. The recall rate indicates the proportion of positive samples
that are accurately predicted. AP is calculated as the area under the precision—recall curve.
mARP represents the average of AP values across all categories. Specifically, mAP@0.5:0.95
refers to the average mAP value computed at ten IoU thresholds (0.50, 0.55, ..., 0.95). On
the other hand, mAP@0.5 denotes the mAP value computed at an IOU threshold greater
than 0.5.

4.3. Experimental Results and Analysis

Experiments were conducted on three publicly available datasets, namely VISDrone,
NWPU VHR-10, and Dota-small, to assess the efficacy of the proposed method. The
experimental evaluation was carried out in four distinct stages: (1) Validation of the
method’s feasibility on the Dota-small dataset, including a comparative analysis against
other object detection techniques to showcase its effectiveness. (2) Examination of the
method’s generalization capability using the VISDrone dataset. (3) Further validation of the
method’s performance on the NWPU VHR-10 dataset. (4) Evaluation of the performance
of our model, encompassing inference speed, model parameters, and detection accuracy,
and conducting a comparative analysis with existing models. (5) Execution of ablation
experiments to scrutinize the effectiveness of each step within the proposed method and
assess the optimal parameter configuration.

4.3.1. Experiments on Dota-Small Dataset

To validate the proposed model, we trained it for 200 epochs on the Dota-small
dataset. To ensure fairness, we used a batch size of 24 during the training process and did
not use pre-trained weights. We kept the data augmentation strategy [52,53] and other
training conditions consistent. During testing, the NMS [54] threshold was uniformly
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set to 0.65 and the batch size was uniformly set to 32. In our experimental analysis, we
conducted a comparative evaluation of the YOLOv7-DCTI algorithm with mainstream
object detection algorithms using the Dota-small dataset generated specifically for this
study. The outcomes of these experiments are documented in Table 1, encompassing five
distinct categories: small vehicles, large vehicles, planes, storage tanks, and ships. The
AP@0.5 values provided in the table indicate the average recognition accuracy achieved by
each algorithm for individual categories. Additionally, the columns denoted as mAP@0.5
and mAP@0.5:0.95 represent the average recognition accuracy across all categories.

The Dota-small dataset contains predominantly small or tiny objects with limited infor-
mation and is characterized by complex and variable image backgrounds. Distinguishing
these objects from the background presents significant challenges, as some objects may
be partially occluded, further complicating detection. In comparison to other mainstream
object detection algorithms, the enhanced network proposed in this study demonstrates a
notable accuracy advantage in detecting small or tiny objects.

Our proposed method achieves the highest accuracy rate of 65.2% for small or tiny
objects in the Dota-small dataset, surpassing YOLOvV7 by 3.4%. In comparison to these four
object detection algorithms, Faster R-CNN, SSD, YOLOvS5], and YOLOv7-tiny, the mean
average precision (mAP) at the intersection over union (IoU) threshold range of 0.5 to 0.95
showed improvements of 19.3%, 45.2%, 4.5%, and 12.1%, respectively.

Although the detection speed of YOLOvV7 and YOLOV5 is similar to that of our
proposed method, their mAP scores are lower. In scenarios where the differentiation
among the YOLO series detection heads is minimal, the proposed method achieves higher
mAP at the IoU range of 0.5 to 0.95, while maintaining similar detection speeds. This
demonstrates that the proposed method effectively compensates for the differences in
detection heads and offers greater advantages.

The introduction of a Contextual Transformer (CoT) in the decoupled head unavoid-
ably leads to a slight sacrifice in reasoning speed. However, the global residual structure
and local fusion structure do not experience any decrease in speed. As a result, the de-
tection speed of the proposed structure remains largely unaffected even with increasing
complexity, achieving a favorable balance between inference speed and detection accuracy.

Table 1. Comparison of detection accuracy of different object detection algorithms on Dota-small dataset.

Model Small Vehicle Large Vehicle Plane Storage Tank Ship mAP@0.5 mAP@0.5:0.95
SSD [55] 26.9 47.4 79.9 35.2 28.9 43.7 20.0
Faster R-CNN [56] 67.8 78.8 93.4 74.6 58.6 74.6 45.9
YOLOV5s [40] 82.9 83.4 89.0 77.5 86.4 83.8 51.9
YOLOV5I [40] 89.0 91.5 95.5 84.5 90.4 90.2 60.7
YOLOvV5m [40] 88.9 91.2 92.6 86.3 90.5 89.9 60.8
YOLOV7-tiny [42] 84.5 87.8 92.8 77.3 86.2 85.7 53.1
YOLOvV7 [42] 89.9 91.9 95.6 84.9 91.1 90.7 61.8
Ours 90.0 92.6 96.8 85.7 91.5 914 65.2

As illustrated in Figure 7, YOLO-DCTI demonstrates superior performance in accu-
rately detecting objects with unclear features or small sizes, even in complex backgrounds.
It exhibits no omissions or false detections, unlike YOLOvV?7, which is prone to such errors.
The proposed YOLO-DCTTI algorithm in this paper excels at identifying small or tiny ob-
jects in challenging scenarios, yielding relatively high prediction probabilities. In contrast,
YOLOv7 may struggle to accurately recognize small or tiny objects, resulting in lower
recognition probabilities compared to YOLO-DCTIL.

Figure 8 depicts the detection outcomes obtained through the utilization of the YOLO-
DCTI methodology. On the whole, the performance is laudable; nonetheless, certain
instances of missed detections persist in densely populated target scenes exhibiting anal-
ogous configurations. This phenomenon can be ascribed to the intricacy involved in
discerning like attributes within such highly congested environments. As a result, this
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specific issue accentuates the imperativeness of conducting more extensive and meticulous
investigations in future research endeavors.

4.3.2. Experiments on VisDrone Dataset

Table 2 presents the experimental results, demonstrating the strong performance
of the proposed method on the VisDrone dataset. YOLO-DCTI achieves a noteworthy
improvement of 0.2% in mAP@0.5:0.95 compared to the original method while maintaining
a comparable detection speed. Notably, YOLOv5x achieves a mAP@0.5 of 48.1% on this
dataset, while YOLOV? achieves a mAP@0.5 of 49.2%. However, it is important to note that
both networks employ coupled detection heads, which are unable to effectively address
the inherent discrepancy between classification and regression tasks, resulting in slightly
lower detection accuracy compared to our proposed method. As shown in Figure 9, the
effectiveness of our method is reflected in its effective detection of small and dense objects
(e.g., people and cars).

Table 2. Experimental results on VISDrone dataset.

Model P1 P2 B1 C \% T1 T2 A B2 M mAP@0.5 mAP@0.5:0.95
SSD 0.05 0.02 0.009 036 0.08 0.05 0.0 0.0 0.19 0.02 0.081 0.042
Faster RCNN 375 19.4 13.3 719 425 42.8 19.8 18.1 58.4 344 35.8 20.2
YOLOv5s 34.9 24.8 11.6 75.0 48.5 46.4 22.5 20.6 64.8 35.9 38.5 20.0
YOLOv5I 45.5 33.5 19.6 80.3 55.0 55.6 33.1 28.1 70.5 46.7 46.8 25.3
YOLOv5x 449 33.7 20.3 80.7 56.4 58.3 334 32.6 72.4 48.0 48.1 26.2
YOLOv7-tiny  33.6 23.9 10.8 73.1 454 41.2 21.6 19.5 59.3 35.7 36.4 18.3
YOLOv7 46.5 34.3 222 81.2 58.3 59.3 34.6 31.9 73.3 50.0 49.2 27.2
Ours 48.7 36.2 22.6 82.1 58.2 60.0 34.5 314 729 51.2 49.8 274

P1: pedestrian, P2: people, B1: bicycle, C: car, V: van, T1: truck, T2: tricycle, A: awning—tricycle, B2: bus, M: motor.

car .84

s

Figure 9. Some examples of detection results on the VisDrone dataset using YOLO-DCTI.

4.3.3. Experiments on NWPU VHR-10 Dataset

Based on the results presented in Table 3, the proposed method exhibits robust perfor-
mance on the NWPU VHR-10 dataset. Notably, our model achieves impressive AP@0.5
scores for the ten object categories: 99.6%, 93.0%, 96.8%, 99.5%, 90.9%, 95.0%, 99.2%, 91.5%,
98.9%, and 90.3%. Moreover, our model achieves a mAP@0.5 score of 95.5%. Figure 10
presents the detection results of the YOLO-DCTI model on the NWPU VHR-10 dataset,
showecasing its efficacy in detecting targets of diverse scales.

To visually illustrate the effectiveness of the method, Figure 11 shows the detection
results and grad-cam map of YOLO-DCTI on the NWPU VHR-10 dataset. These numbers
provide convincing evidence of our model’s ability to accurately identify object locations
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and assign appropriate attention to them. Overall, the experimental results highlight the
robust performance of the proposed method in object detection tasks, thus indicating its
potential in various real-world applications.

Table 3. Experimental results on NWPU VHR-10 dataset.

Method A SH ST BD TC BC GTF H B \" AP@0.5

SSD 90.4 60.9 79.8 89.9 82.6 80.6 98.3 73.4 76.7 52.1 78.4
Faster R-CNN 94.6 82.3 65.3 95.5 81.9 89.7 924 724 57.5 77.8 80.9
YOLOv5s 99.2 84.1 97.5 99.4 89.5 79.1 97.6 74.0 82.1 80.7 88.3
YOLOVSI 99.5 93.3 99.3 98.9 87.9 77.0 99.2 90.3 78.7 914 91.6
YOLOv5x 99.3 90.7 99.6 98.5 89.5 86.3 99.3 83.7 83.4 91.2 92.2
YOLOv7-tiny 98.8 89.0 98.9 99.2 85.8 68.8 98.3 83.6 72.0 77.5 87.2
YOLOv7 99.5 91.6 99.4 98.9 90.1 96.8 99.4 86.7 94.1 90.4 94.7
Ours 99.6 93.0 96.8 99.5 90.9 95.0 99.2 91.5 98.9 90.3 95.5

A: airplane, SH: ship, ST: storage tank, BD: baseball diamond, TC: tennis court, BC: basketball court, GTF: ground
track field, H: harbor, B: bridge, V: vehicle, mAP: mAP@0.5:0.95.
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Figure 11. A selection of class activation maps exported using grad-cam on NWPU VHR-10 datasets.

4.3.4. Comparison Experiment on Inference Speed and Model Parameters

To elucidate the equilibrium achieved by our YOLO-DCTI model concerning inference
speed and detection performance, we conducted a comprehensive comparative analysis of
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various models using the Dota-small dataset, as presented in Table 4. This analysis incorpo-
rates essential metrics such as mAP@0.5:0.95, inference speed, and model parameters. The
evaluation employed test images with a resolution of 640 x 640 and the inference speed
was quantified in milliseconds (ms). Our model showcased a total of 37.67 M parameters,
closely akin to the 39.46 M parameters of Faster RCNN. However, our model gained a
notable advantage due to the absence of candidate box generation operations, leading
to commendable inference speed. While our inference speed aligns with YOLOv5I and
YOLOV7, the distinctive structural design of DCTI fortifies its capacity to effectively capture
features of small targets. Although our approach may not outperform others in terms of
model parameters and inference speed, it successfully achieves a favorable equilibrium
between inference speed and detection accuracy.

Table 4. Inference speed and parameter comparison.

Model mAP@0.5:0.95 Inference (ms) Parameter (M)
SSD 20.0 34 13.00
Faster R-CNN 45.9 26.5 39.46
YOLOvV5s 51.9 0.6 1.89
YOLOvV51 60.7 44 47.08
YOLOv5x 60.8 7.8 87.03
YOLOV7-tiny 53.1 1.0 5.77
YOLOv7 61.8 44 34.81
Ours 65.2 4.7 37.67

4.3.5. Ablation Experiment

The Dota-small dataset was used to conduct an ablation experiment aiming to inves-
tigate the impact of different structures on the final detection results. The obtained test
results are presented in Table 5.

Table 5. Comparison of detection performance of different categories.

Model ‘i 11111;111e ‘;; i;lri%fe Plane S_tr(::l%e Ship Precision Recall mAP@0.5 én 5A0P9@5
Baseline 59.8 67.6 68.8 52.6 61.2 89.4 85.5 90.7 61.8
Decoupled 60.6 71.7 73.2 54.2 63.7 90.8 85.5 91.1 64.7
CoT 60.1 71.5 73.2 55.2 63.7 91.2 85.6 91.3 64.7
Global-Residual 60.8 71.6 73.7 55.0 63.6 89.7 87.4 91.3 64.9
Local-Fusion 61.2 72.1 73.7 54.9 64.1 90.0 86.9 914 65.2

After incorporating CoT in the decoupled head, the mAP@0.5:0.95 value increased
by 0.4%. CoT helps in identifying small or tiny objects by exploiting spatial context and
global channel information. The addition of global residual structure and local fusion to
CoT led to an improvement in mAP@0.5:0.95 by 1.0%. CoT-I further fuses spatial context
and channel features, enabling the network to learn more about small object information,
thereby enhancing detection performance. After incorporating the CoT-I structure in
YOLOV7, mAP@0.5:0.95 increased by 1.5%, providing further evidence that CoT-I can
enhance detection accuracy.

We conducted a comparative analysis of the model’s performance regarding speed
and parameters, as presented in Table 6. The results demonstrate that the incorporation of
decoupled heads and CoT introduced a speed latency of 0.1 ms and 0.2 ms, respectively, in
comparison to the baseline, along with an augmentation of 0.4 M and 2.86 M parameters.
However, it is noteworthy that the inclusion of Global-Residual and Local-Fusion did not
impose any discernible burden on the inference speed and parameter requirements.
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Table 6. Inference speed and parameter comparison.

Model Inference (ms) Parameter (M)
Baseline 4.4 34.81
Decoupled 4.5 35.11
CoT 4.7 37.67
Global-Residual 4.7 37.67
Local-Fusion 4.7 37.67

We analyzed the kernel sizes utilized in CoT-I and present our findings in Table 7. In
Equation (1), the kernel size, denoted as W, is specifically referred to as k = 3, 5, and 7. Our
analysis reveals that the model achieves the highest inference speed when employing a
kernel size of k = 3. On the other hand, adopting a kernel size of k = 5 results in improved
detection accuracy, albeit with a certain trade-off in terms of inference speed. Notably,
when utilizing a kernel size of k = 7, both the model’s detection accuracy and inference
speed significantly decrease. These observations suggest that expanding the perception
range does not necessarily lead to performance enhancement.

Table 7. Comparison of improved contextual transformer parameters.

Model Precision Recall mAP@0.5 mAP@0.5:0.95 Inference (ms) Parameter (M)
k=3 91.2 85.6 91.3 64.7 4.7 37.67
k=5 90.4 86.6 91.4 65.2 5.8 41.62
k=7 89.7 87.0 91.3 64.7 6.8 47.55

5. Conclusions

This research proposes the framework YOLO-DCTI for remote sensing small or tiny
object detection based on YOLOv7 and an improved Context Transformer (CoT-I), which
improves detection accuracy by mining and utilizing upper and lower spatial features
and channel features. Specifically, we designed an efficient decoupled detection head
structure DCTI by introducing CoT and embedding it into YOLOV7 to obtain long-term
dependent features on channel and context spatial features. Furthermore, we introduce
an innovative CoT variant, CoT-I, which incorporates a global residual structure and a
local fusion structure. The global residual structure plays a critical role in merging and
integrating information from various input levels, thereby yielding a more comprehensive
and holistic feature representation. Similarly, the local fusion structure assumes a vital
role in modeling the intricate interactions among neighboring pixels while leveraging
the abundant channel-based information prevalent in remote sensing data. Extensive
experiments demonstrate that our method can improve detection accuracy by mining and
utilizing more features. Although the improvement in detection accuracy is accompanied
by a slight loss of detection speed, the balance between detection accuracy and speed is
crucial for remote sensing object detection, provided that the speed meets the application
requirements. Despite the advancements in detection accuracy demonstrated by our
model, occasional instances of missed detections persist in densely populated scenarios
featuring small targets with similar features. In light of this, we aim to undertake more
comprehensive research in our future endeavors to delve deeper into this matter.
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