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Abstract: Classification of remotely sensed imagery for reliable land use and land cover (LULC)
remains a challenge in areas where spectrally similar LULC features occur. For example, bare soils
of harvested crop fields in agricultural watersheds exhibit spectral characteristics similar to high-
intensity developed regions and impede an accurate classification. The goal of this study is to improve
the accuracy of LULC classification of satellite imagery for the Big Sunflower River Watershed,
Mississippi using ancillary data, multiple classification methods, and a post-classification correction
(PCC). To determine the best approach, the methodology was applied to Landsat 8 Operational Land
Imager (OLI) imagery during the growing season and post-harvest. Imagery for the growing season
was acquired on 25 August 2015, and post-harvest was acquired on 7 January 2018. Three classification
methods were applied: maximum likelihood (ML), support vector machine (SVM), and random
forest (RF). LULC imagery was classified as open water, woody wetlands, harvested crop, rangeland,
cultivated crop, high-intensity developed, and mid-low intensity developed areas. Ancillary data
such as normalized difference vegetation index (NDVI), thematic maps of urban areas, river networks,
transportation networks, high-resolution National Agriculture Imagery Program (NAIP) imagery,
Google Earth time-series data, and phenology were used to determine the training dataset. Initially
none of the three classification methods performed adequately. Hence, a post-classification correction
(PCC) was implemented by masking and applying a majority filter using thematic maps of urban
areas. Once PCC was implemented, the accuracies from each of the classification methods increased
significantly with the SVM classification method performing best in both the growing season and
post-harvest with an overall classification accuracy of 93.5% with a Kappa statistic of 0.88 in the
post-harvest imagery and an overall classification accuracy of 84% with a Kappa statistic of 0.789
in the imagery from the growing season. It was found that SVM was the best classification method
while PCC is an effective strategy to implement when dealing with spectrally similar LULC features.
The use of SVM together with PCC increased the reliability of the information extracted. Strategies
from this study can help to evaluate the LULC in agricultural and other watersheds.

Keywords: land use and land cover; classification; agricultural watershed; maximum likelihood;
support vector machine; random forest

1. Introduction

Land cover mapping and assessment is a core area of remote sensing data applica-
tion [1]. Land cover is an underlying variable that impacts and links numerous components
of the human and physical environments [2]. Land use and land cover (LULC) maps
provide base information for decision-making in watershed management applications if
the maps are reliable and updated [3]. Furthermore, LULC change is an important mea-
sure that is used to evaluate the effect of applied watershed management measures and
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is regarded as one of the most important variables of global change affecting ecological
systems [1,3]. However, land cover change estimates from remotely sensed data are limited
by numerous factors that impact the accuracy and success of classifications and hinder the
creation of a functional thematic map. Such factors include the complexity of the landscape
of a study area, inadequate resolution of the selected remotely sensed data, and difficulty
in finding the image processing and classification approach most suitable for a particular
study area [4].

To address this issue, ancillary data are integrated with remote sensing data to im-
prove the classification accuracy of land cover data [3–12]. The most common approach is
to incorporate ancillary data before the classification and as a result infuse the spatial or
nonspatial information that may be of value in the image classification process, including
elevation, slope, aspect, geology, soils, phenology, hydrology, transportation networks,
political boundaries, and/or vegetation maps [13]. Sometimes post-classification cor-
rections are implemented utilizing ancillary data to improve accuracy. The majority
of imagery classifications are based on remotely sensed spectral responses and due to
the complexity of biophysical environments, spectral confusion is common among land
cover classes [4]. Some studies have turned to masking to deal with spectral confusion
and have had success [3,14]. Masking removes a spectrally similar class and then returns
that class after classification.

In addition to incorporating ancillary data, it is also important to determine the
appropriate classification technique/method for a given situation. Numerous classification
algorithms have been developed and a review of the methods and techniques can be
found in Lu and Weng [4]. In a broad sense, the classification methods can be broken
down into common or advanced. Classification methods, such as maximum likelihood
(ML), minimum distance, and K-means are considered common classification methods [1].
Advanced classification methods include artificial neural networks, support vector machine
(SVM), decision trees, and random forest (RF) [1]. The main objective of this study was
to explore the capabilities of pixel-based classification methods on Landsat 8 Operational
Land Imager (OLI) imagery from the three classification methods; maximum likelihood
(ML), support vector machine (SVM), and random forest (RF) as well as the benefits of
infusing ancillary data to create accurate LULC maps of the agriculture dominated Big
Sunflower River Watershed in Mississippi, United States.

2. Literature Review
2.1. Use of Remote Sensing in Agriculture

Remotely sensed data has been utilized in agricultural applications for decades [15–18].
In agricultural settings, using appropriate methodology is important for accurate land
cover classifications due to varying phenology. Each crop has specific planting and
harvesting times, varying leaf structures, and different biophysical and biochemical
variables. Additionally, soil moisture, soil organic matter content, and soil signatures
affect the remote sensing spectra. A review of remote sensing in agriculture can be
found in Mulla [19]. Applications of remote sensing in agriculture are typically based
on the measurement of reflected radiation from soil or plant material. Plant pigments
such as chlorophyll absorb radiation strongly in the visible spectrum, especially in blue
and red wavelengths, and the near-infrared is strongly reflected due to leaf density
and canopy structure [19,20]. The Normalized Difference Vegetation Index (NDVI)
uses pigment absorption features in the red (~660 nm) and reflectance in the near-
infrared (~860 nm) regions of the electromagnetic spectrum [21] to show vegetation
biomass. NDVI is capable of estimating the number of plant properties such as leaf
mass, chlorophyll (pigment) concentration, water content, and absorbed (or fraction)
photosynthetic radiation [21]. When examining reflectance data, it is important to
consider bare soils and their respective moisture and organic matter content. These soils
will vary in their specific spectral reflectance signatures [22]. Since both bare soil and
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crop canopy will be present in a remotely sensed image, the mixture of the two spectral
signatures often confounds the interpretation of reflectance data [19].

2.2. Classification Methods

Maximum likelihood (ML) is the most extensively used parametric classification
algorithm [13]. This is due to the robust abilities of ML as well as its availability in almost
every image-processing software [4]. ML is based on Bayes’ Theorem and assumes the
probability distributions of input classes to have a multivariate normal distribution.
Instead of minimum distance, ML selects the largest posterior probability [23]. ML classi-
fication within ESRI ArcMap uses a probability density function instead of a probability
distribution present in Bayes’ Theorem. This is conducted by examining the variances
and covariances of the training data as it assigns each cell to the appropriate class. Bayes’
Theorem is explained in detail in [24]. There are several drawbacks to the parametric
approach. The imagery of a study area can be complex and violate the assumption of a
normal spectral distribution [4]. This is evident in classes with significant within-class
variance such as global and continent-wide land cover mapping [12]. In addition, inte-
grating spectral with ancillary data is especially challenging with parametric classifiers
such as ML [4].

Non-parametric classifiers, such as support vector machine (SVM) and random
forest (RF), have grown in popularity for numerous reasons. Non-parametric classifiers
make no assumption of data distribution, nor do they require any statistical parameters
to separate classes. This makes it easier to incorporate non-spectral data into a clas-
sification procedure [4]. SVM is based on statistical learning theory with the goal of
determining the optimal separation of classes [25]. SVM has been recognized to give
higher classification accuracies than traditional methods such as ML [13]. Additionally,
SVM has the advantage of imagery with heterogeneous classes and limited training
sample availability [13,26]. Experiments have demonstrated SVM’s ability to interpret
hyperspectral data effectively in hyper-dimensional feature space and not require any
feature reduction procedures [27,28]. SVM capitalizes on the concept of margin maxi-
mization [26]. The margin is determined by the sum of distances to the hyperplane from
the closest points separating two classes [25]. The basic premise of margin maximization
is to determine the optimal separating hyperplane between two classes by maximizing
the margin between the classes’ closest training samples. These training samples on
the margin are termed support vectors and the line between the classes is known as the
optimal separating hyperplane. If it is not possible to determine a linear separator, SVM
can take it a step further and project the points into a higher-dimensional space using
kernel techniques and then find a linear separator [13]. Margin maximization and SVM
are explained in greater detail in statistical terms in Premalatha et al. [29], Gualtieri and
Cromp [30], as well as in Chang and Lin [31].

Decision tree is a classification procedure that uses a recursive strategy to partition
a dataset into smaller subsets by running the data through tests that are defined at each
branch in the tree [12,13]. A decision tree can be broken down into three parts: root, split,
and leaf. Furthermore, the root is formed from all the data where the tests begin [13]. The
split (also termed as branch or node) is the next stop. Here, decision rules are implemented
as a splitting test as the data is continually split into smaller groups. The split can be
defined as: ∑n

i aixi ≤ c for multivariate and xi > c for univariate decision trees, where xi
is the measurement vectors of the n selected features. The vector of linear discriminate
coefficients is represented as a and c are the decision thresholds [1]. The leaves refer to the
class label assigned [12].

A random forest classifier (RF) is a nonparametric machine learning algorithm utilizing
multiple decision trees [13]. Each decision tree is generated from different samples and
subsets of the training data. The dataset is classified a number of times based on a random
sub-selection of training pixels. This creates numerous decision trees. The final decision of
each pixel’s classification is the result of a majority vote for that pixel. To create variation
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among trees, training data is projected into a randomly chosen subspace before being fitted
to each tree. Additionally, to optimize the decision at each node, a randomized procedure
is introduced.

2.3. Land Use & Land Cover Classes (LULC)

An adapted version of the Anderson [32] classification scheme used for the National
Land Cover Database (NLCD) is considered the standard scheme for LULC classes for agri-
cultural watersheds [13]. The NLCD was created by a group of federal agencies, including
the United States Geological Survey, known as the Multi-Resolution Land Characteristics
(MRLC) consortium [13]. The NLCD is the conclusive Landsat-based, 30-m resolution,
land cover database for the United States [33,34]. Thus, the NLCD classification levels
were chosen to represent the LULC classes in this paper to maintain compatibility with the
majority of the literature.

2.4. Post Classification Correction (PCC)

The complexity of biophysical environments may lead to spectral confusion among
LULC classes and thus requires ancillary data to ‘clean up’ or improve classified maps [4].
Ancillary data used in image classification are any type of spatial or nonspatial information
that is potentially valuable in the image classification process. This includes transportation
networks, soils, hydrology, political boundaries, phenology, vegetation maps, geology,
slope, aspect etc. [13]. Studies have found that masking and then returning the class
after classification is especially beneficial in increasing thematic map accuracy [3,14]. This
removes spectrally similar classes. Masks are created in a number of ways. Thakkar et al. [3]
generated masks based on a 3 × 3 variance texture derived from NIR band. Additionally,
the NDWI index has been used to develop a water body mask [3]. Mesev [14] utilized
special census data to further classify urban areas.

2.5. Classification Accuracy Assessment

Classification accuracy presented as a confusion matrix provides a simple cross-
tabulation of a mapped class label against what was observed in the ground or refer-
ence data and provides the basis to describe classification accuracy and characterize
errors [2,35,36]. Overall accuracy is the percentage of cases correctly allocated [2]. The
accuracy of individual classes are examined through the confusion matrix from two
different viewpoints: the user’s and producer’s accuracy. This is achieved by relating
the total cases correctly allocated to the class to the total cases of that class. The user’s
and producer’s accuracy entirely depend on whether it is based upon the matrix’s row
or column marginals [2]. User’s accuracy corresponds to errors of omission or exclusion
and producer’s accuracy corresponds to errors of commission or inclusion. Cohen’s
Kappa coefficient is a standard measure used in accuracy assessment and resolves the
issue of chance agreement or the allocation of the correct class by chance [2]. Many
studies have recommended Cohen’s Kappa coefficient to be the standard measure of
classification accuracy [37–40]. Stehman [36] argues overall accuracy, user’s accuracy,
and producer’s accuracy are more applicable accuracy measures due to their direct
interpretation as probabilities distinguishing data quality of a specific map and thus
recommends all summary measures be used as each measure alone obscures potentially
important details.

This method of accuracy assessment comes with inherent assumptions and limitations.
Generally, it is implied that each pixel belongs solely to one of the classes in a defined set of
mutually exclusive classes [2]. It is argued that the Kappa coefficient is not always suitable
as a chance agreement is overestimated and results in an underestimation of classification
accuracy [2,41]. Each measure of accuracy assesses different components of accuracy and
thus different assumptions about the data [42]. Additionally, there is no widely acceptable
measure of accuracy but a variety of indices, each sensitive to different features. Thus, there
is no all-purpose measure of classification accuracy [2].
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Sampling design is very important as the confusion matrix cannot be properly inter-
preted otherwise. A basic sampling size, such as random sampling, is suitable only if the
sample size is large enough to guarantee all classes are adequately represented [2]. All
constraints in a particular study must be considered in the design process of an accuracy
assessment. The design should be practical so as to not diminish the credibility of the
derived accuracy statement [43].

3. Materials and Methods
3.1. Study Area

The Big Sunflower River watershed (BSRW) is part of the Yazoo Basin and is one of
the main tributaries of the Yazoo River in Mississippi. The Yazoo basin in northwestern
Mississippi comprises an area of around 19,684 km2 making it the largest in the Mis-
sissippi alluvial valley [44]. Interior drainage of this basin happens through complex
and sluggish streams that eventually connect to the Big Sunflower or Bogue Phalia
rivers, or Deer Creek, which flow into the Yazoo River and ultimately to the Mississippi
River [44]. The BSRW is located in the humid subtropical climate region, characterized
by temperate winters; long, hot summers; and rainfall that is fairly evenly distributed
throughout the year. The BSRW is known as a crop-dominated watershed encompassing
a substantial amount of Mississippi’s agricultural-heavy region, which is commonly
termed the Mississippi Delta (Figure 1). The BSRW is located within eleven Mississippi
delta counties (Bolivar, Coahoma, Humphreys, Issaquena, Leflore, Sharkey, Sunflower,
Tallahatchie, Warren, Washington, and Yazoo) with a total surface area of 7660 km2 [45].
Elevation ranges from nearly flat to undulating gentle slopes from around forty-nine to
two hundred feet above sea level [46]. BSRW is ideal for agriculture due to nutrient-rich
alluvial soils from years of deposition from seasonal flooding from the Mississippi River
and surrounding tributaries. The soils vary extensively in structure, texture, frequency,
and depth [46]. Agriculture has been a linchpin for the economy in this area with cotton,
soybean, rice, corn, and wheat as the major crops. Typical planting and harvesting
dates in the Mississippi Delta are listed in Table 1 [47]. Given the economic importance
and the impact land cover has on both human and physical environments, accurate
LULC maps with higher temporal resolution are required to provide base information
for watershed management applications. Being an agricultural watershed, LULC in
BSRW is dynamic seasonally as well as having non-seasonal temporal variations. The
US Dept. of Agriculture (USDA) currently only provides one cropland data layer (CDL)
map annually and the US Geological Survey (USGS) provides a national landcover
database (NLCD) map every ~five years for the continental United States. This tempo-
ral resolution is insufficient for watershed modeling or management applications since
LULC change is often more aggressive. While CDL and NLCD products are applica-
ble at national scale analyses, at local-scale studies, as in this work, it is important to
derive detailed classifications for improving the accuracies. This study is an effort to
improve upon the annually available USDA LULC compilations by using Landsat 8
Operational Land Imager (OLI) data to create a database of LULC for BSRW with higher
temporal resolution.
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Table 1. Usual Planting and Harvesting Dates [47].

USDA: 2010 Usual Planting Dates Usual Harvesting Dates

Crops Begin Most Active End Begin Most Active End
Barley n/a n/a n/a n/a n/a n/a
Corn 17 Mar 24 March–27 April 4 May 11 August 23 August–23 September 7 October

Cotton 20 April 27 April–19 May 29 May 15 September 27 September–29 October 12 November
Potatoes, Sweet 4 May 7 June–23 June 7 July 20 August 2 September–28 October 7 November

Hay, other n/a n/a n/a 10 April n/a 26 September
Oats n/a n/a n/a n/a n/a n/a

Peanuts 25 April 6 May–31 May 15 June 20 September 29 September–31 October 10 November
Rice 6 April 18 April–16 May 24 May 29 August 5 September–6 October 20 October
Rye n/a n/a n/a n/a n/a n/a

Sorghum 8 April 14 April–21 May 3 June 19 August 29 August–27 September 2 October
Soybeans 19 April 26 April–31 May 17 June 10 September 13 September–31 October 9 November

Sugarbeets n/a n/a n/a n/a n/a n/a
Tobacco n/a n/a n/a n/a n/a n/a

Wheat (Winter) 24 September 10 October–18 November 30 November 28 May 2 June–21 June 1 July

3.2. Remote Sensing Data and Processing

Landsat 8 OLI C1 Level-2 imagery of 25 August 2015, during the growing season,
and the imagery of 7 January 2018, during post-harvest were downloaded through USGS
Earth Explorer. Bands 1–7 were layer-stacked, and data processing was carried out using
QGIS 2.18 and ArcMap 10.4 prior to analysis. Once imagery was mosaicked the study
area was subset from the rest of the image. A normalized vegetation index (NDVI) was
generated from the original data for analysis. This provided a measure of the absence or
presence of vegetation and is useful for assessing the health of vegetation with higher
NDVI values indicating healthy vegetation and lower NDVI values showing stressed
vegetation [1]. A flowchart showing the remote sensing data used, processing, and
methodology for this study is detailed in Figure 2. First, satellite data was selected
based on percent cloud cover, image quality, radiometric, and geometric correction to
obtain the best possible image quality. Second, to determine the number of predictors
(i.e., band combinations), class separability and band separability were determined in
Erdas Imagine using transformed divergence statistics from the selected training data.
Next, each scheme, ML, RF, and SVM, was implemented and RF was optimized by
modifying tree depth on the order of 10 increments (e.g., 40, 50, 60, etc.) and the number
of trees by factors of 100 (e.g., 100, 200, 300, etc.) until performance leveled off. An
accuracy assessment was performed using a stratified random sampling method. Next,
PCC was applied with prior training data for each scheme, ML, RF, and SVM. Lastly, a
final accuracy assessment was performed for all schemes with PCC implemented. The
same number of training data for classification and testing data for accuracy assessment
were used as reported in Tables 2–13.
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3.3. Ancillary Data

In this study, a city mask was generated using the National Agriculture Imagery
Program (NAIP) high-resolution aerial imagery, Landsat 8 OLI data, and geographic infor-
mation system (GIS) ancillary data including thematic maps of urban areas, transportation
networks, and shapefiles of developed areas. NAIP imagery was acquired through the
United States Department of Agriculture (USDA) Natural Resources Conservation Service
(NRCS) Geospatial Data Gateway [48]. NAIP acquires aerial imagery during the agri-
cultural growing seasons in the U.S. providing high-resolution data for the study [48].
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Shapefiles of developed areas were obtained from the Mississippi Automated Resource
Information System (MARIS). Other ancillary data used to determine the training dataset
included the Normalized Difference Vegetation Index (NDVI), river networks, Google
Earth time-series data, and crop phenology.

3.4. Mask Generation

Shapefiles of all incorporated cities within the BSRW were downloaded from the
Mississippi Automated Resource Information System (MARIS). The incorporated cities
shapefile was last updated in 2010. Hence, each shapefile was edited to represent the
boundaries of high to low-intensity developed areas more accurately while also keeping
permeable surfaces outside of the shapefile. To accomplish this, NAIP imagery and the
Landsat 8 OLI imagery were used interchangeably to ensure an accurate edit of each
incorporated cities shapefile. The updated cities shapefile was then masked over the BSRW
shapefile (Figure 3), which created a second shapefile with developed areas within the
BSRW removed. Finally, this second shapefile was used together with the Landsat 8 OLI
imagery to mask all developed areas contained within the imagery.
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𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑖𝑥𝑒𝑙𝑠  ×  100 (3)
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3.5. LULC Classification and Post-Classification Correction

Accuracy assessment was carried out for each classification method before and after
PCC. Each classified thematic map’s accuracy was assessed using an accuracy assessment
workflow. Five-hundred assessment points were generated using a stratified random
sampling strategy for each classified thematic map. Stratified random sampling distributes
points proportional in number to the class area of each class. Each point was examined
using the original satellite imagery, NAIP imagery, NDVI image, and Google Earth time
series data to determine its actual class or ground truth. The classified points and ground
truth data were then compiled into a confusion matrix. This matrix compared the user’s
accuracy (Equation (1)) versus the producer’s accuracy (Equation (2)) as well as with overall
accuracy (Equation (3)). The user’s accuracy was calculated to determine how frequently
the class assigned will be present on the ground. To know how often real features on the
ground are correctly shown on the classified map, the producer’s accuracy was calculated.
To determine the inter-rater reliability between classes, the Kappa statistic was computed.
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User′s Accuracy =
Number o f Correctly Classi f ied Pixels in each Category

Total Number o f Classi f ied Pixels in that category (Row total)
× 100 (1)

Producer′s Accuracy =
Number o f Correctly Classi f ied Pixels in each Category

Total Number o f Re f erence Pixels in that Category (Column Total)
× 100 (2)

Overall Accuracy =
Total Number o f Correctly Classi f ied Pixels (diagonal)

Total Number o f Re f erence Pixels
× 100 (3)

4. Results
4.1. Growing Season

The growing season presented a substantial amount of varying vegetation types due
to the large variety of crops present. Utilizing transformed divergence statistics, it was
determined that seven bands were necessary to effectively separate each class. In terms
of user accuracy, all three schemes struggled with the same three classes, rangeland, high-
intensity developed, and medium-low intensity developed before PCC. These classes can
be hard to separate due to their similar spectral signatures calculated using each respective
class samples (Figure 4). Looking at the producer’s accuracy, inaccuracies varied more
between classes, but all struggled with rangeland and cultivated crop classes. This can be
attributed to the low classification accuracy of classes such as rangeland and urban classes
causing exclusion for other classes.
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4.1.1. Classification of the Growing Season Imagery before Post-Classification Correction

ML scheme was the least successful prior to PCC and had an overall accuracy of 61%
(Table 2). RF (Table 3) and SVM (Table 4) both performed better than ML prior to PCC with
overall accuracies of 72% and 68%, respectively. Figure 5A displays the original Landsat
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8 OLI imagery. Figure 5B–D represent the classified imagery for the same area with each
applied scheme, ML, SVM, and RF, respectively, before the application of PCC.

(A)

(C)

(B)

(D)

Figure 5. Growing season (25 August 2015) before PCC; (A) Landsat 8 OLI imagery, (B) support
vector machine classification, (C) maximum likelihood classification, (D) random forest classification.

ML accuracy assessment resulted in a Kappa statistic of 0.515 (Table 2). ML had
trouble differentiating between cultivated crops and rangeland and thus caused lower
accuracy. Some of this inaccuracy was also due to the woody wetlands class present
typically on the boundaries of forests or in less dense tree cover areas. Another issue
came from the two urban classes, high intensity developed and medium-low intensity
developed. The bare soils in harvested fields affected both. This is attributed to the
high reflectance values in components of the soils similar to that of developed areas
(Figure 4). Due to the presence of vegetation in the medium-low intensity developed
class, there was a mixing of classes with rangeland, harvested crops, and cultivated
crops. ML did well with open water, woody wetlands, harvested crops, and cultivated
crops in terms of user accuracy. However, due to the inaccuracies for the other classes
(i.e., rangeland, high intensity developed, mid-low intensity developed), the producer’s
accuracy indicated the classes had significant exclusion.

RF accuracy assessment shows an overall accuracy of 72% and a Kappa statistic of
0.66 (Table 3). Optimizing to a tree depth of 50 and a total number of 200 trees produced
the best results for RF before PCC. Before optimization, the overall accuracy was 62%
with a Kappa statistic of 0.53. RF scheme had similar issues as ML and SVM. Of the three
schemes, RF was able to differentiate rangeland and cultivated crops most successfully as
indicated by the user’s accuracy. However, in terms of producer’s accuracy, RF excluded
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more than ML and SVM in the amount of the rangeland class. RF performed well, in terms
of user accuracy, in separating high-intensity developed. However, the low user accuracy
of mid-low intensity developed was posed as a problem. This low accuracy in the urban
class signifies exclusion in other classes since a large number of pixels were misclassified as
medium-low intensity or high intensity developed.

SVM had similar problems differentiating between rangeland and cultivated crop
classes. Out of 105 reference pixels for the rangeland class, 48 of them should have
been cultivated crops. This issue along with the medium-low intensity developed class
contributed to a low producer’s accuracy for the cultivated crop class. Similar to ML,
SVM could not separate the two urban classes from soils and vegetation. Areas of woody
wetlands were misclassified as rangeland, which affected the producer’s accuracy of the
woody wetlands class the most. Similarly, areas of rangeland misclassified as medium-low
intensity developed affected the producer’s accuracy of the rangeland class. Throughout
the map, it is evident that parts of cultivated crop fields were misclassified as rangeland and
medium-low intensity developed. In terms of user accuracy, SVM did well with open water,
woody wetlands, harvested crops, and cultivated crops. However, the errors with other
classes caused some exclusion in those same classes, hence resulted in lower producer’s
accuracy. Accuracy assessment for the SVM classification showed an overall accuracy of
68% and a Kappa statistic of 0.595 (Table 4). Although none of the schemes produced
sufficient results before PCC, RF performed the best with an overall accuracy of 72% with a
Kappa of 0.66 (Table 3).

Table 2. Accuracy assessment values for growing season imagery using maximum likelihood classifi-
cation before post-classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop
High Int.
Dev

Mid-Low
Int. Dev Total User’s

Accuracy Kappa

Open Water 10 0 0 0 0 0 0 10 1 0
Woody Wetlands 0 55 0 0 0 0 0 55 1 0
Harvested Crop 0 0 90 0 0 0 0 90 1 0
Rangeland 0 19 1 37 74 0 1 132 0.28 0
Cultivated Crop 0 12 0 1 111 0 0 124 0.895 0
High Int.
Developed 2 0 3 1 0 3 1 10 0.3 0

Mid-Low Int.
Developed 0 4 29 29 20 0 4 86 0.047 0

Total 12 90 123 68 205 3 6 507 0 0
Producer’s
Accuracy 0.83 0.61 0.73 0.54 0.54 1 0.667 0 0.611 0

Kappa 0 0 0 0 0 0 0 0 0 0.515

Table 3. Accuracy assessment for growing season imagery using random forest classification before
post-classification correction. Number of trees = 200 and tree depth = 50.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop
High Int.
Dev

Mid-Low
Int. Dev Total User’s

Accuracy Kappa

Open Water 10 0 0 0 0 4 0 14 0.71 0
Woody Wetlands 0 13 0 5 2 0 0 20 0.65 0
Harvested Crop 0 0 22 0 0 0 3 25 0.88 0
Rangeland 0 0 0 10 1 0 4 15 0.67 0
Cultivated Crop 0 0 0 10 23 0 4 37 0.62 0
High Int.
Developed 0 0 0 0 0 6 0 6 1 0

Mid-Low Int.
Developed 0 0 0 0 0 0 0 0 0 0

Total 10 13 22 25 26 10 11 117 0 0
Producer’s
Accuracy 1 1 1 0.4 0.88 0.6 0 0 0.72 0

Kappa 0 0 0 0 0 0 0 0 0 0.66
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4.1.2. Classification of the Growing Season Imagery after Post-Classification Correction

Tables 5–7 show the accuracy assessments for the growing season using ML, SVM,
and RF after PCC. Figure 6A displays the original Landsat 8 OLI imagery and Figure 6B–D
represents the same portion of the map with each applied scheme, ML, SVM, and RF,
respectively, after the application of PCC.

(A)

(C)

(B)

(D)

Figure 6. Growing season (25 August 2015) after PCC; (A) Landsat 8 OLI imagery, (B) support vector
machine classification, (C) maximum likelihood classification, (D) random forest classification.

ML scheme produced an overall accuracy of 75% with a Kappa statistic of 0.67
(Table 5). The main misclassifications came from the rangeland class. The misclassi-
fication of woody wetlands into open water was a mixed pixel issue. A flooded field
next to a forest produced an NDVI value too high to be representative of water and
therefore represents the woody wetlands class. A similar issue arose with harvested
crops classified as open water. There was a small road between fishponds and thus was
mixed with both open water and harvested crop. However, NDVI values reveal the
pixel more so represented harvested crop. Woody wetlands were misclassified several
times into four other classes resulting in a producer’s accuracy of 63% with rangeland
being the dominant factor. This misclassification was caused by a number of factors.
For example, Landsat 8 resolution is thirty meters, and thus, any strip of forest between
fields or other land cover types may be misclassified. Furthermore, the density of trees
within a pixel can cause misclassification. The producer’s accuracy of the rangeland
class is satisfactory; however, the user’s accuracy was low. The most substantial problem
was cultivated crop pixels classified as rangeland. Typically, this occurred in crop fields
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with lower NDVI values or where soil signal was influencing the scheme’s decision-
making. Additionally, late August is the beginning of harvest for farmers. Thus, crops
were beginning to reach maturity and many experienced the end of their life cycle as
leaves began to turn brown and yellow. Moreover, land cover boundaries, particularly
bare soils, created mixed pixels causing the scheme to choose rangeland. This problem
contributed to cultivated crops having a low producer’s accuracy as portions of that land
cover class were excluded due to those pixels being classified as rangeland. The other
classes did well, regarding the user’s accuracy, and where there were inaccuracies in the
producer’s accuracy typically had to do with misclassifications with rangeland. Finally,
it appears that ML tends to “overcompensate” for a class. For example, a neighboring
pixel to a different land cover class may be added to that class even though the values
representative of that pixel not being correlated to that class.

Table 4. Accuracy assessment for growing season imagery using support vector machine classification
before post-classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop
High Int.
Dev

Mid-Low
Int. Dev Total User’s

Accuracy Kappa

Open Water 9 0 0 1 0 0 0 10 0.9 0
Woody Wetlands 1 63 0 2 1 0 0 67 0.94 0
Harvested Crop 0 0 100 1 0 0 1 102 0.98 0
Rangeland 0 27 3 26 48 0 1 105 0.248 0
Cultivated Crop 0 5 0 3 136 0 0 144 0.94 0
High Int.
Developed 2 0 2 0 0 5 1 10 0.5 0

Mid-Low Int.
Developed 0 3 21 23 17 0 9 73 0.12 0

Total 12 98 126 56 202 5 12 511 0 0
Producer’s
Accuracy 0.75 0.64 0.79 0.46 0.67 1 0.75 0 0.68 0

Kappa 0 0 0 0 0 0 0 0 0 0.595

Table 5. Accuracy assessment values for growing season imagery using maximum likelihood classifi-
cation after post-classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop Total User’s
Accuracy Kappa

Open Water 8 1 1 0 0 10 0.8 0
Woody Wetlands 0 56 0 0 0 56 1 0
Harvested Crop 0 0 106 1 0 107 0.99 0
Rangeland 0 27 9 88 79 203 0.434 0
Cultivated Crop 0 4 0 2 119 125 0.952 0

Total 8 88 116 91 198 501 0 0
Producer’s
Accuracy 1 0.636 0.913 0.967 0.60 0 0.753 0

Kappa 0 0 0 0 0 0 0 0.674

RF performed better than ML and improved with the implementation of PCC
(Table 6). Implementing a tree depth of 40 and a total number of 100 trees was found to
produce the best results for RF. The same issues bedeviling SVM and ML can explain
some components of misclassification in RF, but not all. RF scheme’s choices for pixel
class could not always be explained. Since RF works using a voting system of trees, this
may complicate decision-making in that too many rules are being used to determine a
class choice that is relatively small.
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Table 6. Accuracy assessment for growing season imagery using random forest classification after
post-classification correction. Number of trees = 100 and tree depth = 40.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop Total User’s
Accuracy Kappa

Open Water 9 0 0 0 0 9 1 0
Woody Wetlands 1 13 0 3 0 17 0.76 0
Harvested Crop 0 0 24 4 0 28 0.86 0
Rangeland 0 0 0 11 1 12 0.92 0
Cultivated Crop 0 0 0 15 27 42 0.64 0

Total 10 13 24 33 28 108 0 0
Producer’s
Accuracy 0.9 1 1 0.33 0.96 0 0.78 0

Kappa 0 0 0 0 0 0 0 0.72

Table 7. Accuracy assessment for growing season imagery using support vector machine with
post-classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop Total User’s
Accuracy Kappa

Open Water 10 0 0 0 0 10 1 0
Woody Wetlands 0 64 0 0 4 68 0.94 0
Harvested Crop 1 0 114 5 1 121 0.94 0
Rangeland 0 24 3 78 33 138 0.565 0
Cultivated Crop 0 5 1 2 158 166 0.95 0

Total 11 93 118 85 196 503 0 0
Producer’s
Accuracy 0.909 0.688 0.966 0.917 0.806 0 0.84 0

Kappa 0 0 0 0 0 0 0 0.789

SVM scheme produced an overall accuracy of 84% and Kappa statistic of 0.789 and
had similar issues as ML, however, SVM did a considerably better job handling those
issues (Table 7). For instance, the user’s accuracy for the rangeland class increased and
did not affect the producer’s accuracy of cultivated crops as poorly as ML. Nonetheless,
SVM had similar issues regarding the producer’s accuracy of woody wetlands and the
rangeland class was culpable. After examining the imagery, it was observed that the spatial
resolution of Landsat 8 imagery, tree density, and mixed pixels from land cover class
boundaries caused most of the errors. Overall, SVM did well with all classes excluding
the user’s accuracy of rangeland and the producer’s accuracy of woody wetlands. SVM
performed well in terms of separating classes, especially alongside differing land cover
class boundaries.

In conclusion, results dramatically improved with the use of PCC with regard to
majority filter and masking urban areas. SVM returned the most ideal results and had
an overall accuracy of 84% and a Kappa statistic of 0.789. ML and RF did not perform
as well, and all schemes had issues with the rangeland class in regards to user accuracy.
Additionally, the woody wetlands class was misclassified as rangeland frequently with all
schemes. However, a number of misclassifications can be attributed to mixed land cover
types in a given pixel or boundary areas between classes.

4.2. Post-Harvest

In the post-harvest imagery, vegetation types and area of cover dropped substantially
due to harvested crops and winter weather resulting in better results overall for ML
(Table 8), RF (Table 9), and SVM (Table 10) schemes. However, rangeland, high-intensity
developed, and mid-low-intensity developed classes still created substantial inaccuracy.
Also, to examine class separability, spectral signatures were plotted using each respective
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class samples (Figure 7) acquired from the post-harvest imagery. Transformed divergence
determined seven bands were necessary and effectively separated each class.
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4.2.1. Classification of the Post-Harvest Imagery before Post-Classification Correction

Tables 8–10 exhibit the accuracy assessments for the post-harvest imagery using ML,
RF, and SVM, respectively, before PCC. Figure 8 displays the original Landsat 8 post-harvest
imagery. Figure 8B–D represents the same portion of the imagery with each applied scheme,
ML, SVM, and RF, before the application of PCC. All had trouble differentiating between
rangeland and cultivated crop land cover classes. Another issue was the misclassification
of land cover types as high-intensity developed and mid-low intensity developed.

ML accuracy assessment yielded the best results before PCC over the post-harvest
imagery among all the classifications implemented (Table 8). ML produced an overall
accuracy of 77% with a Kappa statistic of 0.66. ML scheme had considerable trouble with
the urban land cover classes; high intensity developed and mid-low intensity developed.
This in turn affected other classes’ producer’s accuracy. The post-harvest imagery has
significantly more bare soils than the growing season imagery. A number of these soils
have reflectance values similar to that of developed areas and this caused misclassification.
The misclassification of open water and woody wetlands is due to the fact that either
developed class involves mixed pixels of woody wetlands and open water land covers.
The misclassification of woody wetlands with rangeland is attributed to tree density, land
cover boundaries, and other resolution-related issues. Throughout the classified imagery
harvested crop land cover was misclassified as mid-low intensity developed. This occurred
with the rangeland class as well. Since mid-low intensity developed is a class containing
vegetation and impervious surfaces this is somewhat expected. Other than issues related to
the developed classes, ML performed well.
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(B)
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Figure 8. Post-harvest (7 January 2018) before PCC; (A) Landsat 8 OLI imagery, (B) support vector
machine classification, (C) maximum likelihood classification, and (D) random forest classification.

Table 8. Accuracy assessment values for post-harvest imagery using maximum likelihood classifica-
tion before post-classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop
High Int.
Dev

Mid-Low
Int. Dev Total User’s

Accuracy Kappa

Open Water 11 0 0 1 0 0 0 12 0.92 0
Woody Wetlands 0 73 0 1 0 0 0 74 0.986 0
Harvested Crop 0 1 222 1 0 0 0 224 0.99 0
Rangeland 0 7 9 74 2 0 2 94 0.787 0
Cultivated Crop 0 0 0 2 8 0 0 10 0.8 0
High Int.
Developed 7 4 2 2 0 0 0 15 0 0

Mid-Low Int.
Developed 0 8 49 20 0 0 4 81 0.049 0

Total 18 93 282 101 10 0 6 510 0 0
Producer’s
Accuracy 0.61 0.785 0.787 0.73 0.8 0 0.667 0 0.768 0

Kappa 0 0 0 0 0 0 0 0 0 0.665

RF accuracy assessment shows an overall accuracy of 72.4% with a Kappa statistic
of 0.593 (Table 9). This portrays a drop in accuracy in almost all classes in terms of user’s
accuracy. RF misclassified several classes resulting in very poor producer accuracies. Upon
examination of rangeland pixels misclassified as woody wetlands, it is difficult to determine
RF’s reasoning. The pixels themselves are not mixed nor close to a land cover boundary.
However, there are errors present in the classification related to resolution issues causing
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mixed pixels. The urban classes, high intensity developed and mid-low intensity developed,
continued to be problematic. All classes had pixels misclassified as either urban class except
for cultivated crops.

SVM accuracy assessment resulted in 75% overall accuracy with a Kappa statistic of
0.641 (Table 10). SVM had complications with urban land cover classes as well. Using a
different scheme did not resolve the issue of misclassification of woody wetlands and open
water into high-intensity developed. A considerable amount of harvested cropland cover
and rangeland was misclassified as mid-low intensity developed as well. As mentioned
earlier, the increase in soil land cover and the similarity of signatures with developed areas
caused this misclassification problem. Additionally, the rangeland class had a significant
drop in terms of producer accuracy as compared to ML due to developed classes. Overall,
SVM results were not as sound as results with the ML scheme.

Table 9. Accuracy assessment for post-harvest imagery using random forest classification before
post-classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop
High Int.
Dev

Mid-Low
Int. Dev Total User’s

Accuracy Kappa

Open Water 14 0 2 0 0 0 0 16 0.875 0
Woody Wetlands 0 76 3 7 0 0 1 87 0.874 0
Harvested Crop 0 4 225 11 0 0 0 240 0.94 0
Rangeland 0 8 1 34 4 0 2 49 0.69 0
Cultivated Crop 0 0 0 1 9 0 0 10 0.9 0
High Int.
Developed 2 1 2 1 0 2 2 10 0.2 0

Mid-Low Int.
Developed 0 10 55 23 0 0 8 96 0.083 0

Total 16 99 288 77 13 2 13 508 0 0
Producer’s
Accuracy 0.875 0.767 0.78 0.44 0.69 1 0.62 0 0.72 0

Kappa 0 0 0 0 0 0 0 0 0 0.59

Table 10. Accuracy assessment for post-harvest imagery using support vector machine classification
before post-classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop
High Int.
Dev

Mid-Low
Int. Dev Total User’s

Accuracy Kappa

Open Water 15 0 0 0 0 0 0 15 1 0
Woody Wetlands 0 78 0 3 0 0 0 81 0.96 0
Harvested Crop 0 2 228 0 0 0 0 230 0.99 0
Rangeland 0 8 0 50 2 0 5 65 0.769 0
Cultivated Crop 0 0 0 3 7 0 0 10 0.7 0
High Int.
Developed 5 2 1 0 0 2 0 10 0.2 0

Mid-Low Int.
Developed 0 12 56 27 0 0 3 98 0.03 0

Total 20 102 285 83 9 2 8 509 0 0
Producer’s
Accuracy 0.75 0.76 0.8 0.6 0.778 1 0.375 0 0.75 0

Kappa 0 0 0 0 0 0 0 0 0 0.64

4.2.2. Classification of the Post-Harvest Imagery after Post-Classification Correction

Implementing PCC into the classification methodology produced significantly better
results for all classification schemes. Tables 11–13 exhibit the results for post-harvest using
ML, RF, and SVM, respectively, after PCC. Additionally, Figure 9 exhibits the ability of PCC
to clean up image classification for each scheme, ML, SVM, and RF, respectively.
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(B)
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Figure 9. Post-harvest (7 January 2018) after PCC; (A) Landsat 8 OLI imagery, (B) support vector
machine classification, (C) maximum likelihood classification, (D) random forest classification.

ML produced user accuracies above 90% for all classes except rangeland (Table 11).
The low user’s accuracy of rangeland caused portions of woody wetlands, harvested crops,
and cultivated crops to be misclassified resulting in a drop in producer’s accuracy for those
land cover classes. All but cultivated crop class contributed to lowering woody wetlands
producer’s accuracy. Now that the urban area’s signature has been masked rangeland class
is the only class with any significant impact on classification accuracy.

RF (Table 12) did not perform nearly as well as either SVM or ML. No class had a user’s
accuracy over 88% whereas SVM and ML produced user’s accuracies exceeding 90% for all
classes, excluding ML performance with rangeland. The producer’s accuracy of woody
wetlands decreased even more with RF and all classes affected woody wetlands class.
While SVM and ML only had issues with rangeland, RF had difficulties with cultivated
crops as well. As mentioned with RF classification during the growing season, RF’s pixel
class choice cannot always be explained or understood. SVM (Table 13) handled the issue
with rangeland significantly better than ML and RF. However, the producer’s accuracy
of rangeland decreased as compared to ML. Also, woody wetlands were still excluded to
some degree due to rangeland and harvested crop class. This problem was typical along
the boundaries of classes where mixed pixels occurred. Overall, the increase in accuracy
with SVM is due to SVM’s efficiency in the class separation of pixels with mixed land cover
classes. All in all, SVM with PCC outperformed ML and RF with an overall accuracy of
93.5% with a Kappa statistic of 0.88. ML with PCC had an overall accuracy of 88.8% with a
Kappa statistic of 0.82. Finally, RF results had an overall accuracy of 84.6%, with a Kappa
statistic of 0.72.
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Table 11. Accuracy assessment for post-harvest imagery using maximum likelihood classification
after post-classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop Total User’s
Accuracy Kappa

Open Water 17 1 0 0 0 18 0.94 0
Woody Wetlands 0 77 0 1 0 78 0.98 0
Harvested Crop 2 4 251 3 0 260 0.96 0
Rangeland 0 13 31 97 2 143 0.67 0
Cultivated Crop 0 0 0 0 10 10 1 0

Total 19 95 282 101 12 509 0 0
Producer’s
Accuracy 0.89 0.81 0.89 0.96 0.83 0 0.888 0

Kappa 0 0 0 0 0 0 0 0.82

Table 12. Accuracy assessment for post-harvest imagery using random forest classification after
post-classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop Total User’s
Accuracy Kappa

Open Water 17 1 1 1 0 20 0.85 0
Woody Wetlands 0 81 2 10 0 93 0.87 0
Harvested Crop 1 12 281 26 0 320 0.87 0
Rangeland 0 5 14 45 0 64 0.70 0
Cultivated Crop 0 2 0 3 5 10 0.5 0

Total 18 101 298 85 5 507 0 0
Producer’s
Accuracy 0.94 0.80 0.94 0.53 1 0 0.846 0

Kappa 0 0 0 0 0 0 0 0.72

Table 13. Accuracy assessment for post-harvest imagery using support vector machine with post-
classification correction.

LULC Class Open
Water

Woody
Wetlands

Harvested
Crop Rangeland Cultivated

Crop Total User’s
Accuracy Kappa

Open Water 19 0 0 0 0 19 1 0
Woody Wetlands 0 80 0 3 0 83 0.96 0
Harvested Crop 3 11 292 12 0 318 0.91 0
Rangeland 0 2 0 75 1 78 0.96 0
Cultivated Crop 0 0 0 1 9 10 0.9 0

Total 22 93 292 91 10 508 0 0
Producer’s
Accuracy 0.86 0.86 1 0.82 0.9 0 0.935 0

Kappa 0 0 0 0 0 0 0 0.88

5. Discussion

SVM was found to be the most robust of the three schemes implemented with post-
classification correction. This finding reveals that traditional parametric classifiers are not
as suitable for agricultural settings due to the fact that the assumption of normal spectral
distribution is often violated [4]. Pal and Mather [49] reported similar results in their study
comparing SVM to ML and artificial neural networks.

No scheme implemented was able to effectively separate urban classes from bare
soils and the various vegetation classes. The BSRW presents a unique challenge due
to its soil structure. The BSRW soils vary widely in texture, structure, depth, and
frequency [46]. Additionally, water absorption in soil largely influences reflectance
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in near-infrared and shortwave infrared regions [19,21]. These factors cause spectral
confusion within the classifiers and result in no scheme effectively separating urban areas
from bare soils and the various vegetation classes. Herold et al. [50] and Mesev [14] found
bare soil surfaces to have spectral similarities to urban material types. Additionally, the
spatial resolution of remote sensing imagery poses a limitation making mixed pixels
common [4]. This has a direct effect on the mid-low intensity developed class separation
from vegetation classes.

The PCC method of masking is an effective method to implement and increases
classification accuracy significantly. Thakkar et al. [3] and Mesev [14] found similar results.
Thakkar et al. [3] applied three masks, forest, water body, and drainage network masks,
to produce sound results for the Arjuni watershed in Gujarat, India. Mesev [14] applied
census data in urban areas to create accurate areal estimations. PCC is a reliable method
to implement when dealing with the limitations of certain spatial resolutions and spectral
similarities between classes.

Confusion between natural vegetation, such as rangeland, and agriculture is a
difficult problem to solve and is a major source of error in remote sensing-based global
land cover maps [12]. Moreover, bare soil and crop canopies will often both be present in
a remotely sensed image and this mixture of two spectral signatures will often confound
the interpretation of reflectance data leading to possible misclassification [19]. In the
growing season imagery, a number of fields with crops have reached maturity and are
ready for harvest. Upon reaching maturity some crops, such as wheat, corn, milo, and
soybeans, turn yellow or brown and soybeans lose their leaves. This phenomenon allows
the soil signatures to affect the vegetation pixels. The spectral signatures of soils and
senescent crop residues are highly similar and traditional classification schemes have
not proven robust enough to successfully differentiate the two [51]. This research found
a number of fields that appeared to be bare soils if not for a faint NDVI signature or
spotting throughout the field of crops not fully mature. These fields were misclassified
as rangeland in some instances.

There are inherent limitations involved with classification accuracy assessments. Pixels
are assumed implicitly to belong fully to one of the defined sets of mutually exclusive
classes [2]. However, due to the complexity of biophysical environments and imagery
resolution, this assumption is not always met. Mixed pixels have been identified as the most
important cause of misclassification and a prime contributor to the underestimation of land
cover change [2,4]. In this research, mixing at class boundaries was a significant problem.
When dealing with measures of accuracy it has been argued that chance agreement is
overestimated in the calculation of the Kappa coefficient and results in an underestimation
of classification accuracy [2,41]. Sampling design also has major implications. This research
chose a stratified random method in which points are randomly distributed within each
class, where each class has a number of points proportional to its relative area. Thus, classes
larger in area within the map were assessed more so than smaller class areas. Within an
accuracy assessment, all errors are weighed equally. However, some errors are more critical
or damaging than others and, in many instances, errors observed are between relatively
similar classes [2].

The lack of ground truth data is an important limitation to be noted in this research.
NAIP imagery and ancillary data such as NDVI were used to bridge this gap. NAIP
imagery has a resolution of 0.6 m and was particularly helpful in determining land cover
and other various components. Agricultural areas are highly dynamic and constantly
changing in correspondence with crop growth and harvest. Thus, more Landsat 8 imagery
in between the growing season and harvest would enhance the knowledge of land cover as
well as what scheme and methodology is most suitable. Additionally, there are a plethora
of classification techniques and methods that could increase the accuracy of land cover
maps for an agricultural watershed.
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6. Conclusions

Although all classifiers have been proven to be robust in previous research, none could
perform satisfactorily to assure the desired classification accuracy for a heterogeneous
agricultural landscape. In the present study, it was possible to improve the accuracy of all
classifiers by incorporating PCC and other ancillary data. Additionally, the high-resolution
NAIP imagery and 3 × 3 majority filter further aided in reducing the misclassification.
The overall accuracy of 84.3% (for August 2015) and 93.5% (for January 2018) with SVM
demonstrate the integration of PCC and ancillary data for remote sensing imagery is an
effective method for improving classification accuracy.
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