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Abstract: The accurate and efficient segmentation of large-scale urban point clouds is crucial for
many higher-level tasks, such as boundary line extraction, point cloud registration, and deformation
measurement. In this paper, we propose a novel supervoxel segmentation approach to address
the problem of under-segmentation in local regions of point clouds at various resolutions. Our
approach introduces distance constraints from boundary points to supervoxel planes in the merging
stage to enhance boundary segmentation accuracy between non-coplanar supervoxels. Additionally,
supervoxels with roughness above a threshold are re-segmented using random sample consensus
(RANSAC) to address multi-planar coupling within local areas of the point clouds. We tested the
proposed method on two publicly available large-scale point cloud datasets. The results show that
the new method outperforms two classical methods in terms of boundary recall, under-segmentation
error, and average entropy in urban scenes.

Keywords: point cloud segmentation; under-segmentation; supervoxel; boundary enhanced; random
sample consensus; roughness

1. Introduction

In recent years, significant advances in laser measurement technology and the intro-
duction of innovative scanning equipment [1,2] have increased the accuracy and reliability
of point clouds. The redundancy, rotational invariance, and lack of topological relationships
between points in point clouds make it a powerful and flexible medium for representing the
surface morphology of objects. These advantages have led to progress in various areas, such
as building feature extraction [3], complex terrain analyses [4,5], forest investigations [6],
deformation measurement [7], and structural health monitoring and assessment [8] using
point clouds.

The core of point cloud processing is to infer geometric information from 3D discrete
points [9]. Large-scale point clouds are characterised by non-uniform density and high
levels of noise. It is common to segment point clouds into lower-order entities to extract
the required information based on their spatial location, geometric features, textures, and
other properties [10]. This process is known as point cloud segmentation. Traditional point
cloud segmentation methods include region-growing methods [11–13], clustering-based
methods, such as K-means clustering [14] and density clustering (DBSCAN) [15], as well
as classic model-fitting-based methods, i.e., Hough Transform (HT) [16–18] and random
sample consensus (RANSAC) [19–22].

However, region-growing-based segmentation methods rely on selecting seed points [23],
and it would be challenging to obtain accurate results for large-scale and non-uniform
dense point clouds. Clustering-based methods do not rely on the initialisation of seed
points, but pre-defined parameters heavily influence their results. Similarly, the main
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drawback of model-fitting-based methods is their sensitivity to pre-defined parameters and
high time complexity. Additionally, degeneracy could occur when applying the standard
RANSAC to large-scale point clouds [9].

Supervoxels are often used as a pre-processing step in segmentation algorithms. Simi-
lar to superpixels in 2D images [24], supervoxels are small regions of perceptually similar
voxels and are usually used to improve the definition of object boundaries. Furthermore,
supervoxels can significantly reduce the data volume of raw point clouds and the adverse
impact of noise with minimal information loss [25]. It plays an important role in large-scale
point cloud processing methods.

The boundaries of supervoxels should be as close as possible to object boundaries [10].
One classical method for point cloud supervoxel segmentation is voxel cloud connectivity
segmentation (VCCS) [26], which uses an octree to voxelize the point cloud and then
applies the K-means clustering algorithm to achieve supervoxel segmentation. However,
VCCS uses a fixed resolution and relies on the initialisation of the seed, which makes
it challenging to achieve high-quality segmentation boundaries in non-uniform density
point clouds. Song et al. [27] proposed a boundary-enhanced supervoxel segmentation
(BESS) method to address this issue. Although the method performs well in outdoor scenes
with non-uniform density, it assumes that the boundary points are sequentially aligned
in one direction. Therefore, it is normally restricted to single settings and unsuitable
for complex, large-scale point clouds. Lin et al. [23] proposed a boundary-preserved
supervoxel segmentation (BPSS) method that formulates the segmentation problem as a
subset selection problem and addresses this problem by minimising an energy function.
Their approach does not necessitate the initialisation of cluster seeds and is reported to
generate supervoxels with varying resolutions to conform boundaries more effectively.
Puligandla and Lončarić [28] proposed a supervoxel segmentation method based on the k-
means algorithm with dynamic cluster seed initialisation. In recent times, the field of point
cloud segmentation has seen advancements through deep learning [29–31]. Particularly,
supervoxel segmentation has also seen advancements through applying deep learning
techniques. Hui et al. [32] developed a deep iterative clustering network for end-to-end
supervoxel generation from point clouds. Landrieu and Boussaha [33] presented the first
supervised framework for over-segmenting 3D point clouds.

For most supervoxel algorithms, the number of supervoxels is related to the reso-
lution value, with more supervoxels providing greater detail at lower resolutions. Ni
and Niu [34] proposed a supervoxel segmentation method using local allocation, which
preserves instance boundaries and enforces local minimisation through a new cost function.
Xiao et al. [35] devised a framework for generating supervoxels that resolves an energy
optimisation issue with a specified number of supervoxels. To address the problem of
under-segmentation when the number of supervoxels is low, Sha et al. [36] optimised the
road boundaries based on BPSS. Su et al. [37] proposed improving the selection of repre-
sentative points. Instead of random sampling in BPSS, their method selects representative
points within non-boundary regions. However, the issue of under-segmentation at a wide
variety of resolutions is still worth investigating.

In this paper, we propose an accurate and efficient supervoxel re-segmentation method
to achieve high-precision boundary preservation for large-scale point clouds with various
resolutions. Our algorithm initially optimises the boundary points of BPSS supervoxels by
introducing point-to-plane distance constraints. Then, to solve multi-planar coupling issues,
RANSAC is applied to re-segment supervoxels with roughness over a threshold. Ultimately,
our proposed method enhances the precision of point cloud boundary segmentation across
various resolutions.

This research focuses on addressing the problem of under-segmented planes in super-
voxels in 3D point clouds. Our specific contributions are as follows:

• We analysed two cases of under-segmentation in the current supervoxel generation
results: (1) failure to segment non-coplanar supervoxel boundaries and (2) the multi-
planar coupling problem caused by resolution and target size mismatch.
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• We developed a novel algorithm that improves the accuracy of boundary segmentation
between non-coplanar supervoxels. By introducing distance constraints during the
merging stage and utilising RANSAC for re-segmentation, our algorithm effectively
addresses the multi-planar coupling problem in local point cloud regions.

• We present a novel idea in supervoxel segmentation tasks: re-segment under-segmented
supervoxels to improve the final segmentation result.

This paper is structured as follows. Section 1 introduces background information and
related works for the supervoxel. In Sections 2.1 and 2.2, we provide an overview of the
BPSS method and analyse the reasons for its under-segmentation problems. Section 2.3
presents our proposed re-segmentation method in detail, with Section 2.3.1 introducing the
redefinition of the boundary exchange condition for supervoxels. Section 2.3.2 explains the
re-segmentation of under-segmented supervoxels based on roughness filtering. In Section 3,
we present the experimental results and compare our method with others. In Section 4,
we analyse the results of the experiments and discuss the limitations of the algorithm in
some cases. Finally, in Section 5, we summarise the paper and provide an outlook for
future work.

2. Methods
2.1. BPSS

The algorithm proposed in this paper is an improvement upon the BPSS [23]. In BPSS,
a heuristic approach for supervoxel segmentation is proposed by minimising the energy
function shown in the following equation.

min E(Z) =
N
∑

i=1

N
∑

j=1
zijD

(
pi, pj

)
+ λ|C(Z)− K|

s.t. zij = {0, 1}, ∀i, j;
N
∑

i=1
zij = 1, ∀j.

(1)

According to Equation (1), E(Z) consists of two terms. The first term describes
the geometric properties, where zij is a binary number of 0 or 1. If zij = 1, it means
that pi is a supervoxel representative point and pj is subordinate to pi. D

(
pi, pj

)
is a

distance metric to measure the dissimilarity between two points, which will be explained
in Section 2.3.1. The second term is the constraint term, which constrains the number of
supervoxel representative points C(Z) to converge to K. λ is the regularisation parameter
used to set the trade-off between two terms.

BPSS minimises the energy function through fusion and exchange operations. The
exchange-based minimisation operation redefines boundary points based on the dissim-
ilarity distance between the boundary point and the representative point of each of the
adjacent supervoxels. This distance metric measures the weighted difference from the
normal vectors and the relative position of two points, which ensures that each supervoxel
has a relatively complete boundary.

2.2. Under-Segmentation Issues

Although BPSS addresses the problem of non-uniform point cloud density to some
extent, its resolution setting still makes the method unable to segment regions with large
local variations accurately. In supervoxel segmentation, the resolution of supervoxels
corresponds to the granularity of segmentation, and supervoxel structures with differ-
ent granularities can describe details at different levels [10]. Furthermore, suppose the
resolution of supervoxels is set too low. In that case, the number of points within each
supervoxel may be insufficient (e.g., around 10 in Figure 1g), which could negatively
impact subsequent calculations [38]. Therefore, supervoxel resolution should be set to
be similar to, or slightly smaller than, the expected segmentation target size in the point
cloud while avoiding minimal values. As shown in Figure 1, the enlarged portion is a
step-like protrusion on the façade of the point cloud. Even if the resolution of BPSS is
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set according to the size of the step-like protrusion, the issue of under-segmentation still
occurs, as illustrated in Figure 1e–g.
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In addition, the results of BPSS in Figure 2 illustrate two main cases of segmentation 
errors in local regions. The first case, shown in Figure 2a, is the boundary point error 
caused by the limitations of the similarity distance judgement, which ignores the connec-
tion between points and supervoxel planes. This issue becomes even more severe when 
the planar normal vectors of two non-coplanar supervoxels differ by a small degree. The 
second case is the under-segmentation of the supervoxel, as shown in Figure 2b, where 
several small planes within a supervoxel are coupled due to the supervoxel resolution 
setting. Both cases limit the segmentation effectiveness of BPSS. Section 2.3 will discuss 
these errors in detail and provide corresponding solutions. 
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Figure 1. Segmentation results of BPSS at different resolutions. (a) Raw point clouds; (b–g) the seg-
mentation results with resolution values are 2.0 m, 1.0 m, 0.5 m, 0.2 m, 0.1 m, and 0.08 m, respectively.

In addition, the results of BPSS in Figure 2 illustrate two main cases of segmentation
errors in local regions. The first case, shown in Figure 2a, is the boundary point error
caused by the limitations of the similarity distance judgement, which ignores the connection
between points and supervoxel planes. This issue becomes even more severe when the
planar normal vectors of two non-coplanar supervoxels differ by a small degree. The
second case is the under-segmentation of the supervoxel, as shown in Figure 2b, where
several small planes within a supervoxel are coupled due to the supervoxel resolution
setting. Both cases limit the segmentation effectiveness of BPSS. Section 2.3 will discuss
these errors in detail and provide corresponding solutions.
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Figure 2. Possible incorrect segmentation cases, where different colors indicate distinct supervoxel
planes. (a) Boundary point segmentation error; (b) under-segmentation of local regions.

2.3. Proposed Algorithm

This paper proposes a robust supervoxel segmentation algorithm to address the issues
of BPSS segmentation errors in local regions. The algorithm preserves boundaries at various
resolutions and consists of two steps, as shown in Figure 3. After using statistical outlier
removal (SOR) [39] to remove scattered points in the point cloud, we introduced a point-to-
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plane distance constraint in the initial segmentation stage of the exchange phase to redefine
boundary points in the first step. In the second step, we re-segmented supervoxels with
roughness above the threshold using the RANSAC algorithm.
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2.3.1. Boundary Point Redefinition

As presented in the BPSS, Equation (2) calculates the dissimilarity distance from the
boundary point p to the adjacent supervoxel representative points qi to determine whether
the point is exchanged. The dissimilarity distance is calculated by the weighted sum of the
normal vector projection and the Euclidean distance,

D(p, qi) = 1−
∣∣np·nqi

∣∣+ 0.4
r(p, qi)

R
(2)

where np and nqi are the normal vectors of p and qi, respectively, obtained by using principal
component analysis (PCA) [40], r(p, qi) denotes the Euclidean distance between points p
and qi, and R is a user-defined parameter that represents scale resolution value. However,
due to resolution value, non-uniform density distribution, noise, and outliers, there are
some errors in the boundary point normal vectors obtained through PCA in the boundary
region between non-coplanar supervoxels. At the same time, Equation (2) is directly
applied to the point-to-point relationship without considering the connection between the
point and the supervoxel plane, which is the underlying cause of the segmentation errors.

In order to solve the problem of incorrect boundary segmentation of the non-coplanar
supervoxels shown in Figure 2a, this paper refines the exchange minimisation in BPSS by
introducing point-to-plane constraints. The algorithm flow is shown in Algorithm 1. Specif-
ically, for a supervoxel Vi and its adjacent supervoxel Vj, consider it as plane Si and plane Sj
determined by the coordinates of the supervoxel centroid and the centroid normal vector,
respectively. Calculate the Euclidean distances r(pb, Si) and r

(
pb, Sj

)
from the boundary

point pb to the planes Si and Sj, respectively. If it satisfies both D(pb, pi) > D
(

pb, pj
)

and r(pb, Si) > r
(

pb, Sj
)
, this indicates that the boundary point is more suitable for the

supervoxel Vj; then, pb is exchanged to complete the classification of this boundary point.
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Algorithm 1: The stage of boundary exchange.

Input: Initialize a queue, Q, for points, i.e.,
while Q 6= ∅ do
Remove the front point pb from Q
for all pb ∈ Vi do

if D(pb, pi) > D
(

pb, pj

)
& r(pb, Si) > r

(
pi, Sj

)
exchange pb to pj
if pb /∈ Q then
Add pb to the back of Q
end if
end if
end for
end while

The effectiveness of our proposed method in enhancing the segmentation of non-
coplanar supervoxel boundaries is demonstrated in Figure 4. The figure shows the results
of both the BPSS and the proposed boundary redefinition. In particular, our optimization
step outperforms BPSS in segmenting the boundaries of step-like protrusions and window
sills, as indicated by the red arrows in Figure 4b,c. This results in clearer and more distinct
edges for non-coplanar supervoxels, thereby enhancing the algorithm’s advantage in
boundary segmentation of complex geometric shapes.
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2.3.2. RANSAC-Based Re-Segmentation

The voxel resolution should be closely matched to the target size in order to achieve
optimal segmentation outcomes. However, due to the non-uniform density distribution
and complex intersection of multiple planes in large-scale point clouds, only a rough
resolution range can typically be determined. Therefore, for the refined BPSS after the
boundary redefinition in Section 2.3.1, we make the following two assumptions about the
segmentation results of the supervoxels within the suitable resolution range:

• The first assumption is that, at a given appropriate resolution, the under-segmented
supervoxels only account for a minority of the total supervoxel set.

• The second assumption is that the number of under-segmented points in an under-
segmented supervoxel is in the minority.

Therefore, there is no requirement to re-segment all supervoxels.
According to the first assumption, only a proportion of supervoxels require re-

segmentation. This paper uses a roughness-based statistical method to screen out the
supervoxels that need to be re-segmented. For the set of supervoxels obtained from the
initial segmentation, we compute the supervoxel planes using the same method as in the
boundary redefinition section above and then calculate the roughness of each point within
each supervoxel according to Equation (3).

σ =

√√√√ 1
N

N

∑
i=0

[r(pi, S)− rS]
2 (3)
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where N is the number of points contained in the supervoxel, r(pi, S) is the Euclidean
distance from the point pi to the supervoxel plane S, and rS is the mean distance of all
points to the supervoxel plane. The mean value of the roughness represents the overall
roughness of the supervoxel at each point. To reduce the impact of outliers, we exclude 5%
of the extreme values when calculating the mean roughness, using only 95% of the data for
analysis [41]. Figure 5 illustrates the outlier removal method proposed in this paper. Firstly,
we apply SOR filtering to the entire point cloud to remove obvious outliers. Then, we use
maximum suppression of roughness (MSR) to calculate the robust average roughness of
the supervoxels.
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Figure 5. Statistical outlier removal and maximum suppression of roughness.

After calculating the roughness of all supervoxels, those supervoxels with roughness
above the threshold are selected to be re-segmented. According to the three-sigma rule [41],
the roughness threshold τσ is conservatively adjusted to 68% of the roughness set in
ascending order. Figure 6. shows the supervoxels that were computed and selected for
re-segmentation. In Figure 6a, the black dotted line corresponds to the adaptive threshold.
The bar chart in Figure 6b represents the roughness distribution of the scatter plot on the
left. Among them, the blue data points below the threshold account for 68% of the total, and
the supervoxels represented by these points do not require re-segmentation. The remaining
supervoxels, as shown in Figure 6c, need to be re-segmented. And, then, RANSAC is used
to re-segment the supervoxels with roughness above the threshold value.
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RANSAC is a simple but powerful tool with wide applications in outlier removal and
plane detection. It robustly estimates model parameters through random sampling. In this
paper, RANSAC is used to decouple multi-planar coupling supervoxels.

The distance threshold τd is the main parameter in the supervoxel that affects the
results of RANSAC segmentation. It defines the maximum distance allowed from a point
to the estimated plane. According to the second assumption, this research adaptively
adjusts the distance threshold to 0.5-times the average density of each supervoxel, ensuring
efficient segmentation while avoiding RANSAC degeneracy. The average density of each
supervoxel is defined as the mean of the average distances between all points within
the supervoxel and their eight nearest neighbours. To eliminate the impact of voids and
discrete points on the computation of average density, the distance value for each point is
arranged in ascending order, and only the top 90% of data is used to calculate the point
cloud’s average density. After using RANSAC to perform multi-plane segmentation on
under-segmented supervoxels, the segmented results are re-labelled and then output. The
algorithm flow for the stage of re-segmentation is shown in Algorithm 2.

Algorithm 2: The stage of re-segmentation.

Start from the voxel set V
while Vi is not processed
compute σi and rS for Vi
if σi > τσ

τd = 0.5× rS
Ransac to Vi
relabel Vi
end if
end while

3. Results
3.1. Experimental Setup

Our proposed re-segmentation method is accurate and effective for urban scenes.
To comprehensively evaluate our proposed algorithm, we implemented experiments on
different publicly available datasets. We compared our results with those obtained using
classical algorithms, e.g., VCCS [26], BPSS [23], and a variant of the VCCS algorithm, i.e.,
VCCS_KNN, implemented by Lin et al. [23]. Furthermore, for further insight into the
algorithm proposed in this paper, we conducted a more in-depth analysis by separating
the two-step operation into Proposed_RANSAC and Proposed_REDEFINE and comparing
them with the complete algorithm. All of these algorithms were implemented with the
support of the Point Clouds Library (PCL) [39]. Moreover, the code was executed in C++
on a Windows 10 PC with an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz and 16 GB of
RAM. The remainder of Section 3 will introduce the datasets used in the experiments, the
specific evaluation metrics, the parameter settings, and the experimental results.

3.2. Datasets

In this paper, we evaluate our proposed algorithm on Semantic3D [42] and IQmulus
& TerraMobilita (IQTM) [43]. Semantic3D is a terrestrial laser scanning (TLS) dataset
published by ETH Zurich that contains a variety of scenes, such as streets, squares, and
villages. IQTM is an urban street scene dataset collected by mobile laser scanning (MLS).
Compared to Semantic3D, IQTM has a denser point distribution in urban scenes, but it also
has relatively regular boundaries.

We selected two building point clouds from Semantic3D and intercepted a sparse
road scene point cloud from IQTM to test our algorithm. Then, we manually labelled the
selected point clouds and used them as ground truth to evaluate our algorithm. Figure 6
shows the point clouds and their corresponding density distributions and ground truths,
where we use a colour gradient from blue–green–yellow–red to represent the change in
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point cloud density distribution from sparse to dense. In Figure 7, the point is displayed
in red when the number of points within its unit neighbourhood region (radius = 0.05 m)
exceeds 50. Table 1 provides further details about these point clouds.
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Table 1. Introduction to point cloud data.

Data Set Point Clouds Point Number Planes Boundary Points

Semantic3D
stgallen1 620,133 142 25,930
bildstein1 2,269,937 367 246,856

IQTM cassette 1,189,410 44 41,737

3.3. Evaluation Metrics

To better evaluate our algorithm’s performance, we use four metrics, the boundary
recall (BR) [23], the under-segmentation error (UE) [26], the mean entropy of the model
(H), and the runtime (T).

Boundary recall measures the overlap between the ground truth and the segmented
supervoxel boundary. A high BR indicates that the supervoxel correctly preserves the
boundaries of the plane. It is calculated using Equation (4).

BR =
TP

TP + FN
(4)
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In Equation (4), TP denotes the number of truth boundary points detected; FN denotes
the number of truth boundary points not detected.

The under-segmentation error represents the leakage of the supervoxel across the
truth boundary. For a truth segmentation with the region g1, . . . , gM of truth segmentation
results and the set of supervoxels V1, . . . , VK, the under-segmentation error is defined as,

UE =
1
N

 M

∑
i=1

 ∑
Vj |Vj∩gi

∣∣Vj
∣∣− N

 (5)

where Vj | Vj ∩ gi denotes the set of supervoxels required to cover the truth label gi and
N is the number of truth points. A lower UE value means that less supervoxels violated
ground truth borders by crossing over them.

According to entropy theory [44,45], we introduce the information entropy of the
segmented model as an evaluation criterion for supervoxels. Information entropy can be
used to metric the level of dependency of point cloud data for a class of features. For data
points in a point cloud, the entropy Eλ is calculated as follows,

Eλ = −
3

∑
i−1

ei ln(ei) (6)

where ei=1,2,3 represents the three eigenvalues obtained by calculating the local covariance
matrix of the points. Then, the whole entropy of the model is obtained by averaging the
entropy of the points.

H =
1

MN

M

∑
i=1

N

∑
Vi

Eλj (7)

M is the total number of supervoxels obtained from the segmentation, and N is the
number of points contained in the supervoxel. We calculated the entropy of the manually
annotated ground truth. For the three-point cloud scenes stgallen1, bildstein1, and cassette,
the entropy values of ground truths were 0.34, 0.31, and 0.16, respectively.

In this paper, we define the ground truth boundary as the neighbouring point between
two labelled results. For any point in a plane, we traverse its eight nearest neighbours,
and if a neighbour’s label differs from its own, that point is considered a boundary point.
This standard is also used to determine boundary points in the data to be measured and to
compare them with labelled results.

3.4. Algorithms and Parameters

To comprehensively evaluate our proposed algorithm, we implemented experiments
on point cloud data with various resolutions. Specifically, the proposed algorithm was
compared with five other supervoxel algorithms to validate its effectiveness in process-
ing large-scale point clouds. These algorithms include VCCS, BPSS, VCCS_KNN, and
the two stages of our proposed method, i.e., Proposed_REDEFINE(P_RDF) and Pro-
posed_RANSAC(P_RSC).

We set up a range of resolutions for the three selected point cloud datasets as param-
eters. This range encompassed the entire state of point cloud supervoxel segmentation,
from over-segmentation to under-segmentation. The testing resolution range of different
point cloud models is roughly determined based on the expected segmentation target
size. Figure 8 illustrates the specific results of the BPSS and the proposed algorithm for
supervoxel segmentation at different resolutions. Multiple experiments were conducted,
with the number of search points for the nearest neighbours fixed at 20 for all six methods.
And, in the proposed algorithm, the roughness threshold was conservatively set to filter out
supervoxels beyond 68%, based on the three-sigma rule [41], while the distance threshold
was set to half of the supervoxel mean density.
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3.5. Experimental Results

In this section, we compare our algorithm’s performance with other algorithms in
terms of boundary recall, under-segmentation error, information entropy, and algorithm
efficiency. The reliability and validity of our method are verified through qualitative and
quantitative analysis of the point clouds at different resolutions.

In the stgallen1 scene, we present segmentation results for each algorithm with a
resolution set to 0.5 m. As shown in Figure 9, the results are divided into two rows
with overall supervoxel display results on top and local-region zooms on the bottom. The
highlighted black rectangles shows the step-like protrusions on a façade. Only our proposed
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algorithm (Figure 9g) can highlight object boundaries in local enlargement, especially at the
boxes. Additionally, quantitative metrics in Figure 10 show that our proposed algorithm
performs excellently compared to other algorithms under evaluation metrics. Regarding
boundary recall (BR), the proposed algorithm achieves the highest values at all resolutions.
At the same time, the BR value of Proposed_REDEFINE is significantly better than that of
BPSS, indicating that the addition of point-to-plane constraint optimisation improved the
boundary recall metric. Using only RANSAC, the Proposed_RANSAC method can also
achieve a high recall rate, but its performance is slightly worse than that of the proposed
algorithm. It is due to the addition of boundary constraints and the optimisation of non-
coplanar supervoxel boundaries. Simultaneously, the proposed algorithm also performs
best in terms of under-segmentation error and entropy.
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In the bildstein1 scene, the results of each algorithm at a resolution of R = 0.7 are
selected for presentation in this paper. As shown in Figure 11, where local enlargement
shows a window, BPSS_RANSAC (Figure 11f) and our proposed algorithm (Figure 11g)
demonstrate better outcomes than other algorithms at the arrows in the presented local
scene. This is reflected in their ability to segment small planes more clearly, making window
features more apparent. At the same time, planes segmented by our proposed algorithm
are more complete compared to only using the RANSAC method. And, it is also illustrated
by boundary recall and under-segmentation metrics in quantitative metrics in Figure 12.

Figure 13 shows the segmentation results for the cassette scene for each algorithm
when R = 0.7. In the local enlargement shown, VCCS and VCCS_KNN cannot segment the
kerb when the resolution is too large. In contrast, as shown in Figure 13d, although the BPSS
method can segment the road plane, the supervoxel region indicated by the arrow appears
both above and below the step. At the same time, the BPSS method cannot accurately
segment the columnar railings shown in the area marked by the black boxes. However,
notably, our proposed algorithm can better address these problems, as demonstrated by its
ability to segment the kerb and avoid under-segmentation of supervoxel regions accurately.
The proposed method can also accurately segment small objects, such as pillar bars, with
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higher accuracy and reliability. The quantitative experimental results shown in Figure 14
support the conclusions of the qualitative analysis.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 

  
(c) (d) 

Figure 10. Evaluation metrics of algorithms on stgallen1 at different resolutions. (a) BR; (b) UE; (c) 
H; (d) time. 

In the bildstein1 scene, the results of each algorithm at a resolution of R = 0.7 are 
selected for presentation in this paper. As shown in Figure 11, where local enlargement 
shows a window, BPSS_RANSAC (Figure 11f) and our proposed algorithm (Figure 11g) 
demonstrate better outcomes than other algorithms at the arrows in the presented local 
scene. This is reflected in their ability to segment small planes more clearly, making win-
dow features more apparent. At the same time, planes segmented by our proposed algo-
rithm are more complete compared to only using the RANSAC method. And, it is also 
illustrated by boundary recall and under-segmentation metrics in quantitative metrics in 
Figure 12. 

    
(a) (b) (c) (d) 

 

   
(e) (f) (g) 

Figure 11. When R = 0.7, the bildstein1′s segmentation results in partially enlarged detail.
(a) Ground truth; (b) VCCS; (c) VCCS_KNN; (d) BPSS; (e) Proposed_REDEFINE; (f) Pro-
posed_RANSAC; (g) proposed.
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4. Discussion
4.1. Discussion of Proposed Method

For the selected three models, the proposed algorithm shows better segmentation
results compared to other algorithms in the qualitative demonstration. This is because our
method introduces point-to-plane constraints to optimise the segmentation of non-coplanar
supervoxel boundaries and uses the RANSAC method to re-segment supervoxels with
multi-planar coupling. The quantitative analysis results correspond to the qualitative
results reported, and the proposed approach achieves the best evaluation metrics at various
resolutions. In terms of running time, whether RANSAC is used or not is the primary
difference between the algorithm suggested in this research and BPSS. RANSAC has high
time complexity, and we minimise our algorithm’s runtime by using RANSAC on only a
subset of supervoxels.

To optimise the segmentation outcome, it is necessary to use both optimisation op-
erations. Specifically, boundary redefinition optimises the initial supervoxel generation
stage, and then the RANSAC-based method re-segments the under-segmented supervoxels.
While using only point-to-plane constraints can optimise the boundaries of adjacent non-
coplanar supervoxels with minor changes in planar normal vectors, it cannot address the
multi-planar coupling problem. However, on the other hand, using only RANSAC on su-
pervoxels does not result in satisfactory boundary segmentation outcomes. This is because
RANSAC’s random sampling is insensitive to the boundary points of non-coplanar super-
voxels when used directly for re-segmentation without boundary redefinition. Meanwhile,
utilising boundary redefinition before RANSAC enhances the boundary segmentation
of supervoxels below the roughness threshold. If the roughness threshold is drastically
reduced or RANSAC segmentation is performed directly on all supervoxels, degeneracy
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problems arise, and the running time increases significantly. As a result, both stages are
complementary and contribute to improving segmentation outcomes.

Comprehensive experiments have demonstrated that the proposed method achieves
good performance on high-quality TLS point clouds and low-quality MLS point clouds,
making it suitable for point cloud processing tasks in urban environments. Additionally,
our algorithm exhibits broad applicability and can be used in sparser ALS point clouds by
simply adjusting the parameters.

The proposed method has been comprehensively validated through experiments,
demonstrating exceptional performance on high-quality TLS point clouds and low-quality
MLS point clouds. Furthermore, our algorithm exhibits a wide range of applicability,
allowing for its utilisation in sparser ALS point clouds by adjusting parameters such
as resolution.

4.2. Limitations

We also investigated two issues where the proposed method segments defectively.
These two circumstances are illustrated in Figure 15.
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The first circumstance is the un-compact boundary points of co-planar supervoxels, as
shown in Figure 15a. The redefinition of boundary points causes the limitation. However,
we contend that this issue does not impede the high-level applications of super-voxels.
Notably, the boundaries between hetero-plane supervoxels in Figure 15a are clearly defined,
which can be advantageous for tasks such as extracting lines based on the Helmholtz
theory [46,47] or other applications of supervoxels.

Due to the exclusive use of planar models, our proposed method tends to segment
curved surfaces into multiple planar units, the second circumstance, as illustrated in
Figure 15b. While this does not significantly affect the subsequent applications, it can be
addressed by designing appropriate post-processing strategies that cater to specific use
cases. To overcome this limitation, we plan to extend our approach by incorporating multi-
ple geometric models, such as planes, spheres, and cylinders, to support the segmentation
of supervoxels from point clouds.

5. Conclusions

In this research, we propose a large-scale point cloud supervoxel re-segmentation
method based on point-to-plane constraints and RANSAC using roughness filtering for
under-segmented supervoxels at various resolutions. Firstly, we introduce a constraint
on distance judgement between boundary points and adjacent supervoxels to address
boundary segmentation errors between non-coplanar supervoxels. Secondly, we use a
roughness screening-based RANSAC method for re-segmentation to address multi-planar
coupling problems caused by fixed-resolution mismatches in local regions. Finally, we
conduct comparative experiments with classical supervoxel methods on different large-
scale point clouds to validate our algorithm’s efficacy. The experimental results show
that our proposed algorithm can better segment boundaries between planes in large-scale
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urban scenes at various resolutions without sacrificing runtime. Furthermore, the proposed
method has the potential to handle point clouds from different sources.

In future work, we will further explore using more geometric models (such as cones,
cylinders, spheres, etc.) to improve our algorithm while focusing on the segmentation
accuracy and precision of small planes. Additionally, we will explore advanced applications
of supervoxels, including 3D line extraction and point cloud segmentation.
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