Scale Analysis of Typhoon In-Fa (2021) Based on FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Observed and All-Sky-Simulated Brightness Temperature
Abstract
:1. Introduction
2. Case Overview, Data, and Model Setting
2.1. Overview of Typhoon In-Fa (2021)
2.2. Satellite Observations
2.3. RTTOV Simulation Settings
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eyre, J.R.; English, S.J.; Forsythe, M. Assimilation of satellite data in numerical weather prediction. Part I: The early years. Q. J. R. Meteorol. Soc. 2020, 146, 49–68. [Google Scholar] [CrossRef]
- Simmons, A.J.; Hollingsworth, A. Some aspects of the improvement in skill of numerical weather prediction. Q. J. R. Meteorol. Soc. 2002, 128, 647–677. [Google Scholar] [CrossRef]
- McNally, A.P.; Watts, P.D. A cloud detection algorithm for high-spectral-resolution infrared sounders. Q. J. R. Meteorol. Soc. 2003, 129, 3411–3423. [Google Scholar] [CrossRef]
- Bauer, P.; Geer, A.; Lopez, P.; Salmond, D. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Q. J. R. Meteorol. Soc. 2010, 136, 1868–1885. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, E.; Mahajan, R.; Thomas, C.; Groff, D.; Van Delst, P.; Collard, A.; Kleist, D.; Treadon, R.; Derber, J.C. All-sky microwave radiance assimilation in NCEP’s GSI analysis system. Mon. Weather Rev. 2016, 144, 4709–4735. [Google Scholar] [CrossRef]
- Geer, A.; Lonitz, K.; Weston, P.; Kazumori, M.; Okamoto, K.; Zhu, Y.; Liu, E.H.; Collard, A.; Bell, W.; Migliorini, S.; et al. All-sky satellite data assimilation at operational weather forecasting centres. Q. J. R. Meteorol. Soc. 2018, 144, 1191–1217. [Google Scholar] [CrossRef]
- Minamide, M.; Zhang, F. Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Weather Rev. 2017, 145, 1063–1081. [Google Scholar] [CrossRef] [Green Version]
- Minamide, M.; Zhang, F. Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. Mon. Weather Rev. 2018, 146, 3241–3258. [Google Scholar] [CrossRef]
- Zhang, F.; Minamide, M.; Clothiaux, E.E. Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett. 2016, 43, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Honda, T.; Kotsuki, S.; Lien, G.Y.; Maejima, Y.; Okamoto, K.; Miyoshi, T. Assimilation of Himawari-8 all-sky radiances every 10 minutes: Impact on precipitation and flood risk prediction. J. Geophys. Res. Atmos. 2018, 123, 965–976. [Google Scholar] [CrossRef] [Green Version]
- Sawada, Y.; Okamoto, K.; Kunii, M.; Miyoshi, T. Assimilating every-10-minute Himawari-8 infrared radiances to improve convective predictability. J. Geophys. Res. Atmos. 2019, 124, 2546–2561. [Google Scholar] [CrossRef]
- Okamoto, K.; Hayashi, M.; Hashino, T.; Nakagawa, M.; Okuyama, A. Examination of all-sky infrared radiance simulation of Himawari-8 for global data assimilation and model verification. Q. J. R. Meteorol. Soc. 2021, 147, 3611–3627. [Google Scholar] [CrossRef]
- Kumar, P.; Shukla, M.V.; Varma, A.K. Impact of all-sky water vapour channel radiance from INSAT-3D/3DR satellite over South Asia region using WRF model. Q. J. R. Meteorol. Soc. 2022, 148, 2532–2545. [Google Scholar] [CrossRef]
- Martinet, P.; Fourrié, N.; Guidard, V.; Rabier, F.; Montmerle, T.; Brunel, P. Towards the use of microphysical variables for the assimilation of cloud-affected infrared radiances. Q. J. R. Meteorol. Soc. 2013, 139, 1402–1416. [Google Scholar] [CrossRef]
- Cintineo, R.; Otkin, J.A.; Xue, M.; Kong, F. Evaluating the performance of planetary boundary layer and cloud microphysical parameterization schemes in convection-permitting ensemble forecasts using synthetic GOES-13 satellite observations. Mon. Weather Rev. 2014, 142, 163–182. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, J.; Wang, P.; Lim, A.; Li, J.; Schmit, T.J.; Atlas, R.; Boukabara, S.A.; Hoffman, R.N. Value-added impact of geostationary hyperspectral infrared sounders on local severe storm forecasts—Via a quick regional OSSE. Adv. Atmos. Sci. 2018, 35, 1217–1230. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, L.; Han, Y.; Dong, P.; Huang, W. Performances between the FY-4A/GIIRS and FY-4B/GIIRS Long-Wave Infrared (LWIR) channels under Clear-sky and All-sky Conditions. Q. J. R. Meteorol. Soc. 2023, 149, 1612–1628. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Wang, P.; Schmit, T.J.; Bai, W.; Atlas, R. An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy-sky conditions. J. Geophys. Res. Atmos. 2017, 122, 7600–7613. [Google Scholar] [CrossRef]
- Okamoto, K.; Owada, H.; Fujita, T.; Kazumori, M.; Otsuka, M.; Seko, H.; Ota, Y.; Uekiyo, N.; Ishimoto, H.; Hayashi, M.; et al. Assessment of the potential impact of a hyperspectral infrared sounder on the Himawari follow-on geostationary satellite. SOLA 2020, 16, 162–168. [Google Scholar] [CrossRef]
- Yin, R.; Han, W.; Gao, Z.; Li, J. Impact of High Temporal Resolution FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Radiance Measurements on Typhoon Forecasts: Maria (2018) case with GRAPES Global 4D-Var Assimilation system. Geophys. Res. Lett. 2021, 48, e2021GL093672. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Z.; Weng, F.; Dong, P.; Huang, W.; Zhu, J. Impacts of Direct Assimilation of the FY-4A/GIIRS Long-Wave Temperature Sounding Channel Data on Forecasting Typhoon In-Fa (2021). Remote Sens. 2023, 15, 355. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef] [Green Version]
- Segelstein, D.J. The Complex Refractive Index of Water; University of Missouri: Kansas City, MI, USA, 1981. [Google Scholar]
- Zhao, Q.; Baker, N.L.; Jin, Y.; Nystrom, R. Scale analysis of infrared water vapor brightness temperatures for tropical cyclone all-sky radiance assimilation. Geophys. Res. Lett. 2021, 48, e2021GL095458. [Google Scholar] [CrossRef]
Channel Number | Wavenumber (cm−1) | WF Peak (hPa) | Channel Number | Wavenumber (cm−1) | WF Peak (hPa) |
---|---|---|---|---|---|
1(3) | 701.25 | 254 | 31(79) | 748.75 | 945 |
2(4) | 701.875 | 229 | 32(80) | 749.375 | 1000 |
3(5) | 702.5 | 280 | 33(84) | 751.875 | 945 |
4(6) | 703.125 | 280 | 34(85) | 752.5 | 945 |
5(9) | 705 | 321 | 35(86) | 753.125 | 972 |
6(10) | 705.625 | 351 | 36(87) | 753.75 | 866 |
7(11) | 706.25 | 367 | 37(88) | 754.375 | 790 |
8(12) | 706.875 | 367 | 38(89) | 755 | 945 |
9(13) | 707.5 | 367 | 39(90) | 755.625 | 1000 |
10(16) | 709.375 | 416 | 40(91) | 756.25 | 1028 |
11(19) | 711.25 | 433 | 41(92) | 756.875 | 1085 |
12(22) | 713.125 | 451 | 42(109) | 767.5 | 1085 |
13(24) | 714.375 | 545 | 43(112) | 769.375 | 1085 |
14(26) | 715.625 | 565 | 44(113) | 770 | 1057 |
15(27) | 716.25 | 565 | 45(121) | 775 | 1085 |
16(29) | 717.5 | 565 | 46(122) | 775.625 | 1028 |
17(32) | 719.375 | 156 | 47(123) | 776.25 | 1057 |
18(33) | 720 | 54 | 48(124) | 776.875 | 1000 |
19(34) | 720.625 | 31 | 49(125) | 777.50 | 1085 |
20(38) | 723.125 | 840 | 50(135) | 783.75 | 1085 |
21(63) | 738.75 | 790 | 51(136) | 784.375 | 945 |
22(65) | 740 | 718 | 52(137) | 785 | 1028 |
23(70) | 743.125 | 945 | 53(154) | 795.625 | 945 |
24(71) | 743.75 | 790 | 54(155) | 796.25 | 1000 |
25(72) | 744.375 | 766 | 55(158) | 798.125 | 945 |
26(73) | 745 | 742 | 56(159) | 798.75 | 790 |
27(74) | 745.625 | 866 | 57(166) | 803.125 | 972 |
28(75) | 746.25 | 1000 | 58(184) | 814.375 | 1028 |
29(77) | 747.5 | 1000 | 59(225) | 840 | 1085 |
30(78) | 748.125 | 866 | 60(245) | 852.5 | 972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Z.; Wang, L.; Kumar, P. Scale Analysis of Typhoon In-Fa (2021) Based on FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Observed and All-Sky-Simulated Brightness Temperature. Remote Sens. 2023, 15, 4035. https://doi.org/10.3390/rs15164035
Niu Z, Wang L, Kumar P. Scale Analysis of Typhoon In-Fa (2021) Based on FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Observed and All-Sky-Simulated Brightness Temperature. Remote Sensing. 2023; 15(16):4035. https://doi.org/10.3390/rs15164035
Chicago/Turabian StyleNiu, Zeyi, Liwen Wang, and Prashant Kumar. 2023. "Scale Analysis of Typhoon In-Fa (2021) Based on FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Observed and All-Sky-Simulated Brightness Temperature" Remote Sensing 15, no. 16: 4035. https://doi.org/10.3390/rs15164035
APA StyleNiu, Z., Wang, L., & Kumar, P. (2023). Scale Analysis of Typhoon In-Fa (2021) Based on FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Observed and All-Sky-Simulated Brightness Temperature. Remote Sensing, 15(16), 4035. https://doi.org/10.3390/rs15164035