Introducing ICEDAP: An ‘Iterative Coastal Embayment Delineation and Analysis Process’ with Applications for the Management of Coastal Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Iterative Coastal Embayment Delineation and Analysis Process (ICEDAP)
2.1.1. Overview
2.1.2. Input
2.1.3. Buffer Application
Landmass Separation
Embayment Delineation
Buffer Adjustment
Coastal Surface Water Change
2.1.4. Output
2.2. ICEDAP Application and Case Study
2.2.1. Study Site
2.2.2. Breakpoint Analysis
2.2.3. Anthropogenic Alterations
2.2.4. Algorithm Accuracy and Validation
3. Results
3.1. Distribution and Size of South Korean Embayments
3.2. Surface Water Change
4. Discussion
4.1. Defining the Ocean–Coast Boundary
4.2. Environmental Response to Human Alterations
4.3. Other Applications
4.4. Tool Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, M.L.; Intralawan, A.; Vazquez, G.; Perez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Culliton, T.J.; Warren, M.A.; Goodspeed, T.R.; Remer, D.G.; Blackwell, C.M.; MacDonough, J.J. 50 years of Population Change along the Nation’s Coasts, 1960–2010; National Oceanic and Atmospheric Administration: Rockville, MD, USA, 1990; Volume 41. [Google Scholar]
- Gunderson, L.H.; Holling, C.S. Panarchy: Understanding Transformations in Human and Natural Systems; Island press: Washington, DC, USA, 2002. [Google Scholar]
- Thrush, S.F.; Halliday, J.; Hewitt, J.E.; Lohrer, A.M. The effects of habitat loss, fragmentation, and community homogenization on resilience in estuaries. Ecol. Appl. 2008, 18, 12–21. [Google Scholar] [CrossRef]
- Williams, J.; Dellapenna, T.; Lee, G. Shifts in depositional environments as a natural response to anthropogenic alterations: Nakdong Estuary, South Korea. Mar. Geol. 2013, 343, 47–61. [Google Scholar] [CrossRef]
- Barusseau, P.J.; Bă, M.; Descamps, C.; Salif Diop, E.; Diouf, B.; Kane, A.; Saos, J.L.; Soumaré, A. Morphological and sedimentological changes in the Senegal River estuary after the construction of the Diama dam. J. Afr. Earth Sci. 1998, 26, 317–326. [Google Scholar] [CrossRef]
- Tönis, I.E.; Stam, J.M.T.; van de Graaf, J. Morphological changes of the Haringvliet estuary after closure in 1970. Coast. Eng. 2002, 44, 191–203. [Google Scholar] [CrossRef]
- Crawford, G.W.; Lee, G.-A. Agricultural origins in the Korean Peninsula. Antiquity 2003, 77, 87. [Google Scholar] [CrossRef]
- Yoon, H.S.; Yoo, C.I.; Na, W.B.; Lee, I.C.; Ryu, C.R. Geomorphology evolution and mobility of sand barriers in the Nakdong estuary, South Korea. J. Coast. Res. 2007, 50, 358–363. [Google Scholar]
- Healy, M.G.; Hickey, K.R. Historic land reclamation in the intertidal wetlands of the Shannon estuary, western Ireland. J. Coast. Res. 2002, 36, 365–373. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean Coast Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Nichols, F.H.; Cloern, J.e.; Luoma, S.N.; Peterson, D.H. The modification of an estuary. Science 1986, 231, 567–573. [Google Scholar] [CrossRef]
- Pritchard, D.W. What Is an Estuary: Physical Viewpoint; American Association for the Advancement of Science: Washington, DC, USA, 1967. [Google Scholar]
- McGill, J.T. Map of coastal landforms of the world. Geogr. Rev. 1958, 48, 402–405. [Google Scholar] [CrossRef]
- Liquete, C.; Somma, F.; Maes, J. A clear delimitation of coastal waters facing the EU environmental legislation: From the Water Framework Directive to the Marine Strategy Framework Directive. Environ. Sci. Policy 2011, 14, 432–444. [Google Scholar] [CrossRef]
- Boudreau, P.R.; Butler, M.J.A.; LeBlanc, C. Coastalshed: A term to facilitate improved management in a large diverse area of the earth’s surface. Ocean Coast. Manag. 2013, 78, 64–69. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M.; et al. An overview of ecological status vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar]
- Sreeja, K.G.; Madhusoodhanan, C.G.; Eldho, T.I. Coastal zones in integrated river basin management in the West Coast of India: Delineation, boundary issues and implications. Ocean Coast. Manag. 2016, 119, 1–13. [Google Scholar]
- Brophy, L.S.; Greene, C.M.; Hare, V.C.; Holycross, B.; Lanier, A.; Heady, W.N.; O’Connor, K.; Imaki, H.; Haddad, T.; Dana, R. Insights into estuary habitat loss in the western United States using a new method for mapping maximum extent of tidal wetlands. PLoS ONE 2019, 14, e0218558. [Google Scholar]
- Aalto, R.; Lauer, J.W.; Dietrich, W.E. Spatial and temporal dynamics of sediment accumulation and exchange along Strickland River floodplains (Papua New Guinea) over decadal-to-centennial timescales. J. Geophys. Res. 2008, 113, F01S04. [Google Scholar]
- Pavelsky, T.M.; Smith, L.C. RivWidth: A software tool for the calculation of river widths from remotely sensed imagery. IEEE Geosci. Remote Sens. Lett. 2008, 5, 70–73. [Google Scholar] [CrossRef]
- O’Loughlin, F.; Trigg, M.A.; Schumann, G.J.P.; Bates, P.D. Hydraulic characterization of the middle reach of the Congo River. Water Resour. Res. 2013, 49, 5059–5070. [Google Scholar] [CrossRef]
- Legg, N.T.; Heimburg, C.; Collins, B.D.; Olson, P.L. The Channel Migration Toolbox: ArcGIS Tools for Measuring Stream; Department of Ecology State of Washington: Bellevue, WA, USA, 2014. [Google Scholar]
- Miller, Z.F.; Pavelsky, T.M.; Allen, G.H. Quantifying river form variations in the Mississippi Basin using remotely sensed imagery. Hydrol. Earth Syst. Sci. 2014, 18, 4883–4895. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; O’Loughlin, F.; Trigg, M.A.; Miller, Z.F.; Pavelsky, T.M.; Bates, P.D. Development of the global width database for large rivers. Water Resour. Res. 2014, 50, 3467–3480. [Google Scholar] [CrossRef]
- Rowland, J.C.; Shelef, E.; Pope, P.A.; Muss, J.; Gangodagamage, C.; Brumby, S.P.; Wilson, C.J. A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sens. Environ. 2016, 184, 212–228. [Google Scholar] [CrossRef]
- Isikdogan, F.; Bovik, A.; Passalacqua, P. RivaMap: An automated river analysis and mapping engine. Remote Sens. Environ. 2017, 202, 88–97. [Google Scholar] [CrossRef]
- Schwenk, J.; Khandelwal, A.; Fratkin, M.; Kumar, V.; Foufoula-Georgiou, E. High spatiotemporal resolution of river planform dynamics from Landsat: The RivMAP toolbox and results from the Ucayali River. Earth Space Sci. 2016, 4, 46–75. [Google Scholar] [CrossRef]
- Nienhuis, J.H.; Ashton, A.D.; Edmonds, D.A.; Hoitink, A.J.F.; Kettner, A.J.; Rowland, J.C.; Törnqvist, T.E. Global-scale human impact on delta morphology has led to net land area gain. Nature 2020, 577, 514–518. [Google Scholar] [CrossRef]
- Jung, N.W.; Lee, G.; Jung, Y.; Figueroa, S.M.; Lagamayo, K.D.; Jo, T.-C.; Chang, J. MorphEst: An automated toolbox for measuring estuarine planform geometry from remotely sensed imagery and its application to the South Korean coast. Remote Sens. 2021, 13, 330. [Google Scholar] [CrossRef]
- Murray, N.J.; Clemens, R.S.; Phinn, S.R.; Possingham, H.P.; Fuller, R.A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 2014, 12, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- NOAA Ocean Explorer. What is the “EEZ”? 2023. Available online: https://oceanexplorer.noaa.gov/facts/useez.html#:~:text=An%20%E2%80%9Cexclusive%20economic%20zone%2C%E2%80%9D,both%20living%20and%20nonliving%20resources (accessed on 1 March 2023).
- Perkal, J. An Attempt at Objective Generalization; Discussion Paper No. 10; Michigan Inter-University Community of Mathematical Geographers: Ann Arbor, MI, USA, 1966. [Google Scholar]
- Perkal, J. On the Length of Empirical Curves; Discussion Paper No. 10; Michigan Inter-University Community of Mathematical Geographers: Ann Arbor, MI, USA, 1966. [Google Scholar]
- Christensen, A.H. Cartographic line generalization with waterlines and medial-axes. Cartogr. Geogr. Inf. Sci. 1999, 26, 19–32. [Google Scholar] [CrossRef]
- Mitropoulos, V.; Xydia, A.; Nakos, B.; Bescoukis, V. The use of epsilonconvex area for attributing bends along a cartographic line. In Proceedings of the International Cartographic Conference, la Corona, Spain, 9–16 July 2005. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Sayre, R.; Noble, S.; Hamann, S.; Smith, R.; Wright, D.; Breyer, S.; Butler, K.; Van Graafeiland, K.; Frye, C.; Karagulle, D.; et al. A new 30 m resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units. J. Oper. Oceanogr. 2019, 12, S47–S56. [Google Scholar]
- Choi, I.C.; Shin, H.J.; Nguyen, T.; Tenhunen, J. Water policy reforms in South Korea: A historical review and ongoing challenges for sustainable water governance and management. Water 2017, 9, 717. [Google Scholar]
- Perillo, G.M. Definitions and geomorphologic classifications of estuaries. In Dev. Sedimentol. 1995, 53, 17–47. [Google Scholar]
- Evans, G.; Prego, R. Rias, estuaries and incised valleys: Is a ria an estuary? Mar. Geol. 2003, 196, 171–175. [Google Scholar] [CrossRef]
- Tozer, B.; Sandwell, D.T.; Smith, W.H.; Olson, C.; Beale, J.R.; Wessel, P. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci. 2019, 6, 1847–1864. [Google Scholar] [CrossRef]
- Koh, C.H.; Ryu, J.S.; Khim, J.S. The Saemangeum: History and controversy. J. Korean Soc. Mar. Environ. Energy 2010, 13, 327–334. [Google Scholar]
- Lee, K.-H.; Rho, B.-H.; Cho, H.-J.; Lee, C.-H. Estuary classification based on the characteristics of geomorphological features, natural habitat distributions and land uses. Sea 2011, 16, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.R. Modernization, development and underdevelopment: Reclamation of Korean tidal flats, 1950s–2000s. Ocean Coast. Manag. 2014, 102, 426–436. [Google Scholar]
- Koh, C.H.; Khim, J.S. The Korean tidal flat of the Yellow Sea: Physical setting, ecosystem and management. Ocean Coast. Manag. 2014, 102, 398–414. [Google Scholar]
- Du, J.; Park, K.; Dellapenna, T.M.; Clay, J.M. Dramatic hydrodynamic and sedimentary responses in Galveston Bay and adjacent inner shelf to Hurricane Harvey. Sci. Total Environ. 2019, 653, 554–564. [Google Scholar] [CrossRef]
- Wells, J.T.; Adams, C.E., Jr.; Park, Y.-A.; Frankenberg, E.W. Morphology, sedimentology and tidal channel processes on a high-tide-range mudflat, west coast of South Korea. Mar. Geol. 1990, 95, 111–130. [Google Scholar] [CrossRef]
- Shin, H.C.; Kohl, C.-H. Distribution and abundance of ophiuroids on the continental shelf and slope of the East Sea (southwestern Sea of Japan), Korea. Mar. Biol. 1993, 115, 393–399. [Google Scholar] [CrossRef]
- National Atlas of Korea, Ocean Currents. Available online: http://nationalatlas.ngii.go.kr/pages/page_1274.php (accessed on 5 December 2020).
- Lee, G.; Shin, H.-J.; Kim, Y.T.; Dellapenna, T.M.; Kim, K.J.; Williams, J.; Kim, S.-Y.; Figueroa, S.M. Field investigation of siltation at a tidal harbor: North Port of Incheon, Korea. Ocean Dyn. 2019, 69, 1101–1120. [Google Scholar]
- Williams, J.; Dellapenna, T.; Lee, G.; Louchouarn, P. Sedimentary impacts of anthropogenic alterations on the Yeongsan Estuary, South Korea. Mar. Geol. 2014, 357, 256–271. [Google Scholar]
- Zhusupbekov, A.A.; Shin, E.C.; Kim, J.I.; Das, B.M.; Zarenkov, V.A. Soil improvement methods of Incheon and Astana International Airports. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 12–16 September 2005. [Google Scholar] [CrossRef]
- Shin, E.C.; Shin, B.-W. Construction of Inchon International Airport. In Proceedings of the Proceedings: Fourth International Conference on Case Histories in Geotechnical Engineering, St. Louis, MI, USA, 9–12 March 1998; pp. 7–17. [Google Scholar]
- Ministry of Environment. A Study on the Preparation of Legal Systems for Systematic Management of Estuaries. 2007. Available online: https://library.me.go.kr/#/search/detail/5503755 (accessed on 1 March 2023).
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2016, 504, 53–60. [Google Scholar]
- Lee, S.; Lie, H.; Song, K.; Cho, C.; Lim, E. Tidal modification and its effect on sluice-gate outflow after completion of the Saemangeum dike, South Korea. J. Oceanogr. 2008, 64, 763–776. [Google Scholar] [CrossRef]
- Figueroa, S.M.; Lee, G.; Chang, J.; Jung, N.W. Impact of estuarine dams on the estuarine parameter space and sediment flux decomposition: Idealized numerical modeling study. J. Geophys. Res. Oceans 2022, 127, e2021JC017829. [Google Scholar]
- Hahm, H. Ecological crisis and women: The case of Saemangeum Reclamation Project. ECO 2004, 7, 150–170. [Google Scholar]
- Figueroa, S.M.; Lee, G.; Chang, J.; Schieder, N.W.; Kim, K.; Kim, S.-Y. Evaluation of along-channel sediment flux gradients in an anthropocene estuary with an estuarine dam. Mar. Geol. 2020, 429, 106318. [Google Scholar]
- Chang, J.; Lee, G.; Harris, C.K.; Song, Y.; Figueroa, S.M.; Schieder, N.W.; Lagamayo, K.D. Sediment transport mechanisms in altered depositional environments of the Anthropocene Nakdong Estuary: A numerical modeling study. Mar. Geol. 2020, 430, 106364. [Google Scholar] [CrossRef]
- Chang, J.; Lee, G.; Harris, C.K.; Figueroa, S.M.; Jung, N.W. Relative contribution of the presence of an estuarine dam and land reclamation to sediment dynamics of the Nakdong Estuary. Front. Mar. Sci. 2023, 10, 1101658. [Google Scholar] [CrossRef]
- Hahm, H.; Jung, M.; Lee, D. A study of interactional relations between marine ecology and fishery in the area of Saemangeum. ECO 2011, 15, 7–37. [Google Scholar]
- Barbier, E.B. Progress and challenges in valuing coastal and marine ecosystem services. REEP 2012, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.A. Development challenges in South Korea: Reflection on the Saemangeum land reclamation project. Disjuntiva 2022, 3, 9–17. [Google Scholar] [CrossRef]
- Lee, H.-D. Economic value comparisons between preservation and agricultural use of coastal wetlands. Ocean Res. 1998, 20, 145–152. [Google Scholar]
- Kim, J.-E. Land use management and cultural value of ecosystem services in Southwestern Korean islands. JMIC 2013, 2, 49–55. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Sea-Level Rise Dataset. World Bank Data Catalog. 2019. Available online: https://datacatalog.worldbank.org/search/dataset/0041449/World-Sea-Level-Rise-Dataset (accessed on 1 March 2023).
- Vafeidis, A.T.; Nicholls, R.J.; McFadden, L.; Tol, R.S.; Hinkel, J.; Spencer, T.; Grashoff, P.S.; Boot, G.; Klein, R.J. A new global coastal database for impact and vulnerability analysis to sea-level rise. J. Coast. Res. 2008, 24, 917–924. [Google Scholar] [CrossRef]
- De Groeve, J.; Kusumoto, B.; Koene, E.; Kissling, W.D.; Seijmonsbergen, A.C.; Hoeksema, B.W.; Yasuhara, M.; Norder, S.J.; Cahyarini, S.Y.; van der Geer, A.; et al. Global raster dataset on historical coastline positions and shelf sea extents since the Last Glacial Maximum. Glob. Ecol. Biogeogr. 2022, 31, 2162–2171. [Google Scholar] [CrossRef] [PubMed]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef] [Green Version]
- Mcowen, C.J.; Weatherdon, L.V.; Van Bochove, J.W.; Sullivan, E.; Blyth, S.; Zockler, C.; Stanwell-Smith, D.; Kingston, N.; Martin, C.S.; Spalding, M.; et al. A global map of saltmarshes. Biodivers. Data J. 2017, 5, e11764. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2018, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Buscombe, D.; Wernette, P.; Fitzpatrick, S.; Favela, J.; Goldstein, E.B.; Enwright, N.M. A 1.2 Billion Pixel Human-Labeled Dataset for Data-Driven Classification of Coastal Environments. Sci. Data 2023, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Savenije, H. Salinity and Tides in Alluvial Estuaries; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Prandle, D. How tides and river flows determine estuarine bathymetries. Prog. Oceanogr. 2004, 61, 1–26. [Google Scholar] [CrossRef]
Example | Dataset | Spatial Resolution | Purpose | Data Format/Type | Website |
---|---|---|---|---|---|
Global Surface Water Dataset—Maximum Water Extent | 30 m × 30 m | Delineate embayments | Shapefile | Google Earth Engine or https://global-surface-water.appspot.com/download (accessed on 1 September 2022) | |
Global Surface Water Dataset—Occurrence Change Intensity | 30 m × 30 m | Calculate coastal surface water change | GeoTIFF | Google Earth Engine or https://global-surface-water.appspot.com/download (accessed on 1 September 2022) | |
HydroSHEDS | 3 arc seconds | Identification of land masses with hydrologic characteristics that support estuarine processes as well as potential estuarine embayments | GeoTIFF | https://www.hydrosheds.org/products (accessed on 1 September 2022) | |
Exclusive Economic Zone | N/A | Isolate country’s surface water | Shapefile | https://www.marineregions.org (accessed on 1 September 2022) | |
Global Coastline | 1:10 m | Isolate selected study country | Shapefile | https://naturalearthdata.com (accessed on 1 September 2022) |
Buffer Size (km) | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 |
---|---|---|---|---|---|---|---|---|---|
Number of embayments | 2476 | 1661 | 932 | 508 | 259 | 147 | 88 | 64 | 43 |
Area (km2) | 1415.9 | 2030.5 | 2975.6 | 4466.99 | 5285.99 | 7066.0 | 12,900.3 | 24,652.7 | 30,582.96 |
Area loss (km2) | −710.2 | −969.6 | −1243.0 | −1544.7 | −1618.7 | −1796.0 | −2126.0 | −2177.4 | −2202.8 |
Area gain (km2) | 425.3 | 469.9 | 508.2 | 539.6 | 563.9 | 594.3 | 657.7 | 684.6 | 700.5 |
Net change (km2) | −284.9 | −499.7 | −734.7 | −1005.0 | −1054.8 | −1201.7 | −1468.4 | −1492.8 | −1502.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wellbrock, N.B.; Jung, N.W.; Retchless, D.P.; Dellapenna, T.M.; Salgado, V.L. Introducing ICEDAP: An ‘Iterative Coastal Embayment Delineation and Analysis Process’ with Applications for the Management of Coastal Change. Remote Sens. 2023, 15, 4034. https://doi.org/10.3390/rs15164034
Wellbrock NB, Jung NW, Retchless DP, Dellapenna TM, Salgado VL. Introducing ICEDAP: An ‘Iterative Coastal Embayment Delineation and Analysis Process’ with Applications for the Management of Coastal Change. Remote Sensing. 2023; 15(16):4034. https://doi.org/10.3390/rs15164034
Chicago/Turabian StyleWellbrock, Nicholas B., Nathalie W. Jung, David P. Retchless, Timothy M. Dellapenna, and Victoria L. Salgado. 2023. "Introducing ICEDAP: An ‘Iterative Coastal Embayment Delineation and Analysis Process’ with Applications for the Management of Coastal Change" Remote Sensing 15, no. 16: 4034. https://doi.org/10.3390/rs15164034
APA StyleWellbrock, N. B., Jung, N. W., Retchless, D. P., Dellapenna, T. M., & Salgado, V. L. (2023). Introducing ICEDAP: An ‘Iterative Coastal Embayment Delineation and Analysis Process’ with Applications for the Management of Coastal Change. Remote Sensing, 15(16), 4034. https://doi.org/10.3390/rs15164034