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Abstract: Sea ice is a significant factor in influencing environmental change on Earth. Monitoring sea
ice is of major importance, and one of the main objectives of this monitoring is sea ice classification.
Currently, synthetic aperture radar (SAR) data are primarily used for sea ice classification, with
a single polarization band or simple combinations of polarization bands being common choices.
While much of the current research has focused on optimizing network structures to achieve high
classification accuracy, which requires substantial training resources, we aim to extract more infor-
mation from the SAR data for classification. Therefore we propose a multi-featured SAR sea ice
classification method that combines polarization features calculated by polarization decomposition
and spectrogram features calculated by joint time-frequency analysis (JTFA). We built a convolutional
neural network (CNN) structure for learning the multi-features of sea ice, which combines spatial
features and physical properties, including polarization and spectrogram features of sea ice. In this
paper, we utilized ALOS PALSAR SLC data with HH, HV, VH, and VV, four types of polarization for
the multi-featured sea ice classification method. We divided the sea ice into new ice (NI), first-year
ice (FI), old ice (OI), deformed ice (DI), and open water (OW). Then, the accuracy calculation by
confusion matrix and comparative analysis were carried out. Our experimental results demonstrate
that the multi-feature method proposed in this paper can achieve high accuracy with a smaller data
volume and computational effort. In the four scenes selected for validation, the overall accuracy could
reach 95%, 91%, 96%, and 95%, respectively, which represents a significant improvement compared
to the single-feature sea ice classification method.

Keywords: sea ice; classification; SAR; polarization decomposition; JTFA; multi-feature; CNN

1. Introduction

Sea ice is primarily distributed in the polar regions and exerts a profound impact on
global climate and environmental change by affecting the exchange of energy and material
between the ocean and the atmosphere and by redistributing salt within the ocean [1].
In the Arctic region, sea ice variability has significant implications for the normal Arctic
shipping routes [2]. Therefore, sea ice monitoring not only contributes to scientific research
on polar and global climate and environment but also has important practical implications
for maritime shipping and polar expeditions. As science and technology evolve, satellite
remote sensing has become a better option than traditional sea ice observational methods,
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such as in situ and ice station observations, for increased monitoring and the ability to
monitor sea ice at high spatial and temporal resolution [3].

Satellite remote sensing can monitor sea ice in the visible, infrared, and microwave
regions of the electromagnetic spectrum [4]. The visible and infrared remote sensing instru-
ments, such as the Operational Linescan System (OLS), the Moderate Resolution Imaging
Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS),
are limited by their operating hours and cloud cover, which constrain their monitoring
capability for sea ice. By contrast, electromagnetic waves in the microwave band can
acquire observations during both day and night and through any weather conditions [5].
Synthetic Aperture Radar (SAR), a special type of active microwave imaging radar, ben-
efits from advanced technology and complex data, providing more detailed information
on sea ice [4]. Notable SAR satellites include NASA’s Seasat SAR, the European Space
Agency’s (ESA) ERS-1, ERS-2, Sentinel-1, the Canadian Space Agency’s (CSA) RADARSAT-
1, RADARSAT-2, and China’s Gaofen-3 (GF-3). Over time, SAR satellites have developed
from the original L-band with single polarization to the current L-, C-, and X-band SAR
with dual-polarization and quad-polarization, providing a substantial amount of data and
a rich source of information for sea ice monitoring.

Sea ice classification for Synthetic Aperture Radar (SAR) data serves as the foundation
for both sea ice research and operational ice services [6]. Its primary objective is to identify
the main sea ice features related to ice types and surface roughness and group them
into predetermined categories [7]. The sea ice categories that are commonly used in
current research, and also the standard for sea ice classification, are defined by the World
Meteorological Organization (WMO). According to the formation and development of
sea ice, WMO classified sea ice into three main categories: (1) Ice less than 30 cm thick
(including new ice (NI), young ice (YI), etc.); (2) Ice 30 cm–2 m thick, known as first-year
ice (FI) (including thin first-year ice and medium first-year ice); (3) Old ice (OI) (including
second-year (SY) and multi-year ice (MY)) [8].

Initial SAR sea ice classification methods were based primarily on backscatter coeffi-
cients and texture features for single polarization or simple combinations of polarization
bands [9,10]. However, the backscattering coefficient of sea ice can be affected by several
factors, such as small-scale surface roughness and large-scale atmospheric circulation [11].
Thus the backscattering coefficients of different sea ice types are similar under certain
imaging conditions, making it difficult to distinguish between them [12]. For the textural
features of sea ice, although the grey level co-occurrence matrix (GLCM) and Markov
Random Field (MRF) have been widely used with good results [13–15], the classification ac-
curacy is affected by scale factors such as the window size, leading to unstable performance
due to issues such as scaling and rotation of images.

Compared to SAR in single-polarization mode, polarimetric SAR (PolSAR) provides
additional information on the backscattering mechanisms and physical characteristics of
natural surfaces, allowing for a more comprehensive observation and analysis of targets
from multiple perspectives [16]. Polarimetric decomposition has become the dominant
research direction in the analytical use of PolSAR information. After the concept of target
decomposition was introduced [17], polarimetric decomposition can be divided into two
types: decompositions of the coherent scattering matrix and eigenvector decompositions of
the coherency or covariance matrix based on target scattering characteristics [18]. Polariza-
tion decomposition has also been applied to sea ice classification. Scheuchl et al. [19,20]
used H-α polarization decomposition with the Wishart classifier for sea ice classification.
Singha et al. [21] extracted the polarization features by H-A-α decomposition and analyzed
their classification performance in different bands to ultimately achieve four classes of ice
and water classification. In addition, Moen et al. [22,23] used C-band quad-polarization
SAR data for sea ice classification with improved Freeman decomposition.

Several sea ice classification algorithms, including random forest [24], decision tree [25],
and image segmentation [26], have demonstrated reliable results. Additionally, the support
vector machine has been widely applied to both sea ice type and ice/water classifica-
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tion [25,27,28]. However, the continuous development of deep learning in recent years
has showcased its remarkable superiority over traditional physical- or statistical-based
algorithms for extracting image information [29]. Deep learning frameworks have been
extensively used in remote sensing image information mining, including sea ice detection,
monitoring, and classification. Convolutional neural network (CNN) is a representative of
Deep Neural Networks (DNN)that exhibits excellent performance in deep feature extraction
and image classification [30]. Several advanced CNN structures, such as Alexnet [31], VG-
GNet [32], GoogleNet [33], ResNet [34], and DensNet [35], have been proposed. In general,
CNN-based classification strategies include using pretrained CNNs as feature extractors,
fine-tuning pretrained CNNs, or training CNNs from scratch [36]. For instance, [37] em-
ployed CNN networks for ice/water classification with Sentinel-1 SAR data and proposed a
modified VGG-16 network, and trained from scratch for sea ice classification with Sentinel-2
cloud-free optical data. Tianyu et al. [38] proposed MSI-ResNet for arctic sea ice classi-
fication with GF-3 C-band SAR data and compared them with a classical SVM classifier.
Zhang et al. [39] built a Multiscale MobileNet (MSMN) based on the MobileNetV3 for sea
ice classification with GF-3 dual-polarization SAR data and achieved higher accuracy than
traditional CNN and ResNet18 models.

Furthermore, there is a lot of current research on the classification of SAR images using
CNNs, and many novel CNN structures and training methods have been proposed [40–42].
The central point is that CNN is designed to automatically and adaptively learn spatial
hierarchies of features primarily [43]. Most current sea ice classification studies simply
use a combination of backscatter coefficients from different polarization bands. However,
for polarimetric SAR complex imagery, amplitude and phase information is equally vital.
Although polarization decomposition provides valuable information to understand the
physics of the SAR image [44], it does not provide sufficient frequency information in the
CNN structure. To address this issue, Huang et al. [45] proposed Deep SAR-Net, which
extracts spatial features with the CNN framework and learns the physical properties of
the objects, such as buildings, vegetation, and agriculture, by joint time-frequency analysis
on complex-valued SAR images. Their proposed method shows superior performance
compared with the proposed CNN models only based on intensity information.

The receptive field of a CNN is crucial for the accurate detection and classification
of objects in images, especially large features such as sea ice [46]. Thus current CNN-
based studies on sea ice classification usually focus on the structure of neural networks,
proposing many complex network models, which often require the support of a large
number of samples [37–39]. Moreover, for the single-look complex (SLC) quad-polarization
SAR data, feature extraction is insufficient in current studies on sea ice classification. In
light of these limitations and inspired by existing studies, we propose a multi-featured sea
ice classification method based on a convolutional neural network, where the multi-feature
classification method simultaneously learns the spatial texture features of the sea ice along
with backscattering information, including its physical properties. The main highlights of
this paper are:

1. We utilized polarization decomposition and joint time-frequency analysis to extract
multi-features of the sea ice.

2. We built a CNN structure that learns and fuses multi-features, including spatial texture
features of sea ice and physical properties of backscatter for sea ice classification.

3. The experimental results show that the multi-featured approach combines the advan-
tages of sea ice polarization features and spectrogram features on the basis of learning
the spatial features of sea ice, which improves the accuracy of sea ice classification.

2. Data Description
2.1. Data and Study Area

The Advanced Land Observing Satellite-1 (ALOS), a mission launched by the Japan
Aerospace Exploration Agency (JAXA), operated from 24th January 2006 to 22nd April 2011.
The Phased Array type L-band (1.27 GHz) Synthetic Aperture Radar (PALSAR) was one of
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three instruments on the ALOS. As an active microwave sensor using L-band frequency,
PAlSAR can acquire observations during both day and night and through any weather
conditions [47].

The ALOS PALSAR dataset used in this study is collected from level 1.1 product single-
looked complex (SLC) SAR images of polarimetric mode (PLR) with four polarizations
simultaneously (HH+HV+VV+VH), providing a spatial resolution of 30 m. The PLR mode
also has an observation swath width ranging from 20 to 65 km. Previous studies have
shown that the Fine Resolution model of PALSAR with an observation swath from 40 to
70 km can distinguish between deformed and level ice over all ice regimes, making it
suitable for ice charting [12]. Therefore, we selected a PLR model with a similar resolution
and swath width but with more polarization modes to study sea ice classification under a
more diverse set of features.

This study used 30 scenes of PALSAR imagery of sea ice cover in the Arctic for
experimentation. Table 1 provides details about the ALOS PALSAR SLC data used in this
paper, including product name, imaging date, and image usage. The scenes are numbered
according to their usage of the satellite data: T for training and V for validation. The spatial
distribution of these scenes is shown in Figure 1.

Figure 1. Spatial distribution of the ALOS PALSAR quad-polarization images used in this paper.

In addition, the access dates and the central incident angles of the images are also
shown in Table 1. In general, the backscatter of sea ice is known to vary with seasonal
changes and incident angles, which can impact sea ice classification. However, the variation
backscattering from sea ice is complex. In this study, the effect of seasonal changes is
complicated by factors such as polarization and ice types. Furthermore, the incident
angle mostly falls in the range of 23–27◦, with a variation of 2◦ or less in a single image,
which does not have a significant impact. Therefore, the impact of the seasons and the
incident angle is not considered significant factors in this study. Further discussion of these
influences is provided in Part V.
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Table 1. ALOS PALSAR SLC data used in this paper.

No. Product Processed Time Incident Angle * Usage

T1 ALOS-P1_1__A-ORBIT__ALPSRP258801420 3 December 2010 23.8998 Train
T2 ALOS-P1_1__A-ORBIT__ALPSRP180031440 11 June 2009 25.6575 Train
T3 ALOS-P1_1__A-ORBIT__ALPSRP258351550 30 November 2010 23.9199 Train
T4 ALOS-P1_1__A-ORBIT__ALPSRP258351560 30 November 2010 23.9098 Train
T5 ALOS-P1_1__A-ORBIT__ALPSRP258351570 30 November 2010 23.9004 Train
T6 ALOS-P1_1__A-ORBIT__ALPSRP226661500 26 April 2010 23.9002 Train
T7 ALOS-P1_1__A-ORBIT__ALPSRP201761520 7 November 2009 23.9201 Train
T8 ALOS-P1_1__A-ORBIT__ALPSRP233871400 15 June 2010 23.8711 Train
T9 ALOS-P1_1__A-ORBIT__ALPSRP201471450 5 November 2009 23.8996 Train
T10 ALOS-P1_1__A-ORBIT__ALPSRP257471570 24 November 2010 23.8879 Train
V1 ALOS-P1_1__A-ORBIT__ALPSRP179591440 8 June 2009 25.7066 Validation
T11 ALOS-P1_1__A-ORBIT__ALPSRP205991500 6 December 2009 23.8846 Train
V2 ALOS-P1_1__A-ORBIT__ALPSRP205991510 6 December 2009 23.8725 Validation
T12 ALOS-P1_1__A-ORBIT__ALPSRP205991520 6 December 2009 23.8613 Train
T13 ALOS-P1_1__A-ORBIT__ALPSRP065201280 16 April 2007 23.8948 Train
T14 ALOS-P1_1__A-ORBIT__ALPSRP168621400 25 March 2009 23.8619 Train
T15 ALOS-P1_1__A-ORBIT__ALPSRP200281390 28 October 2009 25.7279 Train
T16 ALOS-P1_1__A-ORBIT__ALPSRP203491180 19 November 2009 23.8325 Train
T17 ALOS-P1_1__A-ORBIT__ALPSRP274601570 21 March 2011 23.9078 Train
T18 ALOS-P1_1__A-ORBIT__ALPSRP274601590 21 March 2011 23.9201 Train
V3 ALOS-P1_1__A-ORBIT__ALPSRP279121560 21 April 2011 23.9275 Validation
V4 ALOS-P1_1__A-ORBIT__ALPSRP279121570 21 April 2011 23.9181 Validation
T19 ALOS-P1_1__A-ORBIT__ALPSRP276351580 2 April 2011 23.9046 Train
T20 ALOS-P1_1__A-ORBIT__ALPSRP276351590 2 April 2011 23.9248 Train
T21 ALOS-P1_1__A-ORBIT__ALPSRP276351600 2 April 2011 23.9165 Train
T22 ALOS-P1_1__A-ORBIT__ALPSRP277371550 9 April 2011 23.9264 Train
T23 ALOS-P1_1__A-ORBIT__ALPSRP277371560 9 April 2011 23.9165 Train
T24 ALOS-P1_1__A-ORBIT__ALPSRP062631420 29 March 2007 23.8933 Train
T25 ALOS-P1_1__A-ORBIT__ALPSRP170721430 8 April 2009 23.9053 Train
T26 ALOS-P1_1__A-ORBIT__ALPSRP179321390 6 June 2009 25.7033 Train

* The central incident angle of the images, in degrees.

2.2. Data Preprocessing and Sample Selection

Data preprocessing was carried out using the Sentinel Application Platform (SNAP)
software provided by the European Space Agency (ESA), which also supports ALOS data
preprocessing. The preprocessing procedure consisted of calibration, multilooking (GR
square pixel pattern with range looks number of 1 and azimuth looks number of 6), and
speckle filtering with the refined Lee filter for windows of 7 × 7 (speckle filtering).

Several sea ice charts are currently available, including those from the Canadian Ice
Service (CIS), the U.S. National Ice Center (NIC), and the Russian Arctic and Antarctic
Research Institute (AARI). Our study selected the widely used CIS-provided ice chart as the
ground truth reference. As depicted in Figure 2, the ice chart depicted the Eastern Arctic
region and was obtained on 27 December 2010 from the Canadian government (https://
www.canada.ca/en/environment-climate-change/services/ice-forecasts-observations (ac-
cessed on 3 March 2023). It was projected onto the Earth’s surface using the corresponding
CIS Arctic regional sea ice charts in SIGRID-3 format [48]. The ice information is presented
using a standard international code known as the Egg Code.

According to the WMO criteria, the sea ice type definition and WMO’s stage of
development color code are shown in Table 2 and Figure 2. In addition, we included
deformed ice based on sea ice morphology, which is described as “A general term for
ice which has been squeezed together and in places forced upwards and downwards.
Subdivisions are rafted ice, ridged ice, and hummocked ice”.

https://www.canada.ca/en/environment-climate-change/services/ice-forecasts-observations
https://www.canada.ca/en/environment-climate-change/services/ice-forecasts-observations
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Table 2. WMO’s stage of development of sea ice. The shaded parts of the table are the five types of
sea ice chosen to be classified in this paper.

Stage of Development Thickness
Open Water(<1/10 Ice) <10 cm

New Ice 10–15 cm
Grey Ice 15–30 cm

Grey-white Ice >=30 cm
First-year Ice 30–70 cm

Thin first-year Ice 70–120 cm
Medium first-year Ice >120 cm

Thick first-year Ice
Old Ice

Second-year Ice
Multi-year Ice
Deformed Ice

1
2

3

4

5

First-year Ice

WMO's Stage of
Development Colour Code

New Ice

Grey Ice

Grey-white Ice

Thin first-year Ice

Medium first-year Ice

Thick first-year Ice

Old Ice

Open Water

Second-year Ice

Multi-year Ice

Figure 2. Canadian Ice Service Arctic Regional Sea Ice Charts of Eastern Arctic region, acquired on 27
December 2010. The circled areas 1–5 are representative of the areas where the imagery corresponds
to the actual sea ice, and the correspondence can be seen in Figure 3.

It is widely acknowledged that using SAR data alone makes it almost impossible to
differentiate between all the sea ice types listed in Table 2. To address this issue, we used
the WMO’s sea ice formation and development description as a benchmark and referred
to the CIS ice chart to create a sea ice dataset for model training. Ultimately, we selected
five classes of sea ice for classification, namely new ice (NI), first-year ice (FI), old ice (OI),
deformed ice (DI), and open water (OW). To identify training and validation samples
for the classification, we used the CIS ice interpretation of SAR images, as shown in the
examples in Figure 3. As sea ice charts are produced on a one-week cycle, there will be a
time lag of up to three days between the imaging time of the SAR images. Considering the
effects of factors such as sea ice drift, which can interfere with the accuracy of the sea ice
sample selection. Therefore, as shown in Figure 4, we used two ice charts before and after
the SAR imaging as a reference and selected the areas with relatively stable sea ice changes
over a certain period of time to ensure the relative accuracy of the sample selection.
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Figure 3. Reference for the selection of sea ice samples. The spatial distribution of the five images
corresponds to the five regions circled in Figure 2. ALOS PALSAR image acquired on 30 December
2010. The CIS sea ice chart shows the distribution of sea ice in the corresponding area on 27
December 2010.

Grey-white Ice
Grey Ice

New Ice

Thin first-year Ice
Medium first-year Ice

Old Ice
Multi-year Ice

27
 D

EC
/D

EC
 2

01
0

03
 J

A
N

/J
A

N
 2

01
1

Figure 4. Comparison of selected CIS ice chart areas obtained on 27 December 2010 and 3 January
2011, within which we made sample selections.

2.3. Dataset

In this study, we used the CIS ice chart and visual texture (select deformed ice) of the
sea ice to select training samples for our dataset. We categorized the samples based on
different types of sea ice, and the corresponding numbers of training samples are presented
in Table 3. The total number of samples utilized for training was 1720. To enhance the
diversity of our training data, we employed an augmentation process, as illustrated in
Figure 5. This included rotations in the 90◦, 180◦, and 270◦ directions, as well as horizontal
and vertical flipping.
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90° 90° 90°Original sample

Augmentation

Figure 5. Augmentation process to increase the diversity of the samples. The training samples are
the parts of the image marked by boxes in the figure, with most of the area within each sample being
the same category of sea ice to avoid mixing categories and labels during training.

For our validation dataset, we extracted validation patches using a sliding window
approach, as shown in Figure 6. The window size was consistent with that of the corre-
sponding training patches, and the stride was set to two pixels. Thus, the central four
pixels of each patch represented the sea ice class identified by the algorithm proposed in
this study and were ultimately used for classification.

Figure 6. Extraction of validation patches, using a sliding window approach, where the classification
result of an image block can represent the class of the pixel points at the center of that image block.

For the training patches, we select them in a way that the vast majority of pixels
in their range are of the same type of ice to ensure the accuracy of the training model.
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For the validation patches, we traverse the images by means of sliding windows, each
representing the sea ice category of the central pixels, which will be determined by our
algorithm and model.

Table 3. Number of samples of different classes.

Class NI FI OI DI OW Total

Number 365 871 175 77 232 1720

3. Methods
3.1. Polarimetric Decomposition

Polarization is an inherent property and one of the fundamental characteristics of
electromagnetic waves. Polarimetric SAR benefits from polarization diversity, making it an
advantageous tool for classifying the Earth’s surface [49].

SAR polarimetric decomposition is a technique used to analyze the polarization
properties of radar backscatter from a target area. It aims at providing such an interpretation
based on sensible physical constraints such as the average target being invariant to changes
in wave polarization basis and providing valuable information for various applications,
including land cover classification, environmental monitoring, and target detection. [50]

The formalization of polarimetric decomposition theorems can be traced back to Huy-
nen, and their origins can be found in Chandrasekhar’s research on light scattering by
small anisotropic particles [51]. Over time, various other decompositions have been sug-
gested, such as Freeman and Durden, Yamaguchi decompositions, based on a model-based
decomposition of the covariance matrix or the coherency matrix [52,53]; Cloude, Holm, van
Zyl, Cloude and Pottier decompositions, using an eigenvector or eigenvalues analysis of
the covariance matrix or coherency matrix [54–57]; Krogager, Cameron decompositions,
employing coherent decomposition of the scattering matrix [58,59].

In this study, we used Pauli decomposition to extract the polarization features of
sea ice. Pauli decomposition is one of the commonly used polarimetric decomposition
methods. The reason for choosing Pauli is mainly because of its simplicity and ease of
interpretation. It is a straightforward method that allows converting complex polarimetric
SAR data into three elementary scattering components: surface scattering, double-bounce
scattering, and volume scattering [60]. These components can provide valuable insights
into the physical properties of sea ice and help researchers understand its behavior in
remote sensing applications. Pauli decomposition is a coherent decomposition technique
that expresses the scattering matrix S as the complex sum of Pauli matrices. Each basis
matrix corresponds to an elementary scattering mechanism [50]:

S =

[
SHH SHV
SVH SVV

]
=

a√
2

[
1 0
0 1

]
+

b√
2

[
1 0
0 −1

]
+

c√
2

[
0 1
1 0

]
+

c√
2

[
0 −j
j 0

] (1)

where a, b, c, and d are all complex and are given by:

a =
SHH + SVV√

2
b =

SHH − SVV√
2

c =
SHV + SVH√

2
d = j

SHV − SVH√
2

(2)

For ALOS PALSAR data, SHV = SVH, d = 0, the Span value is given by:

Span = |SHH|2 + 2|SHV|2 + |SVV|2 = |a|2 + |b|2 + |c|2 (3)

The Pauli decomposition can reflect the scattering mechanisms of the deterministic
targets. Specifically, |a|2 represents the single or odd-bounce scattering from a plane
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surface. |b|2 represents the scatter power by targets that are able to return the orthogonal
polarization. |c|2 represents the power scattered by targets characterized by double- or
even-bounce [50]. The three components obtained through Pauli decomposition can be
considered as the (R, G, B) bands: |a|2 for Pauli_b bands, |b|2 for Pauli_r bands and |c|2 for
Pauli_g bands.

3.2. Joint Time-Frequency Analysis

The Fourier transform has been used extensively in SAR image processing. For time-
varying behavior in the Doppler spectrum of SAR images, joint time-frequency analysis
(JTFA) is a better choice [61]. JTFA already has specific applications in radar target sig-
nature analysis, target feature extraction, etc. [62]. JTFA can provide the time-domain
and frequency-domain characteristics of target scattering signals [63,64], making full use
of the multi-modal nature of SAR signals. Through joint analysis, JTFA provides more
comprehensive and detailed target information, and JTFA offers a wide range of potential
applications in SAR data analysis, effectively extracting valuable information from complex
SAR signals and providing strong support for target detection, classification, and monitor-
ing applications [65,66]. JTFA applied to SAR images yields an alternative representation
of SAR signals, offering valuable insights into the backscattering mechanisms and phys-
ical properties of objects [45]. We, therefore, applied it as part of a multi-feature in our
methodological study of sea ice classification.

For the SAR SLC data, the time-frequency decomposition (spectrogram) ã of the SLC
signal S is given by:

ã(x0, y0, f 0
r , f 0

az) = FFT−1[wB( f 0
r − fr, f 0

az − faz)

·FFT(S(x, y))](x0, y0)
(4)

where the bandpass filter wB( f 0
r − fr, f 0

az − faz) is centered on ( f 0
r , f 0

az) and S is an extract of
the SLC image centered on the pixel (x0, y0). Optimised by computation, the spectrogram
of the SLC data can be written by [44]:

ã(x0, y0, f 0
r , f 0

az) = FFT{[FFT−1(wB)S]( f 0
r , f 0

az)} (5)

For the pixel (x0, y0) and frequencies ( f 0
r , f 0

az), by abandoning the spatial information
of ã(x0, y0, f 0

r , f 0
az), we obtained a series of 2D spectrogram a( f 0

r , f 0
az) [45]. As shown in

Figure 7, a polarization band of a sample can be decomposed to obtain of series of 2D
spectrograms. Figure 8 shows the 2D spectrograms of different types of sea ice sample
images in the HH band, and Figure 9 shows the 2D spectrograms of a sample image in
different polarization bands.

3.3. Convolutional Neural Network

The VGG architecture is a widely used CNN model for image classification in remote
sensing applications. Known for its deep structure, it comprises multiple convolutional
and max pooling layers followed by a few fully connected layers. In our study, we adopted
the classical CNN network structure of VGG to design our own network architecture for
sea ice classification. Considering the importance of texture information in CNN-based sea
ice classification, we reduced the number of pool layers in the network to avoid negatively
impacting the extraction of texture features from the small-sized samples (36× 36 and
24× 24 for the two networks, respectively). By adjusting the number of layers based on
the VGG network structure, we aimed to ensure that the network could extract relevant
features while keeping the computational effort manageable.
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A 2D-spectrogram sample


Figure 7. 2D spectrogram generation process.

(a) NI (b) FI (c) OI

(d) DI (e) OW

Figure 8. Examples of 2D spectrograms of different types of sea ice sample images in the HH band.
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(a) HH (b) HV

(c) VH (d) VV

Figure 9. Examples of 2D spectrograms of a sample image in different polarization bands.

This study employed two CNN structures to train the polarization decomposition
patches and spectrogram patches, respectively, as summarized in Table 4. The first CNN
structure (NET1) consisted of four modules. The first two modules each contained two
convolutional layers with 64 and 128 kernels and 3× 3 filters. The third module comprised
three convolutional layers with 256, 512, and 512 convolution kernels and 3× 3 filters.
In addition, a max pooling layer with a stride of 2 was set at the end of each of the first
three modules to downsample the feature maps. The last module was composed of fully
connected layers. NET2 had a simpler structure than NET1, containing only three modules.
The first two modules had two and three convolutional layers, respectively, while the last
module had three fully connected layers. For both NET1 and NET2, the ReLU activation
function was used in each convolutional layer.

3.4. Experiment Procedure

The experimental process is illustrated in Figure 10. The SLC data were used to obtain
the polarization and spectral characteristics of the sea ice, which were then subjected to
polarimetric decomposition and JTFA, respectively, resulting in two datasets for training.
These two training sample datasets were used to train NET1 and NET2, respectively.
Subsequently, the validation sample datasets with the same structure were input into the
trained networks to obtain the sea ice types. Finally, the multi-feature sea ice classification
results were obtained by combining the features. Further details of the experiment are
provided below.

3.4.1. Data and Dataset Structure

On the selection of dataset samples, as shown in Figure 10, the SLC data after prepro-
cessing S(x, y) with dimension [H, W, 4] is used as the initial data for the entire process,
where H is a height of imagery in pixels and W is the width in pixels. After polarimetric



Remote Sens. 2023, 15, 4014 13 of 28

decomposition, we can obtain Pauli pseudo-color imagery I(x, y) with dimension [H, W, 3].
Patches are then extracted from the pseudo-color imagery as training samples. Take the
patch size 36× 36 we used in this paper as the example; the dimension of each patch
is [36, 36, 3]. Then combine and reconstruct all patches into a tensor with dimension
[N, 3, 36, 36] as a training dataset for NET1, where N is the number of sample patches.
Another route is to extract patches directly from the initial complex data S(x, y). The patch
size we used is 24× 24, and the dimension of each patch is [24, 24, 4]. For each polarization
band s̃(x, y) of each patch with dimension [24, 24], the 4D spectrogram ã(x0, y0, f 0

r , f 0
az)

of dimension [12, 12, 12, 12] can be obtained by JTFA. By abandoning spatial information,
we can obtain a series of spectrograms with dimension [12× 12, 12, 12]. They are then
summed to obtain the final 2D spectrogram ã( fr, faz) of dimension [12, 12]. Considering
that each patch contains four polarization bands, the structure of each patch is [12, 12, 4].
Combining and reconstructing all patches similarly, a tensor of dimension [N, 4, 12, 12]
could be generated as a training dataset for the NET2.

Table 4. CNN network structures.

VGG-19 VGG-16 NET1 NET2

Input: (224 × 224, RGB image) Input: (36 × 36, 3 Pol. Decomp. bands) Input: (24 × 24, 4 JTFA bands)3× 3, 64

3× 3, 64

 3× 3, 64

3× 3, 64

 3× 3, 64

3× 3, 64

 3× 3, 32

3× 3, 32


pool,/23× 3, 128

3× 3, 128

 3× 3, 128

3× 3, 128

 3× 3, 128

3× 3, 128

 3× 3, 64

3× 3, 64


pool,/2

3× 3, 256

3× 3, 256

× 2


3× 3, 256

3× 3, 256

3× 3, 256




3× 3, 256

3× 3, 256

3× 3, 256


pool,/2

3× 3, 512

3× 3, 512

× 2


3× 3, 512

3× 3, 512

3× 3, 512


pool,/2

3× 3, 512

3× 3, 512

× 2


3× 3, 512

3× 3, 512

3× 3, 512


pool,/2

fc 4096

fc 4096 fc 4096 fc 64

fc 4096 fc 4096 fc 64

fc 1000 fc 5 fc 5
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Figure 10. Entire structure for data processing, convolutional neural network, and classification.

3.4.2. Network Parameters

The training of convolutional neural networks heavily relies on the choice of training
parameters. In our experiments, we have chosen the parameters as shown in Table 5. To
balance the training speed, gradient noise, and model generalization, we have chosen the
batch size to be 50, given the size of the GPU memory. The ADAM optimization algorithm
has been chosen as it uses an adaptive learning rate for each parameter, which makes it less
sensitive to hyperparameters, stable in many cases, and more suitable for data sets where
the volume of data in this paper is not very large. Although the use of the ADAM optimizer
reduces the sensitivity of the model to the learning rate, the choice of the learning rate is
still crucial. We initially used the default learning rate of 0.001 but found that convergence
did not occur under certain conditions. Therefore, we have reduced the default learning
rate by a factor of 10 to 0.0001 to prevent such situations. For the loss function, we have
chosen the cross-entropy loss function, which is commonly used in classification problems
and is defined as follows:

CrossEntropy = L(y, t) = −∑
i

tilnyi (6)

where yi is predicted output for each input and ti is expected output also known as labels.
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Table 5. Network parameters.

Learning Rate Batch Size Optimizer Loss Function

0.0001 50 ADAM cross-entropy

3.4.3. Selection of Patch Size

It is well known that in CNN-based image classification, using different sizes of patches
can cause varying trends in the classification performance. This is because patches of
different sizes capture different contextual information, object scales, texture and structures,
computational complexity, and receptive field, which is a combined and complex effect. To
address these issues, it is essential to carefully select the patch size based on the specific
characteristics of the dataset and the complexity of the task.

Considering that sea ice is usually continuously distributed, this leads to the fact that
small-sized patches do not capture more information, and large-sized patches can result in
poorer training due to the inclusion of too many neighboring sea ice of other types, as well
as increasing the computational complexity. We, therefore, designed experiments to select
a reasonable size for training. The patch size selection process was based on a comparison
of loss curve analyses and actual classification results. Whether the corresponding patch
size model has learned the sea ice features is determined by observing the convergence of
the loss curves, i.e., whether the loss curves are gradually decreasing and leveling off.

The actual classification results of NET1 trained on datasets with different patch sizes
are shown in Figure 11. Visual inspection indicates that the 36× 36 patch size yields the
best classification results among the three sizes.

Figure 12—NET1 displays the loss curve for NET1, where the vertical axis represents
cross-entropy loss, and the horizontal axis represents a complete training epoch on the
dataset. The blue curve exhibits a rapid decrease, followed by a leveling off, while the green
curve follows a similar trend, and the red curve exhibits consistently high loss variation.
The colored curves correspond to different patch sizes: blue for 36× 36, green for 48× 48,
and red for 24× 24.

Similarly, loss curves for NET2 are presented in Figure 12—NET2. Although the
blue curve displays a slow start, which will be discussed later, the loss still falls within a
smooth interval. The final patch sizes selected for NET1 and NET2 are 36× 36 and 12× 12,
respectively. Notably, 12× 12 corresponds to the size of the 2-D spectrogram, and the size
of the patches originally selected from the SLC data was 24× 24. The same patch size
selection criteria were applied to the validation dataset patches.
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Figure 11. Example of classification results for different patch sizes.
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(a) NET1 (b) NET2

Figure 12. Train loss for different patch sizes of NET1 and NET2.

3.5. Feature Combination

The combination of features and the resulting classification relies on one-hot coding.
One-hot coding is a method used in machine learning and data analysis to convert categor-
ical data into a digital format. As shown in Figure 13. The feature map in the network is
stretched into a tensor after the fully connected layer, which contains the category informa-
tion determined by each network and is defined as a feature tensor in this paper. As shown
in Figure 10, the feature combination is the fusion of the feature tensors of NET1 and NET2.
Each patch in the validation dataset fed into the model trained by NET1 or NET2 will
obtain a tensor with dimension [1, 5] due to the linear transformation of the fully connected
layer. A linear transformation transforms the tensor into a [1, 5] tensor that can represent
the five categories. Each tensor contains information about the category corresponding to
that patch. In addition, we used the Softmax function to convert the numbers in the tensor
into probabilities, which is defined as:

So f tmax(xi) =
exp(xi)

∑j exp(xj)
(7)

The Softmax function rescales the n-dimensional tensor so that each element of the
tensor lies in the range [0, 1] and its sum is 1, which can be regarded as the probabilities. For
the different pixels in the classification results obtained by the two networks, we compare
the probability that they belong to different classes and choose the larger one as the final
determined class. For instance, at the same location on the image, the tensor obtained by the
NET1 trained model is [−60, −9, −30, 8.0, −38], tensor obtained by NET2 trained model
is [−62, −8, −39, −10, −37]. The probabilities calculated by Softmax are, respectively,
[2.9× 10−30, 4.1× 10−8, 3.1× 10−17, 9.9× 10−1, 1.1× 10−20] and [3.1× 10−24, 8.8× 10−1,
3.0× 10−14, 1.2× 10−1, 2.2× 10−13]. Thus for the first tensor, the probability that the sea
ice class is BI is the highest, almost 1, and for the second, it will be judged as FI with a
probability of 0.88. By comparing the probabilities, we would be biased to conclude that
the sea ice type at this location is BI.
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Figure 13. One-hot code for sea ice and feature combination.

4. Results and Analysis
4.1. Classification Accuracy Analysis

For the presented examples, we show areas covering 600 × 600 pixels (corresponding
to approx. 12.8 × 13.8 km). The spatial distribution of the four scenes is shown in Figure 14.
Classification results are shown in Figures 15 and 16. V1 and V2 scenes spread over the
edge of the Beaufort Sea, while V3 and V4 scenes spread around Severnaya Zemlya, from
which NI, FI, OI, and DI four types of sea ice can be detected. The extraction of validation
patches is shown in Figure 6. A sliding window is used to extract patches from the target
area. The window size is consistent with the corresponding training patch size, and the
stride is two pixels. Therefore, the four pixels in the center of each patch represent the class
of sea ice identified by the algorithm proposed in this paper and are ultimately reflected in
the classification results in Figures 15 and 16.

V1 V2

V3

V4

Figure 14. The spatial distribution of the V1–V4 scenes.
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Figure 15. Sea ice classification results for the parts of the V1 scene and V2 scene. The scenes
contain NI, FI, OI, and DI, four types of sea ice. P1 and P2 are obtained by NET1; S1 and S2 are
obtained by NET2; M1 and M2 are multi-featured classification results; O1 and O2 are original
pseudo-color images.

77
°0

9′
 N

77
°1

2′
 N

77
°1

2′
 N

77
°1

5′
 N

107°50′ E

107°50′ E 108°00′ E

108°00′ E

(a) P3

77
°0

9′
 N

77
°1

2′
 N

77
°1

2′
 N

77
°1

5′
 N

107°50′ E

107°50′ E 108°00′ E

108°00′ E

(b) S3

77
°0

9′
 N

77
°1

2′
 N

77
°1

2′
 N

77
°1

5′
 N

107°50′ E

107°50′ E 108°00′ E

108°00′ E

(c) M3

77
°0

9′
 N

77
°1

2′
 N

77
°1

2′
 N

77
°1

5′
 N

107°50′ E

107°50′ E 108°00′ E

108°00′ E

(d) O3

77
°0

3′
 N

77
°0

6′
 N

77
°0

6′
 N

77
°0

9′
 N

107°54′ E

107°54′ E 108°04′ E

108°04′ E

(f) P4

77
°0

3′
 N

77
°0

6′
 N

77
°0

6′
 N

77
°0

9′
 N

107°54′ E

107°54′ E 108°04′ E

108°04′ E

(g) S4

77
°0

3′
 N

77
°0

6′
 N

77
°0

6′
 N

77
°0

9′
 N

107°54′ E

107°54′ E 108°04′ E

108°04′ E

(h) M4

77
°0

3′
 N

77
°0

6′
 N

77
°0

6′
 N

77
°0

9′
 N

107°54′ E

107°54′ E 108°04′ E

108°04′ E

(i) O4

Figure 16. Sea ice classification results for the parts of the V3 scene and V4 scene. The scenes contain
NI, FI, and OW. P3 and P4 are obtained by NET1; S3 and S4 are obtained by NET2; M3 and M4 are
multi-featured classification results; O3 and O4 are original pseudo-color images.

Three methods are used for classification: Using the model trained by NET1 for classi-
fication of [paulir, paulig, paulib] pseudo-color imagery after polarization decomposition,
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as the P1, P2, P3, and P4 shows; Using the model trained by NET2 for classification of the
2-D spectrogram, as the S1, S2, S3, and S4 shows; Multi-featured classification by fusing two
classification results, as the M1, M2, M3, and M4 shows. Additionally, some classification
errors that are visually recognizable we need to state here. As shown in Figure 17, V3 and
V4 scenes, there are ambiguous areas at the connection between NI and OW. Considering
the thin thickness of NI, it is fragile and easily damaged by wind and waves, or other
external forces. The regions are exactly at the transition zones of ice and water, so we
suppose that it is highly possible that they have received wind and wave effects, leading
to an error in our classification of sea ice in the part of the regions. It is necessary to note
that these areas were not considered in the subsequent classification accuracy calculations
and analyses.

(a) V1 (b) V2

(c) V3 (d) V4

Figure 17. Producer accuracy and user accuracy of the Pol. Decomp., the JTFA, and the Fusion for
different classes.

4.2. Classification Accuracy Analysis

We utilized confusion matrices to evaluate the accuracy of sea ice classification and to
perform an analysis, as detailed in Table 6. In a confusion matrix, columns denote ground
truth, while rows represent the predictions. The confusion matrices are presented based
on the ground truth regions, which are determined by the number of pixels. The accuracy
metrics are calculated in percentage values and include the following: Producer accuracy
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(Prod. Acc.) measures the percentage of correctly classified samples (pixels) in a specific
class with respect to the total number of samples in that class. It indicates how well the
classifier accurately identifies the true positive instances in each class. User accuracy (User
Acc.) measures the percentage of correctly classified samples in a specific class with respect
to the total number of samples classified as that class by the classifier. It represents the
precision of the classifier for each class and indicates how well it avoids false positives.
Overall accuracy (OA) is the sum of correctly classified pixels divided by the total number
of classified pixels compared to ground truth pixels. Kappa coefficient (Kappa), which
measures the agreement between the truth and predictions, can be calculated from:

Kappa =
N ∑n

i=1 mi,i −∑n
i=1 GiCi

N2 −∑n
i=1 GiCi

(8)

where N is the total number of classified pixels compared to ground truth pixels; i is the
class index; mi,i is the number of values along the diagonal of the confusion matrix; Gi is
the total number of ground truth pixels in class i; Ci is the total number of predicted pixels
in class i.

The calculation of the confusion matrix is predicated on the ground truth region of
interest (ROI). The ground truth ROIs were selected with reference to the WMO standards
CIS ice charts, as outlined in Section 2, Section 2.2: Data preprocessing and Sample selection.
In order to ensure the relative accuracy of the accuracy calculation, the selection of ground
truth ROIs solely took into account areas where categories could be clearly identified. For
instance, in Figure 16, the obscured area at the border of NI and OW in the original image
is not considered in the classification accuracy calculation, which may result in higher or
lower classification accuracy compared to the truth values (typically higher). Since the same
criteria were used, these deviations do not significantly impact the algorithm evaluation
and will be acknowledged in subsequent accuracy analyses.

For the purpose of comparative analysis, we have visualized the classification accuracy
in order to provide a clearer representation of the data. Figure 17 displays the producer
accuracy and the user accuracy of various classes in different classification algorithms.
The blue bars represent the producer accuracy, the green bars represent the user accuracy,
and the error bars have been established based on the recalculated classification accuracy
with a 5% ROI sampling error. The same approach has been used for the overall accuracy,
which is shown in Figure 18. In terms of classification accuracy for individual classes,
the proposed multi-featured method, which combines the classification results of the
polarization decomposition method and the JTFA method, generally has higher producer
and user accuracy compared to single methods or remains close to the higher value.
However, there are significant drops in accuracy, particularly for NI and FI. Nevertheless,
when combining the two classification accuracies and the classification results shown in
Figures 15 and 16, the multi-featured classification method shows a significant advantage.

From a holistic perspective, as depicted in Figure 18, the overall accuracy and kappa
coefficient are used to measure the overall classification performance. The overall accuracy
of the multi-featured method is significantly better than the other two methods, with
accuracies of 95%, 91%, 96%, and 95% for the four scenes. The accuracy is improved
by 14%, 40%, 8.6%, and 3.8% for the polarimetric decomposition method and 24%, 29%,
59%, and 52% for the JTFA method, respectively. As the sample selection is unbalanced,
the overall accuracy is somewhat biased. Hence, we also used the kappa coefficient to
measure the accuracy of the classification, which can offset the bias introduced by the
sample selection, serving as a complement to the overall accuracy. Figure 18 indicates that
the kappa coefficient of the multi-featured method remains at a high level of over 90%,
which is a significant improvement compared to the other two methods, where the kappa
coefficient performance is highly unstable.
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Table 6. Confusion matrix for V1–V4 scenes classification results.

Scene Methods Classes NI FI OI DI OW Prod. Acc. User Acc. OA Kappa

V1

Pol. Decomp.

NI 0.70 0.015 0 0 0 0.70 0.98

0.81 0.73
FI 0.30 0.99 0.15 0.33 0 0.99 0.64
OI 0 0 0.75 0.010 0 0.75 0.99
DI 0 0 0.11 0.99 0 0.99 0.64

OW 0 0 0 0 0 0 0

JTFA

NI 0.84 0.0036 0.30 0.97 0 0.84 0.53

0.70 0.58
FI 0.14 0.96 0.13 0.02 0 0.96 0.72
OI 0.0011 0.0032 0.57 0.0050 0 0.57 0.99
DI 0.019 0.034 0 0 0 0 0

OW 0 0 0 0 0 0 0

Comb.

NI 0.98 0.018 0.024 0.0033 0 0.97 0.94

0.95 0.92
FI 0.023 0.98 0.022 0 0 0.98 0.94
OI 0.0011 0.0032 0.90 0.0058 0 0.90 0.99
DI 0 0 0.049 0.99 0 0.99 0.72

OW 0 0 0 0 0 0 0

V2

Pol. Decomp.

NI 0.15 0.0081 0.00020 0.00060 0 0.15 0.99

0.50 0.40
FI 0.85 0.96 0.25 0.025 0 0.71 0.99
OI 0.0014 0.030 0.71 0.26 0 0.97 0.90
DI 0.0006 0.0054 0.038 0.97 0 0.96 0.10

OW 0 0 0 0 0 0 0

JTFA

NI 0.93 0 0.27 0.00070 0 0.93 0.81

0.62 0.44
FI 0.018 0.99 0.34 0.99 0 0.99 0.18
OI 0.033 0.0075 0.38 0.011 0 0.38 0.89
DI 0.019 0 0.012 0 0 0 0

OW 0 0 0 0 0 0 0

Comb.

NI 0.93 0.0010 0.048 0 0 0.93 0.96

0.91 0.85
FI 0.036 0.93 0.064 0.025 0 0.93 0.45
OI 0.034 0.057 0.85 0.0020 0 0.85 0.94
DI 0.00060 0.98 0.039 0.97 0 0.97 0.90

OW 0 0 0 0 0 0 0

V3

Pol. Decomp.

NI 0.82 0 0 0.041 0 0.82 0.98

0.87 0.79
FI 0.18 0.99 0 0.89 0.012 0.99 0.48
OI 0 0 0 0 0 0 0
DI 0 0 0 0.065 0 0.065 0.99

OW 0 0 0 0 0.99 0.99 0.99

JTFA

NI 0.99 0.0070 0 0.17 0.99 0.99 0.26

0.37 0.23
FI 0.0071 0.98 0 0.24 0 0.98 0.82
OI 0 0 0 0 0 0 0
DI 0.0018 0.018 0 0.59 0 0.59 0.96

OW 0 0 0 0 0 0 0

Comb.

NI 0.99 0.0070 0 0.18 0.012 0.99 0.92

0.96 0.93
FI 0 0.98 0 0.21 0 0.98 0.85
OI 0 0 0 0 0 0 0
DI 0 0.018 0 0.61 0 0.61 0.97

OW 0 0 0 0 0.99 0.99 0.99

V4

Pol. Decomp.

NI 0.95 0 0 0 0 0.95 0.99

0.92 0.88
FI 0.052 0.99 0 0.28 0.12 0.99 0.67
OI 0 0 0 0 0 0 0
DI 0 0.0028 0 0.72 0 0.72 0.99

OW 0 0 0 0.0011 0.88 0.88 0.99

JTFA

NI 0 0 0 0 0 0 0

0.44 0.28
FI 0.033 0.97 0 0.22 0.0014 0.97 0.80
OI 0 0 0 0 0 0 0
DI 0.0017 0.024 0 0.38 0.0045 0.38 0.87

OW 0.97 0.0014 0 0.40 0.99 0.99 0.32

Comb.

NI 0.95 0 0 0 0 0.95 0.99

0.95 0.93
FI 0.014 0.97 0 0.060 0.00040 0.97 0.92
OI 0 0 0 0 0 0 0
DI 0.00030 0.027 0 0.86 0.0019 0.86 0.95

OW 0.039 0.0014 0. 0.079 0.99 0.99 0.90
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Figure 18. Overall accuracy and kappa coefficient.

5. Discussion

In this study, we utilized 30 scenes of ALOS PALSAR SLC satellite data from the Arctic
region. SAR is a widely adopted technique for sea ice monitoring due to its capability of
working all day and in all weather conditions. SAR functions by obtaining the scattered
echo characteristics of sea ice, and different types of sea ice generate distinct echo signals
under different polarized electromagnetic waves based on their diverse physical and
chemical properties. PolSAR can obtain different polarization information through its
multiple polarization modes, and these differences in polarization information are reflected
in the polarization characteristics obtained via polarization decomposition. The quad-
polarization SAR data used in our research can obtain scattering intensity information of sea
ice under different scattering mechanisms after polarization decomposition, which provides
fundamental assurance for sea ice classification. Besides polarization decomposition, we
also applied joint time-frequency analysis for SAR signals and imaging. The JTFA technique
can be utilized to analyze and describe the radar target signature, which can be used as
features for sea ice classification. We utilized the 2-D spectrogram obtained by reducing
the dimensionality and reconstructing the 4D spectrogram as a new feature for our study.
Furthermore, the use of CNNs is crucial in obtaining spatial features of sea ice SAR images.
CNNs can identify texture and shape features of sea ice by using multiple convolutional
layers; the network can learn hierarchical representations of the image and extract important
features for classification.

5.1. Influencing Factors

Although the experimental results show that the multi-feature method proposed in
this paper achieves better classification results, there are still some issues worth discussing.
The backscatter signal from sea ice is known to be influenced by season and angle of
incidence in SAR images. Sea ice backscatter varies seasonally in SAR images, with images
of different bands (C-, L-, Ku-band), polarizations, and for different sea ice types backscatter
at different seasons of the year [67]. Given the complexity of multiple polarizations and sea
ice types, it was challenging to accurately account for seasonally varying backscatter. To
address this issue, we chose to ignore this complication and instead selected time-specific
images using specific classification criteria. However, we must acknowledge that our data
do not fully cover sea ice features at typical times of the year. This is especially the case
in winter, as sea ice is usually more stable during this time, showing relatively uniform
reflection intensity and texture. With limited data, we did not select enough sea ice features
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for training within these time periods. This is an aspect that needs to be complemented by
subsequent work.

In addition to the season, the ice classification is also affected by backscatter, which
varies with the incident angle. The variation in backscatter is complex and less significant
when the angle of incidence changes by a smaller amount. In this study, the incidence angle
is mostly concentrated in the range of 22–27◦, with a variation of 2◦ or less in a single image.
Therefore, the variation in backscatter is minimal. In our study, the spectral, polarization,
and spatial characteristics are the main features considered, compared to the limited effect
of backscatter variation, so the effect of season and angle of incidence is not taken into
account in the classification process [68].

5.2. Algorithms

In the choice of algorithms, we used a CNN for the classification. Our approach
differs from previous studies as we opted not to use deeper or more complex networks for
training. The selection of a simple network structure for classification was due to limitations
imposed by the limited SAR data available. However, it enabled us to better demonstrate
the improvements in the classification effect of the proposed multi-featured method in
this paper.

Several details regarding the classification experiment require clarification. Firstly, the
selection of the sample size has a crucial impact on the classification results. To determine
the suitable sample sizes for the two networks, we referred to previous studies and selected
three sample sizes, namely 24, 36, and 48, for comparative experimental analysis. By
analyzing the loss curves and actual classification results, we determined that the relatively
suitable sample sizes were 36 and 12 for the two networks, respectively. Although these
sample sizes achieved a better classification effect, there is still room for improvement in the
interval of size selection. Further testing of more sizes may yield optimal results. However,
given that the focus of this article is not on the size of the samples, we provide only a brief
discussion of this aspect.

It is clear that the algorithm of our article is not complicated, and its core idea is to learn
two features by CNN and combine them to improve the classification accuracy. Compared
to many current studies using deep learning CNN methods for sea ice classification, we
simply use a very basic VGG structure. Most current research focuses on more sophisticated
neural network structures and methods to improve classification accuracy, while the data
they use are not mined and processed more deeply but rely on the network itself to extract
information from the data for classification. Our approach, on the other hand, extracts and
combines information from the physical mechanisms of the data, which has the advantage
that we can use a simple network with less computation to achieve higher classification
accuracy. Our method is based on CNN, which can well extract the spatial texture features
of sea ice and then supplement them with polarization features and spectral features
that contain the physical mechanism of sea ice in order to achieve high accuracy sea ice
classification with less computational consumption.

5.3. Results Analysis

In terms of the classification accuracy analysis, we employed the widely used confu-
sion matrix. It should be noted that the calculation of the confusion matrix depends on the
ground truth pixels, so we took great care in selecting the region of interest (ROI) and only
included regions where the classes could be clearly identified for the calculation. However,
this may have led to higher accuracy in the final classification since many regions with
complex sea ice types were not included in the calculation. Therefore we calculated the
range of classification errors based on the sampling error and presented it in the form of an
error bar in Figures 17 and 18.

It is worth noting that the JTFA method may encounter confusion when classifying
areas with both NI and OW, resulting in the misclassification of NI as OW or vice versa.
This issue is demonstrated in Figure 16 for S3 and S4, as well as in Table 6 for V3 and V4,
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which provide the classification accuracy of the JTFA method. We attribute this confusion
to the similarities in spectrogram characteristics between NI and OW. NI and OW are
consecutive stages in the sea ice development process. NI is characterized by its thinness,
high transparency, and relatively weak textural characteristics, which can contribute to
confusion and misclassification when performing classification. To address this, employing
a multi-feature method that incorporates constraints on polarization features, including
backscatter information, would improve the situation.

The difference in accuracy between combined features and individual features is also
a matter for discussion. Reasons for this phenomenon include the complementary nature
of the features and their ability to capture different aspects of sea ice features. From the
classification results, we can observe that the polarimetric decomposition approach can
usually accurately distinguish between different types of sea ice, but the marginal regions
of different types of sea ice can be blurred by the classification. The JTFA method, on
the other hand, has a more prominent ability to portray sea ice contours and can clearly
distinguish different types of sea ice, but misclassification occurs in the determination of
sea ice categories. Both methods have certain defects leading to low classification accuracy
numerically. Our proposed feature combination method using one-hot coding, however,
filters out the poorly classified parts of the two methods by calculating the probability,
highlights the advantages of each method, and thus improves the classification accuracy of
the combined method.

Furthermore, the analysis of the accuracy of specific classes showed that the producer
accuracy and user accuracy of the polarization decomposition method and the JTFA method
often differed significantly, indicating a high commission or omission rate for each category.
The multi-feature method improved this situation by fusing the advantages of the two
methods to complement each other. The classification results obtained by the Pol. Decomp.
method showed more accurate class judgment, while the JTFA method provided a better
description of the morphological edge information of different classes of sea ice, especially
in the classification of NI and FI, as shown in Figure 19. In addition, we also performed the
calculation of Intersection over Union (IoU) accuracy as a supplementary note. IoU is a
commonly used metric in computer vision tasks and is computed with the formula: IoU =
(Intersection area) / (Union area). IoU accuracy values range from 0 to 1 and are useful
metrics for assessing the quality of object segmentation results. As shown in Table 7, the
effectiveness of the JTFA method in segmenting sea ice is sometimes at an advantage in the
classification of NI and FI. The multi-featured method also combines these advantages to
improve the accuracy of sea ice classification.

O2 P2 S2 O3 P3 S3

Figure 19. Comparison of the description of the morphological edge information of different classes
of sea ice, taking V2 and V3 scenes as an example. O2 and O3 are the original images; P2 and P3 are
the classification results of the polarimetric decomposition method; S2 and S3 are the classification
results of the JTFA method.
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Table 7. IoU for V1–V4 scenes NI and FI.

Scene V1 V2 V3 V4

Type NI FI NI FI NI FI NI FI

Method
Pol. Decomp. 0.69 0.55 0.15 0.45 0.79 0.48 0.95 0.75

JTFA 0.37 0.74 0.73 0.44 0.46 0.78 0 0.78

5.4. Feature Combination

In the selection of the feature combination method, we took a simpler approach which
is to obtain the calculation results of the two methods first and then generate the fused
images by comparing the probabilities of the classes. Although this approach has been
effective, there are cases of errors in judgment. Therefore, in the process of practical
operation, we combined the conclusions drawn from the comparison of the classification
accuracy of the two methods, that is, in the determination of the category, if the deviation
of the calculated probability is small, it will be biased to determine that the category judged
by the Pol. Decomp. method is accurate. Meanwhile, it should be noted that the theoretical
basis of this method is not so sufficient and tends to be more of an empirical approach, so
there is still much room for improvement.

In general, our study focused on multiple features and, therefore, did not fully consider
other factors affecting sea ice classification, such as seasonal variations. In subsequent
studies, we plan to address these limitations and incorporate these factors to enhance our
classification accuracy. In addition, for the data and network, the spatial and temporal
resolution of the SAR data, the waveband, the network model, and its parameters will also
be of major concern, and more new quad-polarization SAR data need to be considered,
such as GF-3 and RADARSAT-2.

6. Conclusions

In this study, we employed four polarisations (HH, HV, VH, and VV) of ALOS PALSAR
SLC data for sea ice classification and proposed a multi-feature sea ice classification method.
Our method exploits polarization features obtained through polarization decomposition
and spectral features obtained through JTFA. The purpose of the multi-feature method is to
obtain more useful information from the data. We combined sea ice backscatter features,
spectral features, and spatial features that are accessible to CNNs. To learn and train, we
designed a simple convolutional neural network and used a confusion matrix to evaluate
the final accuracy of our classification of sea ice into five categories NI, FI, OI, DI, and OW.

In addition, we designed several comparative experiments to comprehensively illus-
trate the experiment, including the comparison and selection of sample sizes, the com-
parison of the accuracy of different sea ice categories, and the comparative analysis of
different accuracy judgment types for different methods. Regarding producer accuracy,
the multi-feature method achieved high levels of accuracy, usually exceeding 90%, for
most categories and in most cases. This indicates that the multi-feature method is highly
effective in accurately identifying different types of sea ice. Moreover, in terms of user
accuracy, the multi-feature method also achieved over 90% accuracy, indicating its ability to
effectively identify specific categories of sea ice. In terms of overall accuracy, the combined
multi-feature method demonstrated high levels of accuracy for the four scenes selected
in this study, achieving 95%, 91%, 96%, and 95% accuracy, respectively. The kappa coeffi-
cients for these scenes reached 0.92, 0.85, 0.93, and 0.93, respectively, demonstrating a high
level of consistency and further validating the accuracy and reliability of the integrated
multi-feature method.

The experimental results show that combining multiple features can exploit the advan-
tages of SAR data with quad-polarization and significantly improve the accuracy of sea ice
classification. We believe that this integrated multi-feature method could be useful in the
future for more complex and accurate sea ice classification, thereby improving classification
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accuracy. Furthermore, in areas where sufficient data are lacking, the multi-feature method
can supplement information.
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