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Abstract: The utilization of unmanned aerial vehicles (UAVs) for the precise and convenient detection
of litchi fruits, in order to estimate yields and perform statistical analysis, holds significant value
in the complex and variable litchi orchard environment. Currently, litchi yield estimation relies
predominantly on manual rough counts, which often result in discrepancies between the estimated
values and the actual production figures. This study proposes a large-scene and high-density litchi
fruit recognition method based on the improved You Only Look Once version 5 (YOLOv5) model.
The main objective is to enhance the accuracy and efficiency of yield estimation in natural orchards.
First, the PANet in the original YOLOv5 model is replaced with the improved Bi-directional Feature
Pyramid Network (BiFPN) to enhance the model’s cross-scale feature fusion. Second, the P2 feature
layer is fused into the BiFPN to enhance the learning capability of the model for high-resolution
features. After that, the Normalized Gaussian Wasserstein Distance (NWD) metric is introduced into
the regression loss function to enhance the learning ability of the model for litchi tiny targets. Finally,
the Slicing Aided Hyper Inference (SAHI) is used to enhance the detection of tiny targets without
increasing the model’s parameters or computational memory. The experimental results show that the
overall AP value of the improved YOLOV5 model has been effectively increased by 22%, compared to
the original YOLOv5 model’s AP value of 50.6%. Specifically, the AP; value for detecting small targets
has increased from 27.8% to 57.3%. The model size is only 3.6% larger than the original YOLOv5
model. Through ablation and comparative experiments, our method has successfully improved
accuracy without compromising the model size and inference speed. Therefore, the proposed method
in this paper holds practical applicability for detecting litchi fruits in orchards. It can serve as a
valuable tool for providing guidance and suggestions for litchi yield estimation and subsequent
harvesting processes. In future research, optimization can be continued for the small target detection
problem, while it can be extended to study the small target tracking problem in dense scenarios,
which is of great significance for litchi yield estimation.
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1. Introduction

Litchi is a significant economic crop primarily grown in the subtropical regions, specif-
ically in southern China and Southeast Asia. In 2019, global litchi production reached
approximately 4 million tons. China stands as the leading producer with the largest plant-
ing area and production worldwide. The average annual output and planting area in China
account for more than 50% of the total global production [1]. The national technology
system for the litchi and longan industries in China forecasts a rise in China’s litchi planting

Remote Sens. 2023, 15, 4017. https:/ /doi.org/10.3390/1s15164017 https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs15164017
https://doi.org/10.3390/rs15164017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15164017
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15164017?type=check_update&version=1

Remote Sens. 2023, 15, 4017

20f18

area to 526,100 hm? and a total output of approximately 2.2227 million tons by 2022 [2].
The litchi market season typically takes place from May to July. During this period, ex-
posure to high temperatures can lead to the development of litchi acid, which causes
spoilage and affects the overall flavor of the fruit. Consequently, it becomes crucial to
predict the yield of litchi fruit in orchards in advance. This prediction helps farmers to
plan their storage and harvesting activities effectively and enables them to devise early
supply strategies.

Traditional yield estimation methods often rely on manual counting, where the proce-
dure involves rough estimation of the number of fruits followed by multiplying it with the
average weight of each fruit. However, this approach heavily relies on individual experi-
ence and is susceptible to human factors. As a result, there can be significant discrepancies
between the estimated values obtained through this method and the actual values reflecting
the true yield.

Along with the maturity of UAV technology, its application in agriculture has natural
advantages considering its excellent mobility and flexibility, which can be easily and quickly
deployed in agricultural environments. An increasing number of UAV applications have
been explored for agricultural applications in recent years [3,4]. Junos et al. proposed an
improved YOLOv3 model for detecting oil palm fruits from UAV images, in which the FPS
reached 29.3 with an average accuracy of 99.76% [5]. Due to the good resolution of the
images captured by the UAV, it is suitable for natural orchard fruit detection.

In recent years, computer vision has made significant progress due to the rapid
advancements in computer technology. The application of computer vision technology in
agriculture aims to address challenges such as high labor intensity and low productivity,
ultimately improving agricultural efficiency. There are many related works in this field.
For example, Maldonado Jr and Barbosa developed a method to automatically count green
fruits on orange trees based on traditional digital image processing techniques [6]. Bhargava
and Bansal split the background by color channel, using multiple features to distinguish
fruit types and for fruit quality assessment, comparing four types of classifiers: k-Nearest
Neighbor (k-NN), Sparse Representative Classifier (SRC), Artificial Neural Network (ANN),
and Support Vector Machine (SVM), where SVM accuracy reached the highest accuracy of
95.72% [7]. Xiong et al. detected litchi by their color features and confirmed that the YIQ
color model is the model with the best practice in nighttime litchi detection [8]. Wang et al.
developed three classifiers for litchi images and a clustering algorithm for fruit matching,
and the matching success rate could reach up to 96.96%, but it was greatly influenced
by the environment [9]. The aforementioned techniques for fruit detection are based on
machine learning technology, which categorizes and recognizes by extracting information
from the target fruit’s color, geometric shape, and texture. They are frequently impacted
by the environment and the recognition accuracy fluctuates greatly, with poor robustness
when encountering factors such as occlusion and weather. These characteristics are more
suited for somewhat constant situations but they are hardly applicable in real orchards
with complex environments.

With the advancements in deep learning technology, various object detection models
have been developed and applied to fruit detection, effectively addressing the aforemen-
tioned challenges. One-stage and two-stage detection models can be categorized under the
category of object detection. Girshick et al. pioneered a two-stage detection model that
uses regions with a Convolutional Neural Network (CNN) feature called R-CNN for object
detection [10]. It consists of three main modules: first, generating a category-independent
region proposal; second, extracting region proposal features using CNN; and third, using
an SVM classifier for category delineation. There are several fruit detection methods based
on this model. For example, Apolo-Apolo et al. employed Faster R-CNN for citrus detec-
tion, which could achieve 90% accuracy rate and F1 score greater than 0.98 [11]. Gao et al.
proposed a multi-class apple detection method based on Faster R-CNN that can effectively
detect four classes of apples, i.e., no shading, leaf shading, branch shading, and fruit
shading, with an average accuracy rate of 87.9% and an FPS of only 4.15 [12]. Zhang et al.



Remote Sens. 2023, 15, 4017

30f18

employed VGG19 as the backbone for Faster R-CNN to detect apples and branches, with an
average accuracy of AP of 82.4% and F1 score of 0.86, but FPS of only 2.22 [13].

The two-stage object detection approach has good performance but, because of its slow
inference speed, it is challenging to apply to situations with high real-time requirements.
Thus, in pursuit of the balance of accuracy and inference speed, Redmon et al. proposed
the one-stage object detection method called YOLO [14]. It is characterized by obtaining
target information directly in the model, which greatly improves the inference speed but
reduces accuracy. Due to its fast and efficient characteristics, its series of models are more
often applied in the real-time detection of orchard fruits. For example, Lin et al. proposed a
detection algorithm for litchi flower clusters based on YOLOv4 with an average accuracy
of 87.87% and an FPS of 23.26 [15]. Finally, a model for estimating the number of litchi
clusters was constructed via equation fitting. Wang et al. proposed an improved network
based on YOLOvV5 with Shufflenetv2 as the backbone network to achieve a light weight and,
in addition, developed a mobile application with AP of 92.4% while achieving FPS of 78.13,
demonstrating that this network can be usefully applied to a real orchard environment [16].
Liang et al. innovatively introduced BiFPN and swin-transformer modules to enhance the
cross-scale fusion capability of the network while accelerating network convergence and
improving network accuracy [17].

The issue of small object detection is invariably confronted in order to accomplish
accurate yield estimation for large scenarios of litchi fruit. The detection of small targets
still has to be enhanced, despite the fact that the existing object detection algorithm can
successfully detect medium and big objects in a real environment. Small targets are
challenging to detect for the following reasons: it is difficult for the model to learn the
feature information of small targets due to the lack of feature information in small targets
themselves; small target data are typically small in the dataset, making model learning
difficult; small target anchor boxes can be challenging to match due to small changes, which
aggravates the difficulty of model learning. Numerous algorithms have been proposed
to increase the accuracy of small target recognition. For instance, Liu et al. proposed a
feedback-driven loss function to balance the loss distribution and relieve the inadequate
supervision on the small targets [18]; Gong et al. discovered that adjusting the fusion factor
of adjacent layers of FPN can adaptively drive the shallow layers to focus on learning
tiny objects [19], thereby improving detection efficiency. There are still comparatively
few small object optimization studies for litchi fruit, despite the fact that there are many
studies for small object improvement on public datasets and all of them have achieved
significant progress.

This study aims to develop a litchi fruit detection model based on the YOLOv5 model
for natural litchi orchards that can be applied to UAV shooting scenarios. In order to be
better applied to litchi fruit yield estimation, the small target detection of litchi is especially
improved and the maturity of litchi fruit is divided for better practicality. To improve
small target detection, the original Path Aggregation Network (PANet) is replaced by
an improved BiFPN and the P2 feature layer is fused into the BiIFPN. NWD and CloU
weighted loss are utilized as regression loss functions to enhance the learning ability of
the model for tiny target features to enhance the detection of tiny target litchi and finally
SAHI is utilized as a post-processing step to solve the detection problem of tiny target litchi.
The improved YOLOv5 model in this paper is named YOLOv5-TinyLitchi. The improved
model has excellent detection ability for small target litchi, and still has good robustness
under the influence of environment and occlusion. Meanwhile, the application of the slicing
mechanism greatly reduces the missed detection of small target litchi and improves the
realism of yield prediction.

2. Materials and Methods
2.1. Image Data Collection

In this study, the litchi fruits were studied in a large scene, and the images were
collected mainly from two locations: one is the Litchi Expo in Conghua District, Guangzhou
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City, Guangdong Province, China (23°58'96"N, 113°62'51"”E), where the main variety is
Jingganghongnuo, and the other is the Mache New Fruit Farm in Zengcheng District,
Guangzhou City, Guangdong Province, China (23°24'52""N, 113°37/83"E), where the main
varieties are Xianjinfeng and Nuomici (Figure 1). More than 100 litchi trees were sampled
and they were planted at spacing ranging from five to ten meters apart with an average
height of about three meters. The shooting equipment utilized in this study was the DJI
MAVIC PRO UVA, and the image acquisition was conducted between 9:00 a.m. and
5:00 p.m. from 21 June to 15 July 2022. The main shooting method was large scene shooting
with 4000 x 3000 pixels, which was used to capture as many litchi fruits as possible
from a single viewpoint, supplemented by partial shooting to ensure the diversity of the
dataset and prevent overfitting of the model. To ensure that the litchi were clearly visible,
the horizontal distance between the shooting device and the litchi tree was between 2 and
3 m, while the collected images contain litchi of different maturities. The average flight
height was between 3 and 5 m and the mode of image acquisition was pinhole camera
model. A front perspective and a top perspective of the litchi tree were usually taken
when shooting. The front perspective was taken by hovering the UAV about two meters
in front of the tree, at half the height of the tree and shooting directly in front of it. Top
perspective was taken by hovering the UAV at a distance about two meters above the tree
and shooting directly below it. In order to make the collected data fit the daily use scenario
of this research method and ensure the practicality of the model, the image format was
uniformly set to JPEG.

110°0'0"E 112°0'0"E 114°0"0"E 116°0'0"E
L L ! !

N s \ y 3 -\
fe 3 s
¢ S /
s NN

, Lo e
1 3 (23°58/96" N, 113°62'51"E) ( ts
- A i

A~

24°00"N

B -
(23°24'52"N, 113°37'83"E)

AARS ] L“

22°0'0"N
22°0'0"N

100 km

T T T T
110°0°0"E 112°0'0"E 114°00"E 116°0'0"E

Figure 1. Image collection location: (A) Litchi Expo, (B) Mache New Fruit Farm.

2.2. Dataset Construction

For the purpose of enhancing the applicability of this study, the litchi are divided
into two categories: mature and immature, during data processing. Mature litchi peel
shows red color, the surface is crack-like, and the shape is mostly heart-shaped or elliptical.
Immature litchi peel shows lime green or yellow-green, and some are interspersed with
red and yellow, the shape is oval or long elliptical. Due to uncertainties such as light
or wind shaking that can cause blurred images that are difficult to annotate, eventually
four hundred images of dense and well-shot litchi fruit are selected from the captured
dataset. In addition, we also test the distribution of ground truth region size on the self-built
litchi dataset and find that, when the pixel size is in the range of less than 80 x 80 pixels,
between 80 x 80 and 140 x 140 pixels, and more than 140 x 140 pixels the litchi fruit are
categorized as small, medium, and large targets, respectively.

This study chose to use the open source image annotation tool Labellmg, which can
export three formats of annotation files: xml format for the PASCALL-VOC dataset, json
format for the MS-COCO dataset, and txt format for YOLOVS. In this study, the txt format
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of YOLOV5 is selected as the training label import format and the json format of the MS-
COCO dataset is used as the format for calculating model evaluation metrics. Statistically,
there are a total of 43,156 real labeled targets in this dataset, with an average of 107 litchi
targets in one image. After the completion of labeling, the dataset is randomly divided
into a training set, a validation set, and a test set in the ratio of 7:1:2 for training, testing,
and evaluation of the model. Details are given in Table 1.

Table 1. Detailed information about the litchi image dataset.

Dataset Number of Images Number of Labels
Train 280 29,922
Validation 40 4480
Test 80 8754
Total 400 43,156

2.3. Experimental Environment Setup

The training environment employed in this study included a Windows 10 21H2 64-bit
operating system, 16 GB of memory, and an NVIDIA GeForce RTX 3060 graphics card.
The model building and training environments were Python 3.10.5, PyTorch 1.12.1,
and CUDA 11.3.

The images were processed uniformly at 640 x 640 pixels, the batch size was set to §,
and the epoch was 300, using stochastic gradient descent (SGD) as the optimizer, with an
initial learning rate of 0.01 and a weight decay of 0.0005, using a cosine warm-up learning
strategy and mosaic-4 for data enhancement.

2.4. Evaluation Metrics

To evaluate the detection performance of the model on the litchi dataset, this study
uses common evaluation metrics in object detection algorithms, including average precision
(AP), model size (weights), and the number of frames per second (FPS). The specific formula
is shown in (1)-(4). The inference speed is based on the average inference speed of forty
images in the NVIDIA GeForce RTX 3060 graphics card environment.

Precision = %EFP 1
Recall = sz_% 2)
AP = % YE{O’OZJ:,NJ} Precision(r) 3)
mAP — Z‘?”SP(”’) @

where TP denotes correctly detected litchi fruit (true positive), FP denotes incorrectly de-
tected litchi fruit (false positive), and FN denotes incorrectly detected incorrect litchi target
(false negative). The AP refers to the area of the precision-recall (PR) curve. However,
in practice, an approximated average precision is usually used in the calculation. Q is the
total number of categories, AP(q) denotes the AP value of category g, and mAP is the arith-
metic mean sum of the AP values of all categories, which usually represents the detection
performance of the algorithm. Without special specification, AP in this study is represented
as mAP when IoU is 50%. AP metrics are further divided into AP;, AP, AP, ApMature,
and APImmature for small, medium, large, mature, and immature litchi targets, respectively.

2.5. Overview of YOLOv5

Since CNNs were introduced into the field of computer vision, the field of object
detection can be divided into two categories. One is the two-step detection represented by
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R-CNN. The core of R-CNN is to select the region proposal by selective search algorithm
and then perform classification and regression on the region proposal to complete the object
detection task. This series of algorithms have: Fast R-CNN [20], Faster R-CNN [21]. Thanks
to the generation of region proposal, these methods usually have a high recognition rate
but the real-time performance is slightly worse. The other one is the one-step detection
algorithm represented by YOLO. The YOLO series was started by Redmon et al. [14];
the aim is to predict the bounding box and category probability of a complete image by
a single evaluation of a single neural network. And the basic idea is twofold: one is to
solve the object detection problem as a regression problem by using a network to output
the bounding box of categories; the second is that, instead of extracting the region proposal,
the prediction is performed on the whole image. The main algorithms are: YOLOv3 [22],
YOLOV4 [23], YOLOV5, RetinaNet [24], and SSD [25]. Because of the direct generation of
the bounding box, these methods sacrifice some accuracy for higher real-time performance.

The idea of YOLOVS is inherited from the YOLO series and the main structure is
divided into three layers: backbone, neck, and head. Backbone is responsible for feature
extraction, neck for feature fusion, and head for generating bounding boxes and categories.
The backbone uses cross-stage partial networks, which solves the problem of duplication
of gradient information in network optimization and integrates the gradients of each layer
into the feature map, ensuring the inference speed and accuracy, and reducing the model
size. The backbone network is shown in Figure 2. Neck adopts PANet, which makes full
use of the accurate localization information of the underlying features through bottom-up
path enhancement on the basis of FPN networks. Head consists of three detection heads
with different resolutions, and uses a loss function consisting of Regression, Objectness,
and Classification for detection and non-maximum suppression to select the best detection.
Five versions, YOLOvV5n, YOLOv5s, YOLOv5m, YOLOvVS5], and YOLOvV5x, are available
according to the detection requirements, which are achieved by replacing the number of
residual blocks and downsampling convolutions in the BottleneckCSP of the neck. Going
from YOLOvb5n to YOLOv5Xx is characterized by higher detection accuracy and slower
inference speed with larger model size.

'A t SPPF |
C o o ol
| 4'[ Conv H MaxPool2d H MaxPool2d H MaxPool2d ] ]

|
|
|
\

Figure 2. CSP-Darknet53 architecture for YOLOvV5 backbone network. Bottleneck*N indicates the
number of times Bottleneck is repeated.

2.6. The Proposed Model

Combining the model size, inference speed, and detection accuracy of the five versions
of YOLOVS5, this study concludes that the base model that is most compatible with the
detection of litchi fruits under large scenes in orchards is the YOLOv5s model. For the
purpose of making the YOLOv5s model applicable to orchard litchi detection, particularly
for the difficult problem of small target litchi detection, this study developed an improved
YOLOv5s model based on version 6.2 and its network structure is shown in Figure 3. In the
improved model, in order to compensate for the loss of receptive field from downsampling
and increase the accuracy of small target detection, the original PANet is replaced with
BiFPN fused with the P2 feature layer to enhance the feature fusion capability of the neck;
NWD is integrated into the loss function to make the model sensitive to tiny target detection.
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Finally, post-processing is performed using SAHI to re-detect the undetected tiny litchi
targets. More details of the theory are stated below.

BiFPN blocks

P5 @—’
® 20x20x3
I ' 40x40x3

-

80x80x3

P2

LOSSRegression

¥

CloU NWD

Backbone Neck Head

Figure 3. Network architecture of YOLOv5-TinyLitchi. Backbone: a feed-forward CSP-Darknet53
architecture extracts the multi-scale feature maps. Neck: the P2 feature layer fused into BiFPN in
order to fuse more localization information. Head: NWD was added to the regression loss function.

2.6.1. BiFPN with P2 Feature Layer Fusion

BiFPN was proposed by Tan et al. [26]. It is believed that the contribution of high-level
and low-level feature fusion to the output features is unequal, so the weight coefficients are
added to the feature fusion. Meanwhile, to solve the problem of inadequate feature fusion in
PANet, cross-level multi-scale fusion is proposed by adding an extra edge from the original
input node to the output node if they are at the same level, as shown in Formulas (5) and (6).
And each direction (top-down and bottom-up) is considered a feature network layer, which
is reused several times to obtain more high-level feature fusion. The structure of BiFPN is
shown in Figure 4b. Several studies have been conducted to demonstrate that BiFPN can
accurately enhance the detection ability of the model for small target objects [27-29].

Conv((wy - Pi" + w, - Resize(Pi")))
(w1 —+ wy + 6)
Conv((w) - PI" 4w, - P14 + wy - Resize(P™)))

Pout = ! ! ! (6)
4 (W), +w) + w + €)

td
Py

©)

where Pi is the intermediate feature at level 4 on the top-down pathway, Pi" is the layer
4 feature extracted from the backbone, and P§* is the output feature at level 4 on the
bottom-up pathway. w and w' are the weight of each feature map, and € is a constant. All
other features are constructed in a similar manner.

Since there are more litchi due to distance issues in the image occupying fewer pixel
points when performing large scene litchi fruit object detection and litchi fruits are not fully
mature when performing litchi fruit yield estimation, the scene usually contains immature
litchi with smaller targets of its own. In order to identify these two targets, the P2 shallow
feature layer is added to BiFPN without significantly increasing the number of parameters
at the same time, so that the model can obtain a higher resolution receptive field feature
fusion and have more accurate localization information.
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Figure 4. Schematic diagram of PANet and BiFPN structures: (a) original YOLOv5 PANet,
(b) proposed YOLOV5 BiFPN.

2.6.2. NWD

Wang et al. proposed the NWD [30], which can consistently respond to the distance be-
tween distributions and is better than IoU in measuring the similarity between tiny objects.
First, it models bounding boxes as two-dimensional Gaussian distributions, where the cen-
ter pixel of the bounding box has a higher weight and the importance of the pixel decreases
from the center to the boundary. Then, the similarity between bounding box and ground
truth is calculated and normalized to obtain NWD, as shown in Formulas (7) and (8).

2

T T
“2Nar M) = H([cx”'cy”’ug'hf] ’[be'cybfw%/hib} ) ) ?)
NWD(Ng, Ny) = exp (_\/W> (8)

where w2 (N, N}) is the Gaussian Wasserstein Distance between two bounding boxes,
C is a constant closely related to the dataset, and W22 (N, Np) is a distance measure. N, and
N, are Gaussian distributions modeled by A = (cx,, ¢Ya, wa, ha) and B = (cxy, cyp, wy, hy),
where cx, cy, w, h are the coordinates, width, and height of the bounding box, respectively.
NWD(N,, N;) is the Gaussian Wasserstein Distance after normalization in exponential form.
The NWD metric can also be easily embedded into the assignment, non-maximum
suppression, and loss function of any anchor-based detector to replace the commonly
used IoU metric. Several studies have applied the NWD metric to the non-maximum
suppression and loss function, which achieves good performance of the model [31-33].
We aim to enhance the model’s ability to detect tiny targets by introducing the NWD metric
into the regression loss function of the original YOLOVS5, as shown in Formulas (9) and (10).

Loss = wy - LOSSObjectness +wy - LOSSClassificution + w3 - LOSSRegression )
LossRegression = &1+ CloU +ag - NWD (10)

where w is the weight of each loss, and CloU and NWD are composed of LossRegression With
different proportion factors «, respectively.

2.6.3. SAHI

The slicing method is very effective in the inference step and the SAHI proposed
by Akyon et al. aims to solve the problem of small target detection on high resolution
images while maintaining a higher memory utilization. First, the original image I is sliced
into I number of M x N overlapping patches P}, P, ..., Pl. Then, each patch is resized
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while preserving the aspect ratio. After that, object detection forward pass is applied
independently to each overlapping patch. Finally, the overlapping prediction results
and full inference results are merged back into the original size using NMS. During NMS,
bounding boxes having higher IoU ratios than a predefined matching threshold are retained
and the rest of bounding boxes are removed [34]. See Figure 5 for details.

postprocess

Figure 5. Slicing Aided Hyper Inference schematic.

3. Experimental Results and Comparative Analysis
3.1. Ablation Experiments

We did comprehensive experiments for each module on the test litchi dataset to
evaluate their effects on model performance, combining and analyzing the modules one
by one, and evaluated the effects of the number of repetitions of BiFPN blocks and the
assigned weight of NWD and CloU in the loss function on the regression model effects.
The results are shown in Table 2. The addition of NWD improved the AP of immature
litchi from 24.0% to 31.6%, while the addition of BiFPN and P2 feature layer enabled the
improved model to reach the highest value of AP for immature litchi at 47.8%, and the AP
of mature litchi detection improved from 77.3% to 80.4%. The AP of mature and immature
litchi reached high values of 86.4% and 58.8% after using SAHI, respectively. Since the FPS
of SAHI is affected by the number of slice counts, it is not shown in Table 2. In our tests,
when the number of slices is 2, the FPS is about 35.

Table 2. Ablation experiment results.

Model AP AP, AP, AP, ApMature pplmmature  Wajoht (MB) Params (M) FPS
YOLOV5 50.6 27.8 538 81.3 77.3 24.0 13.7 7.01 68.8
+NWD 485 226 640 742 65.5 31.6 13.7 7.01 68.2
+BiFPN 552 316 679 823 78.6 31.8 13.8 7.08 70.9
+NWD + BiFPN 63.6 358 795 864 80.1 47.1 13.8 7.08 70.4
+Fuse P2 + BiFPN 629 359 782 857 80.2 45.6 14.2 7.24 68.2
+Fuse P2 + NWD + BiFPN 641 362 798 88.0 80.4 47.8 14.2 7.24 71.4
+Fuse P2 + NWD + BiFPN + SAHI  72.6 57.3 80.1 86.0 86.4 58.8 14.2 7.24 —

We show the AP curves during training in Figure 6. The AP curve for most models
rises rapidly after 5 epochs and reaches convergence at 175 epochs. It is obvious from the fig-
ure that our results are better than the original YOLOV5, while the strategy of BiFPN and fus-
ing P2 feature layers is feasible; although adding NWD will reduce the model convergence
speed, it can improve the detection accuracy of the model without increasing the model
size, which is meaningful for detecting small target litchi. Specifically, at 50-175 epochs,
the AP curve of “YOLOVS + FuseP2 + NWD + BiFPN” has a slower convergence rate than
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that the curve of “YOLOV5 + FuseP2 + BiFPN” but the convergence rate is accelerated after
175 epochs. And, finally, the AP value of “YOLOVS5 + FuseP2 + NWD + BiFPN” is better
than that of “YOLOVS5 + FuseP2 + BiFPN”.

0.7 7
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< / YOLOVS + BiFPN
014 / —— YOLOVS + NWD + BiFPN
J YOLOVS + Fuse P2 + BiFPN
b5 4 —— YOLOVS + Fuse P2 + NWD + BiFPN
0 25 50 75 100 125 150 175 200 225 250 275

epoch

Figure 6. The AP of ablation experiments.

3.1.1. BiFPN

This paper compared the model performance of BiFPN when the number of repe-
titions in the model was 1, 2, and 3, respectively, to explore how many times the model
performance was best. The experimental results are shown in Table 3, where 1x indicates
the number of repetitions is 1 and so on.

Table 3. Effect of BiFPN repeated blocks on model weight and parameters.

Repeated Blocks AP AP, AP, AP, ApMature pplmmature Weight — Params

(MB) ™)
1x 641 362 79.8 88.0 80.4 47.8 14.2 7.24
2% 642 356 797 877 80.4 479 20.3 10.4
3% 58.7 347 741 81.0 80.3 37.1 26.3 13.5

The experimental results show that increasing the number of repetitions of BiFPN
blocks significantly increases the model size and the number of parameters, and the AP
of the model increases only 0.1% when the repetition blocks change from 1 to 2, but the
model size increases from 14.2 to 20.3, the number of parameters increases from 7.24 to 10.4,
and the model increases by 5.9 MB. When the repetition blocks are increased to 3, the AP
instead ushered in a decrease, from 64.2% to 58.7%. We speculate that the deepening of the
model leads to a decrease in its learning ability and there is also a decrease in the accuracy
of small targets, which indicates that the deepening of the model leads to a decrease in the
learning ability of certain shallow layer features as well. This leads us to conclude that,
when the number of repetitions is 2, there is limited improvement in the performance of the
model, but instead an additional increase in the model size and the number of parameters,
which is not necessary for application in orchard litchi fruit yield estimation. The model’s
performance decreases when the number of repetitions is 3. So the repetition number of 1
for BiFPN blocks is optimal.

Benefiting from the cross-scale fusion and weighted feature fusion of BiFPN, the net-
work can obtain more and more efficient feature information fusion to better cope with
the problem of difficult detection of small targets. As can be seen from Table 2, applying
BiFPN for feature fusion increases the AP from 50.6% to 55.2%, while the AP; increase from
27.8% to 31.6%, but the model size only increases by 0.1 MB and the number of parameters
increases by 0.07 M, while the inference speed is improved. Overall, we replace PANet
with BiFPN and set the number of repetitions to 1, which is very helpful for small-target
litchi detection.
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In order to verify the feature extraction ability of the improved model, we compared
the visualized feature maps before and after the model improvement, and the results are
shown in Figure 7. It can be found that the improved model extracts more prominent
features compared to the original YOLOv5 model, which enhances the recognition ability
of the network.

(A) | ®) ©)

Figure 7. Comparison of visualization feature maps. (A) Original image. (B) Feature map of the

YOLOv5 model. (C) Feature map of the proposed model.

3.1.2. P2 Feature Layer Fusion

The P2 layer features are fused on top of the BiFPN used, with the aim of retaining
more high-resolution information to make the feature map after BiFPN fusion retain more
localization information about the small target litchi. According to Figure 8, it can be seen
that the classification loss generally decreases the fastest at 0-25 epochs and approaches
convergence at 175-300 epochs. The model after the P2 feature layer fuse has a faster
decline when trained to about 125 epochs, while the model with the added P2 feature layer
fusion has lower classification loss and faster convergence than the model without the
fused P2 feature layer.

—— YOLOVS + BiFPN
YOLOvVS + NWD + BiFPN

—— YOLOVS + Fuse P2 + BiFPN
YOLOVS + Fuse P2 + NWD + BiFPN

0.025

0.020 4

0.015 4

classification loss

0.010

0.005

T T T T T T T T
0 25 50 B 100 125 150 175 200 225 250 275
epoch

Figure 8. Classification loss of P2 feature layer fusion.

These advantages also make it effective to incorporate the P2 feature layer into feature
fusion; as can be seen briefly in Table 2, the AP increases from 55.2% to 62.9% after fusing
the P2 feature layer, while the detection accuracy for small targets also improves, specifically
from 31.6% to 35.9%. These figures indicate that the localization information of the litchi
target is effectively transferred to the feature map, making the detection more efficient.

3.1.3. NWD

To explore the contribution of NWD and CloU to the regression loss function, we
explored the effect of these two metrics on small target detection by adjusting the ratio
between them and the results are shown in Table 4.
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Table 4. Comparative effect of CIoU and NWD ratio adjustment.
NWD CloU AP AP; APy, AP, ApMature g plmmature

0 1 629 359 78.2 85.7 80.2 45.6

1 0 63.8 35.8 78.7 87.4 80.4 47.1
0.5 0.5 63.9 37.1 77.6 87.1 80.8 46.9
0.8 0.2 62.8 36.7 78.5 85.3 81.3 443
0.2 0.8 64.1 36.2 79.8 88.0 80.4 47.8

In our experiments, we found that replacing NWD completely with CloU is effective
but not very helpful for small target litchi, and setting the proportion factor of each of
them to 0.5 is the most effective for improving the recognition accuracy of small targets,
but the recognition accuracy of medium and large targets is slightly reduced compared to
the model with NWD set to 1. The overall recognition accuracy of the model is improved
by setting the proportion factor of CloU to 0.2 and the proportion factor of NWD to 0.8,
compared to the model with the proportion factor of NWD set to 1. Although its AP; are
smaller than the combination of the proportion factor set to 0.5 and 0.5, we believe that the
recognition accuracy of medium and large targets is equally important for litchi fruit yield
estimation. Therefore, we believe that the combination of NWD and CloU with proportion
factors of 0.2 and 0.8, respectively, is optimal.

However, as can be seen from Table 2, the performance of NWD on the original
YOLOv5 model is not satisfactory and the AP is degraded. Nevertheless, when using
BiFPN for feature fusion, NWD shows good performance, probably because the BiFPN
cross-scale fusion and weighted feature fusion make the fused features more informative
and accurate, enabling NWD to work better. More specifically, the use of NWD increases the
AP from 55.2% to 63.6% and APs from 31.6% to 35.8%, while the model size and parameters
do not change. This is a good demonstration that NWD can have a positive effect on the
detection of small targets.

3.1.4. SAHI

From the above experimental results, it can be concluded that using SAHI as the
post-processing step of this model can significantly increase the detection accuracy of the
model for small litchi, as shown in Table 2. The AP increases by 8.5% after using SAHI
and the detection accuracy of small targets increases by 21.1%, but at the same time the
detection accuracy of large targets decreases by 2%. Since there is no need to obtain a larger
feature map, the use of SAHI can significantly reduce the memory requirements of the
network. Usually the number of slices and the overlap rate between slices are linearly
related to the computation time, and the number of slices and the overlap rate can be
flexibly adjusted dynamically according to the usage requirements to achieve real-time and
adaptable devices.

In order to investigate the reason for the decrease in large object recognition accu-
racy after using SAHI, we compared the prediction results before and after using SAHIL
As shown in Figure 9, the detection of small targets (orange area) can be effectively im-
proved after using SAHI, which is due to the slicing method of SAHI. But at the same
time, some medium and large targets are incorrectly detected (purple area) due to the
use of the slicing method, which is the reason for the decrease in the detection accuracy
of medium and large targets. Meanwhile, this paper observes that usually the areas of
small targets on the screen are often in the edge and corner regions of the image, so using
an appropriate slicing strategy can be a good solution to this problem and optimize the
inference speed of SAHI, which will be the next research direction. In addition, since the
SAHI slicing operation causes an increase in inference time, we suggest not using SAHI
for post-processing when orchard rough yield estimation is needed and employing SAHI
processing when accurate yield estimation data is needed, which will effectively improve
yield estimation efficiency.
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Before SAHI

Figure 9. The detection effect comparison before and after using SAHI. Orange region demonstrates
the improved detection of SAHI for small targets, and purple region demonstrates the misdetection
of SAHI for medium and large targets.

4. Comparative Discussion
4.1. Comparison with Other Object Detection Algorithms

The above study shows that our proposed model has a better detection effect than the
original YOLOVS. To further explore the advantages and disadvantages between the perfor-
mance of our proposed model and the current excellent object detection models, we trained
a variety of excellent object detection models, including DETR [35], Faster R-CNN [21],
RetinaNet [24], SSD [25], YOLOX [36], and FCOS [37], under the same experimental envi-
ronment and datasets. We divide the proposed models into two versions, which are called
YOLOVS5-TinyLitchi and YOLOv5-TinyLitchi with SAHI The results are shown in Table 5.

Table 5. Detection results of different object detection algorithms on litchi images.

Model AP AP, AP, AP ApMature g pImmature  Wejght (MB) Params (M)  FPS
YOLOV5 50.6 27.8 53.8 81.3 77.3 24.0 13.7 7.01 68.8
YOLOVS5-TinyLitchi ~ 64.1 36.2 79.8 88.0 80.4 47.8 14.2 7.24 71.4
YOLOV5-TinyLitchi

with SAHI 72.6 57.3 80.1 86.0 86.4 58.8 14.2 7.24 —
DETR 25.7 6.0 28.8 55.0 31.3 20.1 158 41.28 14.0
Faster R-CNN 53.5 18.7 69.1 83.6 64.9 42.0 159 41.13 10.5
RetinaNet 46.1 15.1 51.3 80.0 54.6 37.6 145 36.13 12.1
SSD 31.5 49 36.0 69.5 443 18.7 130 23.88 33.6
YOLOX 68.1 50.2 79.4 80.3 86.9 49.3 34.4 8.94 27.9
FCOS 36.2 10.3 43.4 63.6 55.7 16.6 123 31.84 12.3

The following can be concluded from Table 5. Firstly, YOLOv5-TinyLitchi with SAHI
is superior to other models in AP, AP;, AP, and AP;, with AP; reaching a high value
of 57.3%, indicating that the model can be usefully applied with orchard litchi yield
estimation for all three sizes of litchi with good detection effect. Although the AP of
YOLOvS5-TinyLitchi (64.1%) is lower than that of YOLOX (68.1%), the AP; (88.0%) is higher
than that of YOLOX (80.3%) and the AP of YOLOv5-TinyLitchi is still better than that of
Faster R-CNN. Furthermore, the AP of YOLOv5-TinyLitchi with SAHI (72.6%) is higher
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than that of YOLOX (68.1%), the FPS of YOLOv5-TinyLitchi is three times that of YOLOX,
and the model size is much smaller than that of YOLOX, which is more favorable to the real-
time requirements of orchard litchi object detection and is also friendly to the deployment
and implementation of the model.

4.2. Analysis of Model Detection Effects

In this study, a variety of detection situations are analyzed to explore the detection
performance of the model for litchi fruits in different states. From Figure 10A,B, it can
be seen that the improved model has good detection performance for both mature and
immature litchis of tiny targets.

Figure 10. Examples of various detections in the dataset. (A,B) Correct detection results.
(C-H) Missed and misdirected detections affected by factors such as the environment and illu-
mination. (IJ) Detection effect in occlusion and blurring situations. The red box denotes that the
detection is for mature litchi and the green box denotes that the detection is for immature litchi.

However, with the analysis of more detection data, we also found the following
problems. The litchi in the early stage of rapid growth of the pericarp tends to be smaller
and the color is similar to the background color, even if the human eye also depends
on the contour information to distinguish them, which leads to the model being able
to only learn the color features to identify the leaves as immature litchi, resulting in a
false detection, as shown in Figure 10C. In addition, in the late stage of rapid growth of
the pericarp, the litchi profile is similar to the mature litchi profile, which, in the case of
inadequate learning of color features, is often considered by the model as mature litchi,
resulting in wrong detection, as shown in Figure 10D. At the same time, the combination of
low resolution and being too small itself makes it difficult to detect such immature litchi,
as shown in Figure 10E.

As litchi tend to grow in clusters, the inner litchi will be obscured by the outer litchi,
and the model has limited ability to detect litchi with large obscured areas, especially
for two litchis overlapping together when it is difficult to distinguish them, which will
always have an impact on accurate yield estimation, as in Figure 10F. Due to the effect of
daytime lighting, some litchi show overexposure in the image, resulting in inaccurate color
characteristics, which are not conducive to model detection, as in Figure 10G. In addition,
as some leaves turn reddish-brown, they can be easily detected as litchi with insufficient
resolution, as shown in Figure 10H. Despite this, our model still has certain detection ability
for occluded immature fruits, as in Figure 10I. Meanwhile, owing to the enhanced feature
extraction network, the present model still has certain robustness to fuzzy fruits, as shown
in Figure 10]. Finally, due to this experiment, while applying UAV remote sensing images
for target detection, limited by the lack of pixels of the UAV camera, there are requirements
for flight altitude. Usually the litchi is growing horizontally, and the canopy is usually large
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and dense. When encountering a tree crown that is too large, the UAV can not collect the
complete crown image all at once, making this model less practical in this situation.

Although the present model makes it difficult to detect litchi targets with missing
pixel information, it still has better performance for small target litchi that possess better
pixel information retention.

4.3. Test Results on Datasets

Compared with the original YOLOv5 model, our proposed model has a significant
advantage for small targets, see the purple region in Figure 11. In addition, for occluded
objects, our proposed model has better recognition ability, see the orange region in Figure 11.

@) ‘ (®B)

Figure 11. Comparison of the effects of the proposed model and the original model. Purple region

shows the detection for the small target litchi and orange region shows the detection for the occluded
litchi. (A) Original YOLOv5 model. (B) Proposal model.

We selected six pictures from three different photographic perspectives, namely: front
view perspective (Figure 12(A1,A2)), top view perspective (Figure 12(B1,B2)), and other
perspective (Figure 12(C1,C2)) to detect litchi fruits, and then compared with the results of
manual counting to calculate the correct detection rate and error detection rate. The results
are shown in the Table 6.

According to Table 6, although the correct detection rate in Figure 12(A1,C1) is lower
than 90%, this is caused by the missed detection due to the limited number of pixel points
presented on the image due to the partial distance of the litchi in the blue area of the figure.
The low correct detection rate in Figure 12(B2) is caused by the distance from the target
when the image is captured, while in Figure 12(B1) the correct detection rate reaches 93.4%
because the sampling distance is appropriate, so the sampling distance should be strictly
controlled when the image is captured, especially in the dense litchi image collection; even
if the number of litchi on the image is close to 300, the model can still have good accuracy.

It can be seen that the model can be applied to the actual yield estimation application
of the orchard, in which the actual production can sample the front view, side view, back
view, and top view of the fruit tree to establish a regression model, and then can get the
estimation data, which will also be the subsequent research direction of this study.

Table 6. The test results on three different photographic perspectives.

Figure Dtected Real False Omission False Detection Rate Correct Detection Rate

Al 148 155 9 16 6.1% 89.7%
A2 143 139 5 1 3.5% 99.3%
Bl 292 286 25 19 8.6% 93.4%
B2 206 219 16 29 7.8% 86.8%
C1 173 199 11 37 6.4% 81.4%

Cc2 170 153 28 11 16.5% 92.8%
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Figure 12. The detection effect on three different photographic perspectives. (A1,A2) Front view
perspective of litchi tree. (B1,B2) Top view perspective of litchi tree. (C1,C2) Other perspective of
litchi tree. Blue region demonstrates the excellent detection ability of the proposed model for small
target litchi.

5. Conclusions

This paper proposes a litchi small target detection method based on an improved
YOLOVS5 model, using the litchi dataset obtained from large scenes and combining NWD,
BiFPN, and SAHI with YOLOV5, leading to the development of the YOLOvV5-TinyLitchi
model. This model improves the AP from 50.6% to 72.6%, while the model size only
increases by 0.23 MB. It can still be applied under a variety of shooting perspectives with
good robustness. Meanwhile the FPS reached 71.4. This will make it possible for UAVs
to estimate litchi yields in orchard scenarios real time, and can provide data support
for growers to make quick pricing decisions and decide on harvest time. Moreover, it
can provide guidance for early crop water and fertilizer management. There are certain
problems in our model; due to the need for small target litchi detection, our APs only
reached 57.3%. This will have an impact on the yield estimation of small target litchi.
Therefore, future research can continue to optimize our model, developing a more robust
and accurate yield estimation, thereby producing greater application value for the litchi
industry. Nonetheless, the model proposed in this paper remains highly practical and can
provide valuable technical support to fruit farmers for yield estimation and guidance for
litchi harvesting.

In addition, this model can be deployed in smartphone terminals to provide yield
estimation services to individual growers. Alternatively, it can be deployed in the cloud to
provide a smart orchard management scheme for large-scale planters.
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