Identification of Ecological Restoration Approaches and Effects Based on the OO-CCDC Algorithm in an Ecologically Fragile Region
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Preprocessing
3.1.1. Landsat Time Series Construction
3.1.2. Reference Sample Collection
Reference Sample of Ecological Restoration Approaches
Reference Sample of Ecological Restoration Detection
3.2. Classification of Ecological Restoration Approaches
3.2.1. Feature Extraction
3.2.2. Classification
3.3. Estimating Ecological Restoration Based on Object-Oriented Continuous Change Detection
3.3.1. Multiscale Segmentation
3.3.2. Object-Level Feature Sets Generation
3.3.3. Characterizing Vegetation Change Processes under Multiple Ecological Restoration Approaches
3.3.4. Accuracy Assessment
4. Results
4.1. Accuracy Assessment
4.2. Spatial Distribution of Multiple Ecological Restoration Approaches
4.3. The Ecological Restoration Effect for Multiple Ecological Restoration Approaches
5. Discussion
5.1. Efficient Framework for Assessing Effectiveness of Multiple Ecological Restoration Approaches
5.2. Comprehensive Evaluations of the OO-CCDC Algorithm
5.3. Spatiotemporal Patterns of Ecological Restoration Effects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Natural Forests | Planted Forests | Natural Grassland | Others | ||
---|---|---|---|---|---|
User accuracy (%) | 97.94 | 86.07 | 88.64 | 90.14 | Overall accuracy = 90.73% |
Producer accuracy (%) | 97.94 | 86.07 | 88.65 | 89.24 | Kappa = 88.47% |
SCAL | LV | ROC-LV |
---|---|---|
100 | 138.34 | 1.17 |
200 | 146.25 | 0.82 |
300 | 152.67 | 0.87 |
400 | 159.00 | 0.77 |
500 | 164.80 | 0.79 |
600 | 170.36 | 0.69 |
700 | 175.46 | 0.46 |
800 | 179.11 | 0.73 |
900 | 183.67 | 0.44 |
1000 | 188.19 | 0.48 |
Vegetation Indices | Equations | References |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | [27,28] | |
Enhanced Vegetation Index (EVI) | [41] | |
Normalized Difference Phenology Index (NDPI) | [29] |
Vegetation Indices | Equations |
---|---|
Contrast (CON) | |
Entropy (ENT) | |
Correlation (COR) | |
Variance (VAR) | |
Angular second moment (ASM) | |
Sum average (SAVG) | |
Dissimilarity (DIS) |
References
- Clarkson, B.D.; Kirby, C.L. Ecological Restoration in Urban Environments in New Zealand. Ecol. Manag. Restor. 2016, 17, 180–190. [Google Scholar] [CrossRef]
- Fu, B. Several Key Points in Territorial Ecological Restoration. Bull. Chin. Acad. Sci. 2021, 36, 64–69. [Google Scholar] [CrossRef]
- Hamunyela, E.; Verbesselt, J.; Herold, M. Using Spatial Context to Improve Early Detection of Deforestation from Landsat Time Series. Remote Sens. Environ. 2016, 172, 126–138. [Google Scholar] [CrossRef]
- Mugiraneza, T.; Nascetti, A.; Ban, Y. Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing. Remote Sens. 2020, 12, 2883. [Google Scholar] [CrossRef]
- Wortley, L.; Hero, J.-M.; Howes, M. Evaluating Ecological Restoration Success: A Review of the Literature. Restor. Ecol. 2013, 21, 537–543. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, P.; Huettmann, F.; Liu, S. Where Should China Practice Forestry in a Warming World? Glob. Change Biol. 2021, 28, 2461–2475. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration (NFGA). China Forestry and Grassland Statistical Yearbook; China Forestry Publishing Press: Beijing, China, 2019. [Google Scholar]
- Xiu, L.; Yao, X.; Chen, M.; Yan, C. Effect of Ecological Construction Engineering on Vegetation Restoration: A Case Study of the Loess Plateau. Remote Sens. 2021, 13, 1407. [Google Scholar] [CrossRef]
- Tang, Y.; Shao, Q.; Liu, J.; Zhang, H.; Yang, F.; Cao, W.; Wu, D.; Gong, G. Did Ecological Restoration Hit Its Mark? Monitoring and Assessing Ecological Changes in the Grain for Green Program Region Using Multi-Source Satellite Images. Remote Sens. 2019, 11, 358. [Google Scholar] [CrossRef] [Green Version]
- Klemas, V. Using Remote Sensing to Select and Monitor Wetland Restoration Sites: An Overview. J. Coast. Res. 2013, 289, 958–970. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M. A Machine Learning Approach for Mapping Chlorophyll Fluorescence at Inland Wetlands. Remote Sens. 2023, 15, 2392. [Google Scholar] [CrossRef]
- Sharma, R.C. Dominant Species-Physiognomy-Ecological (DSPE) System for the Classification of Plant Ecological Communities from Remote Sensing Images. Ecologies 2022, 3, 323–335. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Liang, H.; Zhang, B.; He, C. Vegetation Restoration Dominated the Variation of Water Use Efficiency in China. J. Hydrol. 2022, 612, 128257. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C. Continuous Monitoring of Land Disturbance Based on Landsat Time Series. Remote Sens. Environ. 2019, 238, 111116. [Google Scholar] [CrossRef]
- Gao, T.; Li, H.; Gong, M.; Zhang, M.; Qiao, W. Superpixel-Based Multiobjective Change Detection Based on Self-Adaptive Neighborhood-Based Binary Differential Evolution. Expert Syst. Appl. 2023, 212, 118811. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Hou, B.; Tian, L.; Yang, Q.; Zhu, L.; Meng, Y. Multi-Dimensional Evaluation of Ecosystem Health in China’s Loess Plateau Based on Function-Oriented Metrics and BFAST Algorithm. Remote Sens. 2023, 15, 383. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Liu, X.; Liu, Y.; Shi, M. NDVI-Based Analysis on the Influence of Climate Change and Human Activities on Vegetation Restoration in the Shaanxi-Gansu-Ningxia Region, Central China. Remote Sens. 2015, 7, 11163–11182. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Wei, C.; Guo, Y.; Tang, Z. A Planted Forest Mapping Method Based on Long-Term Change Trend Features Derived from Dense Landsat Time Series in an Ecological Restoration Region. Remote Sens. 2022, 14, 961. [Google Scholar] [CrossRef]
- Ji, Q.; Liang, W.; Fu, B.; Zhang, W.; Yan, J.; Lü, Y.; Yue, C.; Jin, Z.; Lan, Z.; Li, S.; et al. Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sens. 2021, 13, 1299. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Jin, Y.; Yang, Z.; Huang, W.; Zhao, L.; Gao, T.; Yu, H.; Ma, H.; Qin, Z.; et al. Monitoring and Analysis of Grassland Desertification Dynamics Using Landsat Images in Ningxia, China. Remote Sens. Environ. 2013, 138, 19–26. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous Monitoring of Forest Disturbance Using All Available Landsat Imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 Reflective Wavelength and Normalized Difference Vegetation Index Continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Monajati, M.; Kabir, E. A Modified Inexact Arithmetic Median Filter for Removing Salt-And-Pepper Noise from Gray-Level Images. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 750–754. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, C.; Liu, X.; Zhu, L.; Yang, Q.; Wang, Q.; Zhang, Q.; Meng, Y. Object-Based Change Detection for Vegetation Disturbance and Recovery Using Landsat Time Series. GI Sci. Remote Sens. 2022, 59, 1706–1721. [Google Scholar] [CrossRef]
- Sarker, S. Investigating Topologic and Geometric Properties of Synthetic and Natural River Networks under Changing Climate. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2021. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation; Type III, Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974. [Google Scholar]
- Tian, J.; Zhu, X.; Shen, Z.; Wu, J.; Xu, S.; Liang, Z.; Wang, J. Investigating the Urban-Induced Microclimate Effects on Winter Wheat Spring Phenology Using Sentinel-2 Time Series. Agric. For. Meteorol. 2020, 294, 108153. [Google Scholar] [CrossRef]
- Song, D.-X.; Huang, C.; Sexton, J.O.; Channan, S.; Feng, M.; Townshend, J.R. Use of Landsat and Corona Data for Mapping Forest Cover Change from the Mid-1960s to 2000s: Case Studies from the Eastern United States and Central Brazil. ISPRS J. Photogramm. Remote Sens. 2015, 103, 81–92. [Google Scholar] [CrossRef]
- Tuominen, S.; Pekkarinen, A. Performance of Different Spectral and Textural Aerial Photograph Features in Multi-Source Forest Inventory. Remote Sens. Environ. 2005, 94, 256–268. [Google Scholar] [CrossRef]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for Fully Polarized SAR Image Classification Using Polarimetric and Spatial Features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Ye, S.; Zhu, Z.; Cao, G. Object-Based Continuous Monitoring of Land Disturbances from Dense Landsat Time Series. Remote Sens. Environ. 2023, 287, 113462. [Google Scholar] [CrossRef]
- Ming, D.; Li, J.; Wang, J.; Zhang, M. Scale Parameter Selection by Spatial Statistics for GeOBIA: Using Mean-Shift Based Multi-Scale Segmentation as an Example. ISPRS J. Photogramm. Remote Sens. 2015, 106, 28–41. [Google Scholar] [CrossRef]
- Liu, J.; Du, M.; Mao, Z. Scale Computation on High Spatial Resolution Remotely Sensed Imagery Multi-Scale Segmentation. Int. J. Remote Sens. 2017, 38, 5186–5214. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, P.; Song, X.; She, J. Boundary-Constrained Multi-Scale Segmentation Method for Remote Sensing Images. ISPRS J. Photogramm. Remote Sens. 2013, 78, 15–25. [Google Scholar] [CrossRef]
- Gu, H.; Han, Y.; Yang, Y.; Li, H.; Liu, Z.; Soergel, U.; Blaschke, T.; Cui, S. An Efficient Parallel Multi-Scale Segmentation Method for Remote Sensing Imagery. Remote Sens. 2018, 10, 590. [Google Scholar] [CrossRef] [Green Version]
- Shang, R.; Zhang, J.; Jiao, L.; Li, Y.; Marturi, N.; Stolkin, R. Multi-Scale Adaptive Feature Fusion Network for Semantic Segmentation in Remote Sensing Images. Remote Sens. 2020, 12, 872. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Carlin, L. A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2587–2600. [Google Scholar] [CrossRef] [Green Version]
- Drăguţ, L.; Eisank, C.; Strasser, T. Local Variance for Multi-Scale Analysis in Geomorphometry. Geomorphology 2011, 130, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Tao, Z.; Xiang, Z. Extreme Drought-induced Trend Changes in MODIS EVI Time Series in Yunnan, China. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012070. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, N.-B.; Opp, C.; Hennig, T. Evaluation of Ecological Restoration through Vegetation Patterns in the Lower Tarim River, China with MODIS NDVI Data. Ecol. Inform. 2011, 6, 156–163. [Google Scholar] [CrossRef]
- Fan, M.; Liao, K.; Lu, D.; Li, D. Examining Vegetation Change and Associated Spatial Patterns in Wuyishan National Park at Different Protection Levels. Remote Sens. 2022, 14, 1712. [Google Scholar] [CrossRef]
- Congalton, R.; Green, K. A Practical Look at the Sources of Confusion in Error Matrix Generation. Photogramm. Eng. Remote Sens. 1993, 59, 641–644. [Google Scholar]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Xu, H.; Wei, Y.; Liu, C.; Li, X.; Fang, H. A Scheme for the Long-Term Monitoring of Impervious−Relevant Land Disturbances Using High Frequency Landsat Archives and the Google Earth Engine. Remote Sens. 2019, 11, 1891. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P. Ecological restoration and creation: A review. Biol. J. Linn. Soc. 1995, 56, 187–211. [Google Scholar] [CrossRef]
- Gao, Y.; Sarker, S.; Sarker, T.; Leta, O.T. Analyzing the Critical Locations in Response of Constructed and Planned Dams on the Mekong River Basin for Environmental Integrity. Environ. Res. Commun. 2022, 4, 101001. [Google Scholar] [CrossRef]
- Ke, S.; Qiao, D.; Yuan, W.; He, Y. Broadening the Scope of Forest Transition Inquiry: What Does China’s Experience Suggest? Forest Policy Econ. 2020, 118, 102240. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, B.; Stafford-Smith, M.; Wang, S.; Zhao, W. Improve Forest Restoration Initiatives to Meet Sustainable Development Goal 15. Nat. Ecol. Evol. 2020, 5, 10–13. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The Biodiversity and Ecosystem Service Contributions and Trade-offs of Forest Restoration Approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Zhai, L.; Cheng, S.; Sang, H.; Xie, W.; Gan, L.; Wang, T. Remote Sensing Evaluation of Ecological Restoration Engineering Effect: A Case Study of the Yongding River Watershed, China. Ecol. Eng. 2022, 182, 106724. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, R.; Liu, L.; Zhang, J. Ecological Effect of Ecological Engineering Projects on Low-Temperature Forest Cover in Great Khingan Mountain, China. Int. J. Environ. Res. Public Health 2021, 18, 10625. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Liu, S.; Lu, W.; Liu, M.; Feng, S.; Cong, P. Continuous Change Mapping to Understand Wetland Quantity and Quality Evolution and Driving Forces: A Case Study in the Liao River Estuary from 1986 to 2018. Remote Sens. 2021, 13, 4900. [Google Scholar] [CrossRef]
- Silver, M.; Tiwari, A.; Karnieli, A. Identifying Vegetation in Arid Regions Using Object-Based Image Analysis with RGB-Only Aerial Imagery. Remote Sens. 2019, 11, 2308. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, J.; Feng, L.; Zhang, X.; Hu, X. Adaptive Scale Selection for Multiscale Segmentation of Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3641–3651. [Google Scholar] [CrossRef]
- Fu, Z.; Sun, Y.; Fan, L.; Han, Y. Multiscale and Multifeature Segmentation of High-Spatial Resolution Remote Sensing Images Using Superpixels with Mutual Optimal Strategy. Remote Sens. 2018, 10, 1289. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, Z.; Tong, L.; Khalifa, M.; Wang, Q.; Gang, C.; Wang, Z.; Li, J.; Sun, Z. Assessing the Effects of Climate Variation and Human Activities on Grassland Degradation and Restoration across the Globe. Ecol. Indic. 2019, 106, 105504. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Zhou, L.; Liu, N.; Huang, S. Effect of Prohibiting Grazing Policy in Northern China: A Case Study of Yanchi County. Environ. Earth Sci. 2013, 72, 67–77. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wu, L.; Tang, Y.; Meng, Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sens. 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, C.; D’Antonio, P.; Toscano, F.; Donvito, A.; Modugno, F. New Technique for Monitoring High Nature Value Farmland (HNVF) in Basilicata. Sustainability 2023, 15, 8377. [Google Scholar] [CrossRef]
Ecological Restoration Approaches | Field Survey Data | Image Data | Total Number |
---|---|---|---|
Natural forest protection | 623 | 911 | 1534 |
Planted forests restoration | 687 | 641 | 1328 |
Natural grassland protection | 532 | 498 | 1030 |
Others | 446 | 2063 | 2509 |
Total number | 2288 | 4113 | 6401 |
Ecological Restoration Approaches | Changed Pixels | Unchanged Pixels | Total Number |
---|---|---|---|
Natural forest protection | 21 | 39 | 60 |
Planted forest | 112 | 103 | 215 |
Grassland protection | 117 | 108 | 225 |
Total Number | 250 | 250 | 500 |
Parameters | Description | Value |
---|---|---|
Number of Trees | The number of decision trees created | 100 |
Variables Per Split | The number of variables per split | null |
Min Leaf Population | The minimum size of a terminal node | 1 |
Bag Fraction | The fraction of input to bag per tree | 0.5 |
Out of Bag Mode | Whether the classifier should run in out-of-bag mode | false |
Seed | Random seed | 0 |
Segmentation Scale | Number of Objects | Description | Splitting Effect |
---|---|---|---|
300 | 270,962 | The image is too fragmented, the edge of the cultivated land is blurred, and the segmented object is too small | |
500 | 215,414 | The division is relatively complete, the details are well preserved, and each object is relatively independent from the others | |
800 | 175,420 | Partitioned objects are too large, and some objects are divided together |
Ecological Restoration Approaches | Trend | Effects |
---|---|---|
Natural forest protection | increasing | Positive |
stable | Positive | |
decreasing | Negative | |
Plant forest | increasing | Positive |
stable | Positive | |
decreasing | Negative | |
Natural grassland protection | increasing | Positive |
stable | Positive | |
decreasing | Negative |
Category | Real Category/Pixel | Total Number of Pixels | -- | User Accuracy/% |
---|---|---|---|---|
-- | Changed pixels | Unchanged pixels | Total number of pixels | -- |
Changed pixels | 233 | 17 | 250 | 93.2 |
Unchanged pixels | 115 | 135 | 250 | 54.0 |
Total number of pixels | 348 | 152 | 500 | -- |
Producer accuracy/% | 66.9 | 88.8 | -- | Overall accuracy = 74.5% |
Category | -- | Real Category/pc | -- | User Accuracy/% |
---|---|---|---|---|
-- | Changed pixels | Unchanged pixels | Total number of pixels | -- |
Changed pixels | 225 | 25 | 250 | 90.0 |
Unchanged pixels | 53 | 197 | 250 | 78.8 |
Total number of pixels | 278 | 222 | 500 | -- |
Producer accuracy/% | 80.9 | 88.7 | -- | Overall accuracy = 84.4% |
Category | -- | Real Category/pc | -- | User Accuracy/% |
---|---|---|---|---|
-- | Changed objects | Unchanged objects | Total number of objects | -- |
Changed objects | 89 | 11 | 100 | 89 |
Unchanged objects | 5 | 45 | 50 | 90 |
Total number of objects | 94 | 56 | 150 | -- |
Producer accuracy/% | 95 | 80 | -- | Overall accuracy = 89.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Xue, X.; Tian, L.; Yang, Q.; Hou, B.; Wang, W.; Ma, D.; Meng, Y.; Liu, X. Identification of Ecological Restoration Approaches and Effects Based on the OO-CCDC Algorithm in an Ecologically Fragile Region. Remote Sens. 2023, 15, 4023. https://doi.org/10.3390/rs15164023
Wei C, Xue X, Tian L, Yang Q, Hou B, Wang W, Ma D, Meng Y, Liu X. Identification of Ecological Restoration Approaches and Effects Based on the OO-CCDC Algorithm in an Ecologically Fragile Region. Remote Sensing. 2023; 15(16):4023. https://doi.org/10.3390/rs15164023
Chicago/Turabian StyleWei, Caiyong, Xiaojing Xue, Lingwen Tian, Qin Yang, Bowen Hou, Wenlong Wang, Dawei Ma, Yuanyuan Meng, and Xiangnan Liu. 2023. "Identification of Ecological Restoration Approaches and Effects Based on the OO-CCDC Algorithm in an Ecologically Fragile Region" Remote Sensing 15, no. 16: 4023. https://doi.org/10.3390/rs15164023
APA StyleWei, C., Xue, X., Tian, L., Yang, Q., Hou, B., Wang, W., Ma, D., Meng, Y., & Liu, X. (2023). Identification of Ecological Restoration Approaches and Effects Based on the OO-CCDC Algorithm in an Ecologically Fragile Region. Remote Sensing, 15(16), 4023. https://doi.org/10.3390/rs15164023