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Abstract: Object detection is one of the vital components used for autonomous navigation in dynamic
environments. Camera and lidar sensors have been widely used for efficient object detection by
mobile robots. However, they suffer from adverse weather conditions in operating environments
such as sun, fog, snow, and extreme illumination changes from day to night. The sensor fusion
of camera and lidar data helps to enhance the overall performance of an object detection network.
However, the diverse distribution of training data makes the efficient learning of the network a
challenging task. To address this challenge, we systematically study the existing visual and lidar
features based on object detection methods and propose an adaptive feature attention module (AFAM)
for robust multisensory data fusion-based object detection in outdoor dynamic environments. Given
the camera and lidar features extracted from the intermediate layers of EfficientNet backbones,
the AFAM computes the uncertainty among the two modalities and adaptively refines visual and
lidar features via attention along the channel and the spatial axis. The AFAM integrated with the
EfficientDet performs the adaptive recalibration and fusion of visual lidar features by filtering noise
and extracting discriminative features for an object detection network under specific environmental
conditions. We evaluate the AFAM on a benchmark dataset exhibiting weather and light variations.
The experimental results demonstrate that the AFAM significantly enhances the overall detection
accuracy of an object detection network.

Keywords: multi-sensor fusion; deep fusion; object detection; deep learning

1. Introduction

Autonomous navigation aims to enable safe driving without human intervention. It
relies on various element technologies, including simultaneous localization and mapping
(SLAM) [1], 3D pose estimation, object classification, detection [2], etc., to perceive and
understand the surrounding environment. In particular, object detection plays a crucial
role in autonomous navigation by detecting obstacles, pedestrians, and other vehicles on
the road and making informed decisions to ensure safe driving [3].

To achieve reliable and consistent performance in object detection, even in a dynamic
environment, researchers often propose sensor fusion, a technique that integrates data from
multiple sensors. When noise increases in one sensor data, sensor fusion compensates
for performance degradation by combining information from other sensors. However,
developing a deep learning network for sensor fusion requires updating the network
parameters to extract key features. When the sensor data significantly changes, such
as when a different camera is used or the environmental conditions change, the feature
extraction process may not be consistent, leading to performance degradation [4].

Remote Sens. 2023, 15, 3992. https://doi.org/10.3390/rs15163992 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15163992
https://doi.org/10.3390/rs15163992
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8001-4212
https://orcid.org/0000-0002-3695-344X
https://doi.org/10.3390/rs15163992
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15163992?type=check_update&version=1


Remote Sens. 2023, 15, 3992 2 of 19

To address the aforementioned problem, effective sensor fusion must consider the
impact of data changes on performance degradation. This involves developing robust
feature extraction methods that are resilient to changes in sensor data and environmental
conditions. By incorporating these methods, the sensor fusion approach can continue to
deliver consistent and reliable performance, even in a dynamic environment, and thus
enable safe and effective autonomous navigation.

Numerous methods have been proposed in the past focusing on the development of
a multi-sensor fusion-based object detection system [4–10]. Such systems mainly consist
of two major components i.e., robust feature extraction and data fusion. In a network-
based multi-sensor system using deep fusion, each sensor dataset is processed by an
appropriate network separately to extract features. For the extraction of robust features,
network configurations are used that are optimized for each sensor, i.e., camera and lidar.
This approach enables the extraction of robust features from sensor data. Later, those
features are then fused in the middle of the network using various network structures. The
convergence of extracted robust features leads to the improved performance of an object
detection network.

Following the benefits of a deep fusion approach [9,11], we propose an adaptive feature
attention module for an object detection network with which we extract the visual and lidar
features from camera and lidar data using respective networks. The extraction of distinctive
and robust features is performed using an attention mechanism in the middle layer of the
fusion network. This is achieved by selecting the maximum or average value from the
channel of the tensor, which reduces high-dimensional features to low-dimensional ones.
Those features are then merged in the middle of the network, enabling the sensor data
to be converged into a unified feature representation. During the feature space merging
process, some features may cause noise during network training. Moreover, in the case of
adverse weather conditions, such as fog, snow, sun, or illumination variations from day
to night, sensory noise is inevitable. For example, lidar sensor noise increases in case of
fog, while visual feature detection is difficult at night in comparison to daytime. In such
scenarios, robust feature extraction is a challenging task [12]. To address this issue, the
proposed AFAM performs the adaptive filtration of unnecessary features causing noise, as
illustrated in Figure 1.
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detection difficult. Noise features tend to occur when both sensors are weak.

In [13], the authors proposed a feature recalibration method to filter the noisy features
while training using data labels, also known as data annotations. However, annotations
may not always be suitable for training the network to recognize various data distributions.
This is because annotations may not reflect real-world conditions, such as weather or
lighting, which can introduce noise to the data. Therefore, relying solely on annotations
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can result in another source of uncertainty that can impede learning. In order to handle this
problem, the proposed method performs self-learning that utilizes robust features extracted
from the network to overcome the limitations of annotation and improve the network’s
performance in recognizing objects under various conditions.

The proposed AFAM–EfficientDet utilizes four EfficientNet backbones for visual and
lidar feature extraction consisting of two pairs known as the source and target networks.
Both the network pairs differ in the training data. For each network, the lidar point cloud is
converted into the dense range image before feature extraction. For efficient convergence,
the extracted visual–lidar features are converted into query, key, and value to estimate the
correlation between lidar features and their relevant camera features. Given the query, key,
and value from the source and target networks, the AFAM first computes the uncertainty
between the lidar features of the source and target networks and the camera features of
the source and target networks. Based on the computed uncertainty, the AFAM adaptively
computes the attention maps along the channel and spatial axis. The extracted camera and
lidar features from the target network are recalibrated by element-wise multiplication with
attention maps. Finally, the refined camera and lidar features are fused and given as input
to the EfficientDet-B3 for object detection. We evaluated the performance of the proposed
method for object detection in adverse weather conditions using the Dense Dataset [12].
To conduct the evaluation, we employed EfficientDet [14] and trained it five times. The
robustness of the network’s performance was assessed by calculating the difference between
the maximum and minimum mean average precision (mAP) and by computing the average
and deviation values. The experimental results demonstrate that our proposed method
effectively improves the sensor fusion performance of object detection networks in adverse
weather conditions, enabling them to operate more robustly in real-world scenarios.

Our main contributions are as follows:

1. We propose an effective adaptive feature attention module (AFAM) that can be widely
applied to boost the representation power of CNNs.

2. We validate the effectiveness of our AFAM via ablation studies.
3. We verify that the AFAM outperforms the benchmark network EfficientDet on the

benchmark dataset, the Dense Dataset.

The rest of the paper is structured as follows: In Section 2, a literature review of existing
camera- and lidar-based object detection methods is presented. Section 3 describes the
proposed adaptive feature attention module for the visual–lidar sensor fusion network in
detail. Section 4 outlines the experimental setup and the results obtained. Finally, Section 5
concludes this research.

2. Related Work

In this section, we have discussed previous works related to object detection using
camera and lidar sensors. Based on the input sensor data used for object detection,
the existing literature can be grouped into three main categories: camera-based object
detection methods, lidar-based object detection methods, and visual–lidar based object
detection methods. The literature related to each of these categories is explained in the
subsequent sections.

2.1. Camera-Based Object Detection

Camera-based object detection techniques, such as Fast-RCNN [15,16] and YOLO [17],
have been advanced with the aid of contextual information provided in images to detect
objects of varying sizes. However, the incorporation of rich contexts poses a challenge to
the network training process. To address this problem, feature compression techniques, like
squeeze-and-excitation networks [18], and attention methods, such as CBAM [19], have
been proposed. In low-visibility conditions, such as fog and darkness, object detection
becomes a challenging task. Existing methods employ dehazing techniques for object
detection in bad weather and illumination conditions where dim images are transformed
into brighter ones, thus enabling better detection [20–25]. Though dehazing methods
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show improved performance, they require the same scene in clear weather conditions,
necessitating the use of synthetic data. Moreover, computational efficiency is another
challenge for camera-based object detection methods. Recently, transformer-based ob-
ject detection methods [26–29] have emerged as a solution to address the computational
power required by such methods [28]. Nonetheless, such methods have been crucial to
improving object detection performance, particularly in challenging weather conditions
and lighting conditions.

2.2. Lidar-Based Object Detection

On the other hand, extensive research has been performed to analyze the impact
of weather conditions such as fog and high humidity on LiDAR sensor data for object
detection problems [30–32]. Heinzler et al. [30] artificially induced humidity in a chamber
and examined how the data measurements of human and vehicle objects were affected
under foggy conditions. It was found that humidity has a significant impact on the
distribution of LiDAR data. Object detection using LiDAR data is typically achieved by
Point-Net [33,34] and the Voxel-based Network [35–37]. PointNet is designed to learn
consistent features of LiDAR data, but it struggles to identify invariant features when
there is noise in the data. On the other hand, Voxel-based object detection suffers from
unnecessary data in the grid, which makes network training difficult, especially in high
humidity conditions. Moreover, lidar-based object detection methods suffer from the
point cloud sparse distribution in 3D space, which affects the detection performance.
Motivated from the benefits of camera-based object detection, LaserNet [38] generates
cylindrical range images using lidar data, allowing for more effective noise removal and
greater contextual information extraction via convolution. Moreover, utilizing dense
images enables more information to be extracted from the CNN kernel even for the regions
where the point cloud is sparse. This method was successful in achieving high detection
performance on significantly large dataset; however, its performance degrades when
training is insufficient.

2.3. Visual–Lidar-Based Object Detection

In the past few years, many multi-sensor fusion-based object detection methods
have been proposed to overcome the limitations of a single modality, i.e., camera or
lidar [4–7,9,12–14,39]. The existing fusion architectures can be grouped into three main
categories based on the stage at which they merge features from different modalities: early
fusion, deep fusion, and late fusion [6]. In early fusion, data from different modalities are
combined at the input stage [5,40]. Deep fusion utilizes distinct networks for different
modalities and simultaneously integrates intermediate features [4,5,7,11]. Late-fusion-
based methods handle each modality separately and merge their outputs at the decision-
making level [6,41,42].

The use of multisensory fusion-based methods can lead to good performance, but
their effectiveness may decrease when one of the sensors fails to function properly in
adverse weather conditions. To address this issue, researchers have proposed the feature
switch layer [13] and FIFO [43] to teach distinctive features that are specific to the current
environmental conditions. This enables the robust fusion of multisensory data in chal-
lenging weather conditions such as fog and low light. However, relying solely on dataset
annotations for training the network may not always be ideal as real-world conditions
such as weather and lighting can introduce noise to the data, making the annotations less
suitable. This could lead to uncertainty and hinder learning.

Self-supervised learning-based object detection methods can be solutions for such
problems [44]. Contrastive learning is utilized to assess uncertainty by evaluating learned
and unlearned data. Uncertainty, in this context, pertains to the ability of the network to
determine the similarity between the learned data and new data that need to be learned,
allowing for an assessment of the data distribution [45].
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In this research, we focus on visual–lidar fusion-based object detection and develop
the adaptive feature attention module for the deep fusion of extracted features for adverse
weather conditions.

3. Proposed Method

In Section 3.1, we first present the overall multisensory deep fusion network pipeline.
Then, we explain the proposed adaptive feature attention module (AFAM) in Section 3.2.
Finally, we explain the training of the object detection network with the AFAM in Section 3.3.

3.1. Network Pipeline

Figure 2 illustrates the working pipeline of the proposed AFAM–EfficientDet network.
The network takes lidar and image data as input and generates the prediction scores and
semantic labels for the detected objects in the current view.
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The proposed method uses EfficientNet [46] as a backbone for feature extraction
from camera and LiDAR data. The lidar data exhibit inherent density when observed
from the sensor’s perspective, but it becomes sparser upon projection into a 3D space.
This sparsity arises due to the constant angular density of the measurements, resulting
in a larger number of measurements for objects in close proximity compared to those
located further away. Moreover, the coordinate system of the raw lidar point cloud differs
from the camera coordinates, which makes visual–lidar fusion-based object detection
a complex problem. In order to deal with the aforementioned problem, this research
generates a dense range image from the raw lidar data as performed in [38]. The obtained
dense image is the range view representation of lidar data and is obtained by projecting
the point cloud onto a camera coordinate system. It comprises three channels: depth,
height, and intensity. The dense image offers a denser point cloud, allowing the use of
a convolutional neural network (CNN) kernel size equivalent to that of a camera. This
facilitates the efficient alignment of coordinate systems across different sensors, enabling
effective convergence. The proposed method leverages the converted lidar and camera
data to achieve its objectives.

Thus, four backbone networks [35] consisting of two pairs known as the source and
target networks are utilized. Each pair comprises a camera and a lidar sensor backbone net-
work. The key distinction between the source and target networks lies in the configuration
of their respective training datasets. The source network is trained solely on camera images
and LiDAR point cloud data captured during daytime and clear weather conditions [12],
while the target network is trained using data captured during clear weather, adverse
weather, and illumination conditions. The features F extracted from the source S and
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target T network given as FS and FT are expressed as a set of camera C and lidar L features
extracted from the source and target networks, as illustrated in Equations (1) and (2):

FS = { F C
S , FL

S

}
(1)

FT =
{

FC
T , FL

T

}
(2)

where, FC
S and FC

T represents the n camera features extracted from the source and target
backbone networks given in Equation (3), while FL

S and FL
T denote the m Lidar features

extracted from the source and target backbones, as depicted in Equation (4). Thus, features
F are of size W × H × D, where W (width) and H (height) are the spatial dimensions, and
D (depth) is the number of channels extracted from the backbone network.

FC = {C1, C2, . . . , Cn} (3)

FL = {L1, L2, . . . , Lm} (4)

For the efficient convergence of lidar features with their relevant camera features, we
employ a cross-attention mechanism [9] that captures correlations between the two modal-
ities in a dynamic manner. The input consists of a voxel cell and its corresponding N
camera features. By utilizing three fully connected layers, we individually transform the
voxel into a query QL and the camera features into key KC and value VC vectors. The inner
product operation is then applied between the query and keys, resulting in an attention
affinity matrix. This matrix encapsulates the 1× N correlations between the voxel and
its associated camera features. To ensure proper weighting, the attention affinity matrix
is normalized using a SoftMax operator. Subsequently, this normalized matrix is used
to weigh and aggregate the camera feature values VC, which contain relevant camera
information. The resultant feature vectors for source and target networks NS and NT with
the corresponding query QL, key KC, and value VC, depicted in Equations (5) and (6),
are given as input to the adaptive feature attention module (AFAM) for the adaptive
learning and recalibration of the features based on the computed uncertainty, as explained
in Section 3.2:

NS =
{

QL
S , KC

S , VC
S

}
(5)

NT =
{

QL
T , KC

T , VC
T

}
(6)

The AFAM module outputs the fused camera–lidar features, which are given as input
to BiFPN [14] for fast multi-scale feature fusion. The fused features are fed to the object
class and the box detection head. The BiFPN and detection head are configured following
the EfficientDet-B3 [14].

3.2. Adaptive Feature Attention Module (AFAM)

The AFAM takes NS and NT as input and compares them to learn the robust features
for object detection in adverse weather and illumination conditions. The major compo-
nents of AFAM include uncertainty computation, adaptive channel attention, and spatial
attention, as shown in Figure 3.
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3.2.1. Uncertainty Computation

The uncertainty is computed by comparing the query, key, and value of the source S
and target T networks with each other. Let QL

S , in Equation (5), have n number of queries
denoted as q1...n

S with their corresponding key and value represented as k1...n
S and v1...n

S ,
respectively. On the other hand, let QL

T , in Equation (6), have m number of queries with
their corresponding key and value given as q1...m

T , k1...m
T , and v1...m

T . In this scenario, each
ith query from the source network qi

S, where 1 ≤ i ≤ n, is compared with the jth query

received from the target network qj
T with 1 ≤ j ≤ m. This comparison is performed

to determine the similarity S′ between the qi
S and qj

T , denoted as S′Qi
when i = j using

Equation (7):

S′Qi

(
qi

S, qj
T

)
=

qi
S · q

j
T∥∥qi

S

∥∥ ∗ ∥∥∥qj
T

∥∥∥ (7)

The variables i and j refers to the indexes of the query in QL
S and QL

T . Similarly, the
similarity for key S′K and value S′V of the source and target networks is obtained using
Equations (8) and (9) with i and j as indexes in the key and value arrays of the source and
target networks:

S′Ki

(
ki

S, kj
T

)
=

ki
S · k

j
T∥∥ki

S

∥∥ ∗ ∥∥∥kj
T

∥∥∥ (8)

S′Vi

(
vi

S, vj
T

)
=

vi
S · v

j
T∥∥vi

S

∥∥ ∗ ∥∥∥vj
T

∥∥∥ (9)

The computed similarities S′Qi...n
, S′Ki...n

, and S′Vi ...n
for the query, key, and value are

summed to obtain the overall similarity S′Q, S′K and S′V between the lidar data of the source
and target networks using Equations (10) and (11):
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S′Q= ∑n
i=1 S′Qi

(10)

S′K= ∑n
i=1 S′Ki

(11)

S′V= ∑n
i=1 S′Vi

(12)

The similarity S′Q, S′K and S′V between the source and target networks is used to
compute the uncertainty of camera and lidar sensor data. For this purpose, the S′K and
S′V are averaged to represent the combined similarity S′C of the camera data, depicted in
Equation (13). Equations (14) and (15) are used to compute the uncertainty for lidar UL and
camera UC:

S′C =
1
2
(
S′K + S′V

)
(13)

UL = 1−
S′Q

S′Q + S′C
(14)

UC = 1−
S′C

S′Q + S′C
(15)

3.2.2. Adaptive Channel Attention

The adaptive channel attention module takes uncertainty values UL, UC, and camera
and lidar features of the target network FT = {FC

T , FL
T } as input and applies channel attention

on the target network features to obtain the refined features for object detection, as shown
in Figure 3. Channel attention is applied to the camera and lidar features given the
following conditions:

• Case 1: UL < UC, the lidar data uncertainty is lower than the camera uncertainty. In
such condition, max pooling is applied on the lidar features FL

T , while camera features
FC

T are average pooled.
• Case 2: UC < UL, the similarity between camera features is higher in comparison

to the lidar features of the source and target networks. In this case, max pooling is
applied on the camera features FC

T , while lidar features FL
T are average pooled.

The rationale behind applying max pooling to features from sensors with low uncer-
tainty is that regions in the feature vector with high values indicate a higher likelihood
of object presence. Hence, when a sensor has low uncertainty, its extracted features are
deemed more reliable, and max pooling is employed. Conversely, for sensors with high
uncertainty, average pooling is applied to their features. This is because feature vectors
extracted from uncertain sensors are expected to contain more noise, and averaging is used
to filter out such noise. In situations where noise is prominent, it is common practice to
employ averaging or outlier detection for data filtering.

After aggregating the spatial information of feature maps using adaptive max and
average pooling, the squeeze-and-excitation [18] method is applied to dynamically recali-
brate the channel-wise feature responses. This process aims to extract distinctive features
while suppressing less informative ones. Specifically, to enhance features from sensors with
low uncertainty, a higher compression ratio, referred to as “hard squeeze,” is employed.
This higher compression ratio helps preserve robust features, allowing the network to
focus on effectively learning them. Conversely, for sensor data with high uncertainty,
average pooling is applied. Applying a high compression ratio to such data would lead to a
significant reduction in feature values, resulting in decreased object detection performance.
Hence, a “soft squeeze and excitation” approach with a lower compression ratio is utilized
for sensor data with higher uncertainty.

The channel attention outputs the 1D channel attention maps, Mc and ML, for camera
and lidar features. Each map is of size 1 × 1 × D, where D is the channel depth. The atten-
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tion map is merged with the input features, FC
T and FL

T , using element-wise multiplication
generating the refined features F′c and F′L, as given in the Equations (16) and (17):

F′c = MC
Channel

(
FC

T

)⊗
FC

T (16)

F′L = ML
Channel

(
FL

T

)⊗
FL

T (17)

3.2.3. Adaptive Spatial Attention

In order to capture the interspatial relationships of features, a spatial attention map is
generated. This spatial attention differs from channel attention as it focuses on determining
the informative regions. To compute the spatial attention, we perform average-pooling
and max-pooling operations along the channel axis on the refined features F′c and F′L. The
obtained attention spatial maps for camera and lidar features, MC

Spatial(F′c) and ML
Spatial(F′L),

are merged with the input refined features using Equations (18) and (19) resulting in
efficient feature descriptors F′′c and F′′L :

F′′c = MC
Spatial

(
F′c
)⊗

F′c (18)

F′′L = ML
Spatial

(
F′L
)⊗

F′L (19)

The obtained features F′′c and F′′L are concatenated, resulting in fused robust visual–
lidar features F′′′C,L.

3.3. Training with AFAM

This subsection presents the training process of the object detection network using
AFAM–EfficientDet. Table 1 enlists dataset traverses exhibiting different weather and
illumination conditions and a number of samples used for training, testing, and validation
from each of the traverses.

Table 1. Dataset size used for training, testing, and validation.

Dataset Traverse Environmental Condition
(Light, Weather) Training Validation Testing

T1 Daytime, Clear 2183 399 1005

T2 Daytime, Snow 1615 226 452

T3 Daytime, Fog 525 69 140

T4 Nighttime, Clear 1343 409 877

T5 Nighttime, Snow 1720 240 480

T6 Nighttime, Fog 525 69 140

Total 8238 1531 3189

Algorithm 1 illustrates the overall training process using AFAM–EfficientDet. Firstly,
the source and target networks are trained using T1, which consists of data captured during
daytime and clear weather. Randomized initial weights are used for each of the backbone.
The training continues as long as the obtained loss Losstotal is above the threshold ε. The
value of ε is the same as in [13]. If Losstotal falls below the threshold ε, the network starts
training with the AFAM module.
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Algorithm 1: Object Detection Network Training with AFAM–EfficientDet

Input: Camera Images and LiDAR dense range images
Output: List_of_class_predictions
Estart ← 0
epoch← 0
initialize random weights WC

S , WL
S , WC

T , WL
T

ε← 0.3
while epoch← ∞ do
for each i in T1 do
input camera and LiDAR data into each backbone network//four backbones
FS, FT ← feature_extraction ( )
training source network
training target network
compute Losstotal
if Losstotal < ε then
Estart ← epoch
break
end if
class_predictions_without_AFAM (i)← predictions(labels, bounding_box, probability)
i++
end for
epoch++
end while
List_of_class_predictions.append(class_predictions_without_AFAM)
epoch← 0
while epoch← Estart do
for j in T2−6 do
input camera and LiDAR data into each backbone network//four backbones
extract features from source and target network
Refined_features← Feature_Recalibration_with_AFAM (NS, NT , FT)
training target network//update weights of target network
class_predictions_with AFAM (j)← predictions (labels, bounding_box, probabilty)
j++
end for
epoch++
end while
List_of_class_predictions.append(class_predictions_with_AFAM)
return List_of_class_predictions

In case of Losstotal < ε, the backbone networks are given camera and lidar data from
T2−6. The extracted features from the source and target networks are given as input to the
AFAM. Based on the computed uncertainty, the target network’s features FT are refined.
The target network is trained using the recalibrated features. The feature recalibration with
AFAM is given in Algorithm 2.

Algorithm 2: Feature_Recalibration_with_AFAM

Input: NS, NT , FT
Output: Refined Features F′′′C,L.
S′Q, S′K , S′V ← Compute similarity (NS, NT)
UC , UL ← Compute uncertainty (S′Q, S′K , S′V)
if UC < UL then
//camera feature recalibration
Pooled_FC

T ←maxpooling(FC
T )

MC
Channel

(
FC

T
)
← hard_squeeze&excitation (Pooled_FC

T )
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F′c ← MC
Channel

(
FC

T
)⊗

FC
T

F′′c ← MC
Spatial(F′c)

⊗
F′c

//lidar feature recalibration
Pooled_FL

T ← average_pooling(FL
T )

ML
Channel

(
FL

T
)
← soft_squeeze&excitation (Pooled_FL

T)
F′L ← ML

Channel
(

FL
T
)⊗

FL
T

F′′L ← ML
Spatial

(
F′L
)⊗

F′L
else
//camera feature recalibration
Pooled_FC

T ← averagepooling(FC
T )

MC
Channel

(
FC

T
)
← soft_squeeze&excitation (Pooled_FC

T )
F′c ← MC

Channel
(

FC
T
)⊗

FC
T

F′′c ← MC
Spatial(F′c)

⊗
F′c

//lidar feature recalibration
Pooled_FL

T ←maxpooling(FL
T )

ML
Channel

(
FL

T
)
← hard_squeeze&excitation (Pooled_FL

T)
F′L ← ML

Channel
(

FL
T
)⊗

FL
T

F′′L ← ML
Spatial

(
F′L
)⊗

F′L
end if
Return F′′′C,L← concatenate( F′′c , F′′L

)
4. Experiments and Results
4.1. Implementation Setup, Dataset, and Evaluation Parameters

This section discusses the experiments performed to evaluate the performance of the
proposed network. All experiments are carried out on Intel core i7-9700, NVIDIA GeForce
RTX 3080 using PyTorch library.

Addressing the object detection problem in adverse weather conditions and light
changes, the proposed method is evaluated on publicly available benchmark dataset,
i.e., the Dense Dataset [12]. This dataset is captured using a stereo camera, Velodyne
64ch LiDAR, and a radar exhibiting extreme light changes from day to night and weather
conditions including clear weather, fog, and snow.

The open-source implementation of EfficientNet [47] is utilized as a backbone. The
proposed method was employed using the AFAM when the total loss value reached a
particular threshold. The critical value of AFAM learning was determined by applying
the algorithm when the total loss value was 0.5. During the training process, the images
were resized to a width and height of 896 × 896 pixels. The training was carried out for a
maximum of 30 epochs, and the best validation dataset performance was used to determine
the final model. The object detection network is trained for two semantic classes: pedestrian
and vehicle.

The performance is evaluated using mean average precision (mAP). We have applied
the PASCAL VOC 11-point interpolation method to compute the average precision (AP)
for each class. Later, the average is computed using mean average precision across all the
classes. In our case, there are two object class labels, i.e., pedestrian and vehicle. So, we
compute the AP for each class using Equation (20):

APlabel(i) =
1

11 ∑
r∈{0, 0.1, ..., 1}

Pinterp(r) (20)

where label = {vehicle, pedestrian}, i is the index of class values in label, and P corresponds
to the precision at each interpolated recall r. The mAP is computed using Equation (21).
The IoU threshold was set to 0.5.
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mAP0.5 =
1
n
(APPedestrian + APVehicle) (21)

Here, n is the number of class labels.

4.2. Ablation Study

Table 2 displays the experimental outcomes of varying the configuration of the AFAM
and assessing the performance based on query (Q), key (K), and value (V) applications. The
paper posits that max pooling is effective in extracting appropriate features when there is a
considerable shift in data, while avg pooling is optimal when there is minimal variation in
data distribution. The table presents the results of experimenting with the configuration of
Q when the LiDAR uncertainty value is high. The results indicate that using max pooling
leads to better performance than using average pooling when the overall uncertainty is
high. Additionally, the table lists the effect of using hard and soft squeeze with max and
average pooling. It can be observed that incorporating squeeze and excitation with a
relatively small ratio, soft squeeze, to the max pooling yields less information loss. In
summary, the experimental results support the notion that the AFAM module configuration
is reasonable.

Table 2. Different configurations used for AFAM module.

Network Max
Pooling Average Pooling Hard Squeeze Soft Squeeze Top1-mAP

AFAM–
EfficientDet

Q K, V K, V Q 0.419

Q K, V Q K, V 0.414

K, V Q Q K, V 0.405

K, V Q K, V Q 0.397

To determine the optimal compression ratio of information, experiments were con-
ducted, and the results are detailed in Table 3. The table presents the experimental outcomes
of varying the ratio of squeeze and excitation given as Rhard for hard squeeze and excitation,
while Rso f t is used for soft squeeze and excitation. The best results were achieved when
compressing the output channel by 10× or 20×. This experiment highlights the challenge
of finding the appropriate hyperparameters to effectively utilize the AFAM.

Table 3. Experimental results obtained for compression ratio.

Network Rhard Rsoft Top1-mAP

AFAM–EfficientDet

16 8 0.419

16 12 0.406

16 16 0.395

24 8 0.412

24 12 0.398

In Figure 4, it is demonstrated that cameras struggle to identify objects in foggy
conditions. Although it is daytime, the data distribution of snow is dissimilar to that of
clear sunny days, with clustering occurring differently around 80 values. In sunny weather,
the values are more closely clustered around 80. However, it is evident that the data
distribution has a significant variance at 80 in snowy conditions. In the case of fog, the data
values are clustered around 120. Based on this data distribution, the camera and LiDAR
data are challenging to be used for network training due to the changes in data distribution
unless the input data of the network are refined first.
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4.3. Comparison with Other Methods

This section presents the performance comparison of the proposed AFAM–EfficientDet
with state-of-the-art object detection networks using single and multiple modalities,
i.e., EfficientDet [14] using only camera sensor, EfficientDet with camera–lidar fusion,
a Feature Switch Layer [13] enabled EfficientDet, and ResT [48] enabled EfficientDet.
EfficientDet is typically built to optimize the network efficiency in terms of compu-
tational cost and robust feature fusion. Open-source implementation has been used
for the implementation of EfficientDet. The feature switch layer (FSL) is designed for
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object detection in adverse weather conditions. Based on the dynamic environmental
conditions, the FSL extracts and fuses visual–lidar features for roust object detection.
Both aforementioned methods and our proposed method use the same backbone net-
work, which is EfficientNet [47]. ResT is used as a backbone network and is integrated
with the EfficientDet for class prediction. For fair comparison, we have trained the
backbone networks on the same dataset traverses T1–6, as explained in Table 1, with their
default configurations.

Table 4 lists the results obtained for four comparisons performed to evaluate
the effectiveness of the proposed AFAM. The performance is evaluated based on the
highest mean average precision (mAP) and variance recorded as a result of five train-
ing experiments. Top5-mAP depicts the mAP obtained for all five experiments, with
Top1-mAP presenting the best mAP and Worst-mAP presenting the minimum mAP
obtained among the five experiments. Variance is the difference between Top1-mAP and
Worst-mAP.

Table 4. Performance comparison of proposed method with SOTA algorithms.

Comparison Network Modality Top5-mAP Top1-mAP Worst-mAP Variance

a EfficientDet C 0.347 ± 0.00073 0.367 0.318 0.049

AFAM–EfficientDet C 0.354 ± 0.00024 0.370 0.325 0.045

b
EfficientDet C, L 0.398 ± 0.00018 0.414 0.377 0.037

AFAM–EfficientDet C, L 0.403 ± 0.00007 0.419 0.402 0.017

c ResT–EfficientDet C, L 0.234 ± 0.00232 0.247 0.205 0.042

AFAM +
ResT–EfficientDet C, L 0.308 ± 0.00077 0.319 0.294 0.025

d
FSL C, L 0.406 ± 0.00016 0.427 0.395 0.032

AFAM C, L 0.403 ± 0.00007 0.419 0.402 0.017

1. Comparison with baseline method (only camera features): Firstly, we compared
the performance of the AFAM for camera only features. The EfficientDet takes raw
features from the backbone network as input and predicts the object classes. On the
other hand, AFAM when embedded with the EfficientDet performs the refinement of
the features, thus providing more robustness for the object detection network. It is
observed that using refined features enhances object detection performance.

2. Comparison with baseline method (visual–lidar fusion): Secondly, the perfor-
mance of the multimodal EfficientDet that undergoes the deep fusion of cam-
era and lidar features for object detection is analyzed and is compared with the
AFAM–EfficientDet. It can be clearly seen that the AFAM, providing the more
robust deep fusion of visual–lidar features, achieves a higher mAP in comparison
to the multimodal EfficientDet.

3. Comparison with different network architecture: Here, we present the evaluation
results when the AFAM is ported to different network architecture. For this purpose,
first, we compute the results for ResT–EfficientDet. Here, ResT is used as a backbone
network for visual–lidar feature extraction, and those features are given as input to
EfficientDet for class prediction. To assess the effectiveness of the AFAM, we have
replaced the backbone EfficientNet with ResT. The AFAM takes raw features from
ResT as input, performs the feature recalibration and fusion, and then gives the fused
visual–lidar features as input to the BiFPN layer of EfficientDet. As the backbone
network is changed, the input features are different, resulting in a change in perfor-
mance, which can be observed in Table 4. However, the AFAM–ResT–EfficientDet
outperforms the ResT–EfficientDet.

4. Comparison with feature refinement method: Finally, we present the comparison
of the AFAM with the FSL. Both the modules are used in integration with Efficient-
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Det. They take the same features as input, perform the recalibration of the features,
and output the refined visual–lidar features for class prediction. It is observed that
FSL–EfficientDet achieves the highest Top1-mAP as it employs annotations for en-
vironment learning, while AFAM–EfficientDet adaptively learns via the environ-
ment’s dissimilar appearance and computes the uncertainty. In the case of dense fog,
snow, and light changes from day to night, the camera–lidar-based object detection
performance is significantly degraded. Based on the adaptive learning approach,
AFAM–EfficientDet achieves the least variance, which is the difference between
Top1-mAP and Worst-mAP, when the environment significantly changes due to
illumination changes or adverse weather. On the other hand, annotation-dependent
FSL–EfficientDet fails to deliver high performance under challenging weather con-
ditions such as dense fog or extreme light changes, resulting in increased variance.
Thus, the AFAM empowers the object detection network, EfficientDet, in this case, to
achieve more robustness in adverse weather conditions.

Figure 5a–e illustrate the qualitative results of the object detection performed by the
proposed AFAM–EfficientDet in comparison to EfficientDet using only camera features,
EfficientDet using multimodal fusion, and FSL–EfficientDet. The results show that
object detection performance is good during daytime in clear weather i.e., (Day, Clear).
Using only the camera leads to decreased detection rates and non-detection in foggy
conditions (Day, Fog), as given in Figure 5a. The fog at nighttime (Night, Fog) is even
more challenging when camera features cannot be detected due to illumination variation.
Object detection can be better achieved using multimodal fusion, while poor convergence
resulted in the performance deterioration illustrated in Figure 5c. In contrast, visual–lidar
fusion methods, shown in Figure 5d,e, have shown good detection performance even in
fog and crowded situations, with the proposed method performing more robustly than
FSL–EfficientDet. Moreover, the use of a multimodal fusion layer was found to enhance
performance in all scenarios, surpassing the use of a single sensor. Interestingly, the
network’s performance was observed to improve in foggy daytime conditions, indicating
that it was compensating for the limitations of image-based fog detection. Figure 5f,g
illustrate the qualitative results of the object detection performed by using ResT as
backbone with EfficientDet. It is visible that when features are recalibrated using the
AFAM, the performance of the ResT–EfficientDet is enhanced. These results ensure the
portability of the AFAM.
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5. Conclusions

Object detection is crucial for autonomous navigation in dynamic environments. Ex-
tensive research has been performed in this field presenting single- and multi-sensor
fusion-based object detection. However, adverse weather conditions and extreme illumi-
nation changes pose challenges for both camera and lidar sensors. This research presents
a systematic study of the existing methods using cameras, lidar, and a fusion of both
sensors for object detection. In order to address the shortcomings of previous literature, this
research proposes an adaptive feature attention module (AFAM) that leverages the fusion
of camera and lidar data and performs efficient object detection. The AFAM computes
uncertainty between modalities and adaptively refines visual and lidar features using
attention mechanisms along the channel and spatial axes. Integrated with the EfficientDet
framework, the AFAM enhances object detection accuracy by effectively filtering noise
and extracting discriminative information for object detection in specific environmental
conditions. To evaluate the AFAM’s effectiveness, we conducted experiments on a bench-
mark dataset that exhibits variations in weather and lighting conditions. The evaluation
results demonstrate a significant improvement in the overall detection accuracy of the
object detection network when the AFAM is employed, thus outperforming state-of-the-art
methods. This research focuses on enhancing the performance of neural networks for object
detection via sensor fusion, offering practical implications for real-world scenarios.

The AFAM contributes to the adaptive learning of the distinctive features for object
detection in adverse weather conditions. In the future, we aim to extend this work for
object detection in extreme seasonal changes along with varying weather and lighting
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conditions and to evaluate benchmark datasets with diverse environments in order to
generalize the model so that it can be applicable in any real-world environment. Further-
more, extending this research from static object detection to dynamic object tracking can be
another future direction.
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